艾曉輝 白瑞杰 劉宗昊
摘要:研究美式蝶形期權(quán)均值的半?yún)?shù)界估計(jì)問題.在給定風(fēng)險(xiǎn)資產(chǎn)(股票)價(jià)格的某些矩信息條件下,通過對(duì)偶方法得到美式蝶形期權(quán)的上、下矩界;利用對(duì)偶原理、測(cè)度變換和控制函數(shù)分別估計(jì)了單峰和雙峰情形下美式蝶形期權(quán)期望的上界.
關(guān)鍵詞:單峰分布;對(duì)偶原理;控制函數(shù);半?yún)?shù)界;美式蝶形期權(quán);矩問題
中圖分類號(hào):O 211.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-988Ⅹ(2023)04-0035-10
矩問題是指在給定隨機(jī)變量的一定矩信息條件下,求得隨機(jī)變量函數(shù)期望、方差和協(xié)方差的最優(yōu)上下界問題.矩界的研究是由經(jīng)濟(jì)學(xué)、運(yùn)籌學(xué)、概率論、統(tǒng)計(jì)學(xué)、期權(quán)定價(jià)、醫(yī)學(xué)影像分析等領(lǐng)域自然產(chǎn)生的實(shí)際問題驅(qū)動(dòng)的.矩問題可以用來估計(jì)隨機(jī)規(guī)劃的誤差界,提供對(duì)于歐式期權(quán)、穩(wěn)健估計(jì)和股票價(jià)格等金融產(chǎn)品的風(fēng)險(xiǎn)評(píng)估[1,2].矩問題在現(xiàn)實(shí)中有廣泛的應(yīng)用[3-9].
隨機(jī)變量的矩估計(jì)有著悠久的歷史.在不完全市場條件下的期權(quán)價(jià)格上、下界的估計(jì)問題是一類特殊的切比雪夫不等式問題.1995年,Scarf[10]研究成本控制問題時(shí)得出了一類切比雪夫型不等式,Lo[11]將Scarf的方法應(yīng)用于歐式期權(quán)的收益函數(shù);1995年,Smith[12]用Lo的上界做決策分析時(shí)提出了一類廣義切比雪夫不等式.1996年,Pintelon等[13]證明了多參數(shù)模型的最小方差估計(jì).之后,Rao等[14]提出了切比雪夫不等式在二階矩研究中的應(yīng)用,Ageel[15]從離散的α-單模態(tài)分布中得到了概率不等式的估計(jì)和二階矩的一個(gè)上界.2008年,Zuluaga等[16]研究了歐式期權(quán)在給定的三階矩條件下的上、下界.2010年,Sharma等[17]給出了有限維空間方差的界估計(jì).
4 結(jié)論
本文利用對(duì)偶方法和測(cè)度變換研究了美式蝶形期權(quán)的矩界,得到了期權(quán)期望的上、下界,同時(shí)給出了期望上界的可達(dá)結(jié)果.另外,分別給出了單峰和雙峰情形下美式蝶形期權(quán)期望的上界.
參考文獻(xiàn):
[1] DOKOV S P,MORTON D P.Second-order lower bounds on the expectation of a convex function[J].Mathematics of Operations Research,2005,30(3):662.
[2] MALLIAVIN P.Integration and Probability[M].New York:Springer Science and Business Media,1995.
[3] DASPREMONT A,GHAOUI L E.Static arbitrage bounds on basket option prices[J].Mathematical Programming,2006,106(3):467.
[4] BERGER B.The fourth moment method[J].SIAM Journal on Computing,1997,26(4):1188.
[5] CHUNG K L,F(xiàn)ARID A.Elementary Probability Theory[M].New York:Springer,2010.
[6] COURTOIS C,DENUIT M.Moment bounds on discrete expected stop-loss transforms,with applications[J].Methodology and Computing in Applied Probability,2009,11(3):307.
[7] PACHPATTE B G.New bounds on certain fundamental integral inequalities[J].Journal of Mathematical Incqualitics,2010,4(3):405.
[8] POPESCU I.A semidefinite programming approach to optimal-moment bounds for convex classes of distributions[J].Mathematics of Operations Research,2005,30(3):632.
[9] SCOTT A,F(xiàn)RANCOIS W.Goal achieving probabilities of constrained mean-variance strategies[J].Statistics and Probability Letters,2011,81(8):1021.
[10] SCARF H.A Min Max solution of an inventory problem[J].Proceedings of the Fujihara Memorial Faculty of Engineering Keio University,1959,12:114.
[11] LO A W.Semi-parametric upper bounds for option prices and expected payoffs[J].Journal of Financial Economics,1987,19(2):373.
[12] SMITH J E.Generalized Chebychev inequalities:theory and applica tions in decision analysis[J].Operations Research,1995,43(5):807.
[13] PINTELON R,SCHOUKENS J,MCKELVEY T,et al.Minimum variance bounds for overparameterized models[J].IEEE Transactions on Automatic Control,1996,41(5):719.
[14] RAO B P,SREEHARI M.Chernoff-type inequality and variance bounds[J].Journal of Statistical Planning and Inference,1997,63(2):325.
[15] AGEEL M.Variance upper bounds and a probability inequality for discrete α-unimodality[J].Applicationes Mathematicae,2000,27(4):403.
[16] ZULUAGA L F,PEA J,DU D.Third-order extensions of Los semiparametric bound for European call options[J].European Journal of Operational Research,2009,198(2):557.
[17] SHARMA R,GUPTA M,KAPOOR G.Some better bounds on the variance with applications[J].Journal of Mathematical Inequalities,2010,4(3):355.
[18] KHINTCHINE A Y.On unimodal? distributions[J].Izv Nauchno-Isled Inst,1938,2:3.
[19] ROBERTSON C A,F(xiàn)RYER J G.Some descriptive properties of normal mixtures[J].Scand Actuar Tidskr,1969,52:137.
(責(zé)任編輯 馬宇鴻)
西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年4期