袁海龍 王雅迪
摘要:考慮一類滿足齊次Neumann邊界條件的營(yíng)養(yǎng)-微生物擴(kuò)散模型.在滿足Hopf分支存在性的條件下,利用中心流形定理和規(guī)范型理論,討論了擴(kuò)散系統(tǒng)Hopf分支方向及空間非齊次分支周期解的穩(wěn)定性.
關(guān)鍵詞:營(yíng)養(yǎng)-微生物模型;擴(kuò)散系統(tǒng);周期解;Hopf分支;空間非齊次;穩(wěn)定性
中圖分類號(hào):O 175.26 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-988Ⅹ(2023)04-0016-07
參考文獻(xiàn):
[1] BAURMANN M,F(xiàn)EUDEL U.Turing patterns in a simple model of a nutrient-microorganism system in the sediment[J].Ecol Complex,2004,1:77.
[2] CAO Qian,WU Jian-hua,WANG Yan-e.Bifurcation solutions in the diffusive minimal sediment[J].Comput Math Appl,2019,77:888.
[3] CAO Qian,WU Jian-hua.Patterns and dynamics in the diffusive model of a nutrient-microorganism system in the sediment[J].Nonlinear Anal:RWA,2019,49:331.
[4] JIN Jia-yin,SHI Jun-ping,WEI Jun-jie,et al.Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions[J].Rocky Mt J Math,2013,43:1637.
[5] YI Feng-qi,WEI Jun-jie,SHI Jun-ping.Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J].J Differential Equations,2009,246:1944.
[6] CHEN Shan-shan,SHI Jun-ping,WEI Jun-jie.The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response[J].Commun Pur Appl Anal,2013,12:481.
[7] HASSARD B D,KAZARINOFF N D,WAN Y H.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
(責(zé)任編輯 馬宇鴻)
西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年4期