余亞輝 李振平
摘要:考慮矩形區(qū)域上Helmholtz方程柯西問(wèn)題,該問(wèn)題是一類(lèi)嚴(yán)重不適定的偏微分方程反問(wèn)題,它的解不連續(xù)依賴于輸入數(shù)據(jù).使用修正的Tikhonov正則化方法給出了該問(wèn)題基于分離變量的近似解,并通過(guò)先驗(yàn)和后驗(yàn)兩種不同的正則化參數(shù)選擇規(guī)則得到了精確解與正則化近似解之間的Hlder型誤差估計(jì).
關(guān)鍵詞:Helmholtz方程柯西問(wèn)題;不適定問(wèn)題;正則化;后驗(yàn)參數(shù)選取;誤差估計(jì)
中圖分類(lèi)號(hào):O 175 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-988Ⅹ(2023)04-0029-06
4 結(jié)束語(yǔ)
本文使用一種修正的Tikhonov方法求解矩形區(qū)域上的Helmholtz方程柯西問(wèn)題,不僅給出正則化參數(shù)的先驗(yàn)選取下精確解與正則化近似解之間的Hlder型誤差估計(jì),還給出了正則化參數(shù)后驗(yàn)選取規(guī)則及誤差估計(jì).該方法可能也適用于其他不適定的反問(wèn)題,這也有待于我們進(jìn)一步探究.
參考文獻(xiàn):
[1] CHEN J T,WONG F C.Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition[J].J Sound Vib,1998,217(1):75.
[2] HALL W S,MAO X Q.Boundary element investigation of irregular frequencies in electromagnetic scattering[J].Eng Anal Bound Elem,1995,16(3):245.
[3] ISAKOV V.Inverse Problems for Partial Differential Equations[M].New York:Springer-Verlag,1998.
[4] REGISKA T,REGISKI K.Approximate solution of a Cauchy problem for the Helmholtz equation[J].Inverse Prob,2006,22:975.
[5] ZHANG Yuan-xiang,F(xiàn)U Chu-li,DENG Zhi-liang.An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations[J].Inverse Prob Sci Eng,2013,21:1151.
[6] FU Chu-li,F(xiàn)ENG Xiao-li,QIAN Zhi.The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J].Appl Numer Math,2009,59:2625.
[7] QIN Hai-hua,WEI Ting.Two regularization methods for the Cauchy problems of the Helmholtz equation[J].Appl Math Model,2010,34:947.
[8] QIN Hai-hua,WEI Ting.Modified regularization method for the Cauchy problem of the Helmholtz equation[J].Appl Math Model,2009,33:2334.
[9] QIAN Ai-lin,XIONG Xiang-tuan,WU Yu-jiang.On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J].J Comput Appl Math,2010,233:1969.
[10] XIONG Xiang-tuan.A regularization method for a Cauchy problem of the Helmholtz equation[J].J Comput Appl Math,2010,233:1723.
[11] FENG Xiao-li,F(xiàn)U Chu-li,CHENG Hao.A regularization method for solving the Cauchy problem for the Helmholtz equation[J].Appl Math Model,2011,35:3301.
[12] XIONG Xiang-tuan,F(xiàn)U Chu-li.Two approximate methods of a Cauchy problem for the Helmholtz equation[J].Comput Appl Math,2007,26:285.
[13] LI Zhen-ping,XU Chao,LAN Man,et al.A mollification method for a Cauchy problem for the Helmholtz equation[J].Int J Comput Math,2018,95(11):2256.
[14] HE Shang-qin,DI Cong-na,LI Yang.The mollification method based on a modified operator to the ill-posed problem for 3D Helmholtz equation with mixed boundary[J].Appl Numer Math,2021,160:422.
[15] XIONG Xiang-tuan,ZHAO Xiao-chen,WANG Jun-xia.Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation[J].Numer Algor,2013,63:691.
[16] QIAN Zhi,F(xiàn)ENG Xiao-li.A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation[J].Applicable Analysis,2017,96(10):1656.
[17] 熊向團(tuán),任麗婷.一種修正的Tikhonov方法求解拉普拉斯方程的柯西問(wèn)題[J].西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,54(5):1.
[18] TIKHONOV A N,ARSENIN V Y.Solutions of Ill-posed Problems[M].Washington DC:Winston and Sons,1977.
(責(zé)任編輯 馬宇鴻)
西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年4期