国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

有限溫度下含三體相互作用的玻色-愛(ài)因斯坦凝聚體的集體激發(fā)特性

2023-07-28 03:27:16梁青青周小燕李好財(cái)

梁青青 周小燕 李好財(cái)

摘要:提出了一種描述有限溫度下囚禁在諧振勢(shì)肼中包含兩體和三體相互作用的玻色-愛(ài)因斯坦凝聚體的自洽模型,利用該模型討論了三體相互作用對(duì)凝聚體轉(zhuǎn)變溫度、凝聚體和非凝聚體密度分布和凝聚體集體激發(fā)頻率的影響.利用求得的凝聚體基態(tài)波函數(shù)和集體激發(fā)的本征函數(shù)計(jì)算了集體激發(fā)模和準(zhǔn)粒子的耦合矩陣元,得到了最低集體激發(fā)模的朗道阻尼,討論了三體相互作用對(duì)最低激發(fā)模的朗道阻尼的影響.

關(guān)鍵詞:三體相互作用;有限溫度;集體激發(fā);朗道阻尼

中圖分類號(hào):O 469 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-988Ⅹ(2023)04-0054-05

自觀察到超冷玻色-愛(ài)因斯坦凝聚(Bose-Einstein condensate,BEC)的集體模以來(lái),實(shí)驗(yàn)上對(duì)低能集體激發(fā)的測(cè)量[1]已發(fā)展到有限溫度.在理論方面,描述凝聚體的格羅斯-皮塔耶夫斯基(Gross-Pitayefsky,G-P)方程已被推廣到有限溫度[2,3],并非常成功地解釋了系統(tǒng)的熱力學(xué)性質(zhì),如凝聚分?jǐn)?shù)、內(nèi)能、比熱和臨界溫度[3,4].粒子間的相互作用會(huì)導(dǎo)致集體激發(fā)振幅的衰減(阻尼)和頻率的改變(頻移).在能級(jí)分離的系統(tǒng)中,集體激發(fā)的阻尼機(jī)制主要是朗道阻尼,文獻(xiàn)[5-8]計(jì)算了BEC中低能模的朗道阻尼.然而,這些計(jì)算主要考慮兩體相互作用[9-11];如果提高原子密度,三體相互作用將開(kāi)始發(fā)揮重要作用[12-19].理論研究結(jié)果表明,即使較小強(qiáng)度的三體相互作用也會(huì)導(dǎo)致特殊的調(diào)制不穩(wěn)定性[20],凝聚態(tài)的穩(wěn)定區(qū)域和能譜也會(huì)有相當(dāng)大的改變[21,22].文中將HFB-Popov近似推廣到包含三體相互作用情形,研究了三體相互作用對(duì)凝聚體集體激發(fā)特性的影響.

圖5為87Rb原子氣體的l=0集體模的計(jì)算結(jié)果.當(dāng)Δ在0.07~0.20時(shí),γL的變化較弱.通過(guò)將γ(Δ)的數(shù)據(jù)擬合為一條近似的直線,并將其外推到Δ=0,可以得到給定溫度下集體激發(fā)模的朗道阻尼率.可以看到,阻尼率隨著三體相互作用的增加而增加.

3 結(jié)論

文中將含時(shí)HFB-Popov近似推廣到包含三體相互作用的情形,得到了一組耦合方程,通過(guò)數(shù)值求解這些方程研究了三體相互作用對(duì)凝聚體轉(zhuǎn)變溫度、凝聚體和非凝聚體原子分布、集體激發(fā)頻率的影響.另外,利用所求得的基態(tài)波函數(shù)和集體激發(fā)的本征函數(shù)數(shù)值研究了三體相互作用對(duì)l=0集體模朗道阻尼的影響.計(jì)算結(jié)果顯示三體相互作用會(huì)導(dǎo)致凝聚體轉(zhuǎn)變溫度減小,引起集體激發(fā)頻率的移動(dòng),并能增強(qiáng)凝聚體最低激發(fā)模的朗道阻尼.

參考文獻(xiàn):

[1] JIN D S,MATTHEWS M R,ENSHER J R,et al.Temperature-dependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein condensate[J].Phys Rev Lett,1997,78:764.

[2] GRIFFIN A.Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures[J].Phys Rev B,1996,53:9341.

[3] GIORGINI S,PITAEVSKII L P,STRINGARI S.Scaling and thermodynamics of a trapped Bose-condensed gas[J].Phys Rev Lett,1997,78:3987.

[4] HUTCHINSON D A W,ZAREMBA E,GRIFFIN A.Finite temperature excitations of a trapped Bose gas[J].Phys Rev Lett,1997,78:1842.

[5] PITAEVSKII L P,STRINGARI S.Landau damping in dilute Bose gases[J].Phys Lett A,1997,235:398.

[6] GIORGINI S.Damping in dilute Bose gases:A mean-field approach[J].Phys Rev A,1998,57:2949.

[7] JACKSON B,ZAREMBA E.Landau damping in trapped Bose-condensed gases[J].New Journal of Physics,2003,5:388.

[8] GUILLEUNAS M,PITAEVSKII L P.Temperature-induced resonances and Landau damping of collective modes in Bose-Einstein condensed gases in spherical traps[J].Phy Rev A,2000,61:013602.

[9] MA Xiao-dong,MA Yong-li,HUANG Guo-xiang.Landau damping of collective modes in a disc-shaped Bose-Einstein condensate[J].Chin Phys Lett,2007,24:616.

[10] RAHMU T,ARZIGU L,PENG Sheng-qiang,et al.Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate[J].Chin Phys B,2014,23:090311.

[11] MA Xiao-dong,YANG Zhan-jin,LU Jun-zhe,et al.Landau damping of collective mode in a quasi-two-dimensional repulsive Bose-Einstein condensate[J].Chin Phys B,2011,20:070307.

[12] GAMMAL A,F(xiàn)REDERICO T,TOMIO L,et al.Stability analysis of the D-dimensional nonlinear Schrdinger equation with trap and two- and three-body interactions[J].Phy Lett A,2000,267:305.

[13] ABDULLAEV F K,GAMMAL A,TOMIO L,et al.Stability of trapped Bose-Einstein condensates[J].Phy Rev A,2001,63:043604.

[14] AURE L,BULGA C.Dilute quantum droplets[J].Phys Rev Lett,2002,89:050402.

[15] THORST E N,KOHL E R.Three-body problem in a dilute Bose-Einstein condensate[J].Phys Rev Lett,2002,89:210404.

[16] LEANHARDT A E,CHIKKATUR A P,KIELPINSKI D,et al.Propagation of Bose-Einstein condensates in a magnetic waveguide[J].Phys Rev Lett,2002,89:040401.

[17] PIERI P,STRINATI G C.Derivation of the Gross-Pitaevskii equation for condensed Bosons from the Bogoliubov-deGennes equations for superfluid Fermions[J].Phys Rev Lett,2003,91:030401.

[18] ZHANG Xin,YU Zi-fa,XUE Ju-kui.Coherence of disordered Bosonic gas with two- and three-body interactions[J].Chin Phys Lett,2016,33:40302.

[19] CHANG Na-na,YU Zi-fa,ZHANG Ai-xia,et al.Tunneling dynamics of a few Bosons with both two-and three-body interactions in a double-well potential[J].Chin Phys B,2017,26:115202.

[20] ZHANG Wei-ping,WRIGHT E M,PU Han,et al.Fundamental limit for integrated atom optics with Bose-Einstein condensates[J].Phys Rev A,2003,68:023605.

[21] AKHMEDIEV N,DAS M P,VAGOV A V.Bose-Einstein condensation of atoms with attractive interaction[J].J Mod Phys B,1999,13:625.

[22] ZHANG A X,XUE J K.Band structure and stability of Bose-Einstein condensates in optical lattices with two- and three-atom interactions[J].Phys Rev A,2007,75:013624.

[23] DE GROOT S R,HOOYMAN G J,TEN SELDAM C A.Thermodynamics of diffusion in multicomponent systems[J].Proc R Soc London A,1950,203:266.

[24] BAGNATO V,PRITCHARD D E,KLEPPNER D.Bose-Einstein condensation in an external potential[J].Phys Rev A,1987,35:4354.

[25] DOBSON J F,HARMONI C.Potential theorem:implications for approximate many-body theories[J].Phys Rev Lett,1994,73:2244.

(責(zé)任編輯 孫對(duì)兄)

仁怀市| 霍山县| 乐陵市| 龙川县| 漠河县| 大关县| 南宁市| 中西区| 新昌县| 伊宁市| 灵璧县| 奇台县| 巴彦淖尔市| 嘉鱼县| 城市| 马鞍山市| 河源市| 麻江县| 屯昌县| 定陶县| 淮滨县| 平和县| 双鸭山市| 辰溪县| 海安县| 新营市| 新宾| 文昌市| 昆山市| 柞水县| 苍南县| 乃东县| 阜新| 新密市| 灵山县| 台东县| 绥化市| 色达县| 四川省| 泸西县| 威信县|