卓茂根 王惠聰
摘 ? ?要:NAC轉(zhuǎn)錄因子是植物中最大的特異性轉(zhuǎn)錄因子家族之一,其依賴由高度保守的N端結(jié)構(gòu)域和高度變異的C端轉(zhuǎn)錄調(diào)控結(jié)構(gòu)域組成獨(dú)特的NAC結(jié)構(gòu)域發(fā)揮功能,在果實(shí)成熟的調(diào)控中發(fā)揮著重要的作用。在介紹NAC轉(zhuǎn)錄因子的結(jié)構(gòu)特征及不同物種NAC基因的成員與分類的基礎(chǔ)上,總結(jié)了近年來NAC轉(zhuǎn)錄因子在果實(shí)成熟過程中的積極作用,包括促進(jìn)果實(shí)軟化影響果實(shí)質(zhì)地,促進(jìn)葉綠素降解及類胡蘿卜素、類黃酮和花色苷的合成決定果實(shí)著色、調(diào)控糖分積累影響果實(shí)糖酸比例以及促進(jìn)多種芳香化合物合成積累形成果實(shí)特有風(fēng)味、果實(shí)脫澀等方面,并闡述了NAC轉(zhuǎn)錄因子與內(nèi)源激素特別是乙烯和ABA交互在調(diào)控果實(shí)成熟中的重要作用??偨Y(jié)了NAC轉(zhuǎn)錄因子調(diào)控果實(shí)成熟的潛在機(jī)制以及影響NAC表達(dá)的因素與分子通路,旨在為在果實(shí)成熟性狀遺傳改良與調(diào)控技術(shù)研發(fā)提供重要參考。
關(guān)鍵詞:果實(shí)成熟;NAC轉(zhuǎn)錄因子;軟化;著色;糖分積累;芳香化合物合成
中圖分類號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1455-16
The roles of NAC transcription factors in regulating fruit ripening
ZHUO Maogen, WANG Huicong*
(Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China)
Abstract: Fruit ripening is a key stage in the growth and development of fruit trees. During ripening, fruit becomes soft and the levels of sugars, aroma, and pigments increase. The ripening of a fleshy fruit is not only closely related to the formation of fruit quality, but also to the storability after harvest. The fruit ripening is a genetically programmed and highly coordinated process involved in huge changes in a numbers of gene expressions. Besides the critical role of phytohormones, transcription factors have been known to be involved in fruit ripening. Among the numerous transcription factor families in plants, NAC (NAM, ATAF1/2, and CUC2) transcription factor is one of the largest specific transcription factor families, which consists of a highly conserved N-terminal domain and a highly variable C-terminal transcriptional regulatory domain. Wide varieties of the NAC genes are important for plants response to biotic and abiotic stresses, such as response to light and temperature, salt and drought stress, pathogenic bacteria stress. The NACs have been shown to be involved in the regulation of a numerous ripening related processes in diverse species including tomato, apple, strawberry, banana, peach, litchi, citrus and so on. Increasing evidences have confirmed the key function of NACs in the regulation of fruit ripening including fruit softening, chlorophyll degradation, carotenoid metabolism, biosynthesis of flavonoids and anthocyanins, sugar accumulation, biosynthesis of aroma compounds etc. In the present paper, we reviewed the protein structure, number of the members and the phylogenetic tree of NACs of the different fruit crops, and the function of NAC transcription factors in fruit ripening. Some members of NAC family have been identified and characterized in model plants like Arabidopsis, petunia and tobacco, as well as fruit crops like apple, citrus, and Pyrus spp. The extensive investigation aided by the availability of several complete plant genomic sequences has identified 253 NAC genes in apple, 185 in pear, 181 in banana, 145 in sweet orange, 70 in grape (Vitis vinifera) which makes them be one of the largest family of TFs in plants. Typically, NAC proteins share a well conserved N-terminal NAC domain and a diversified C-terminal transcription regulatory region. However, a few variations in the structure have also been identified. These structure variations might contribute to the different function among the members. The NAC TFs are associated with the fruit softening by modulating cell wall remodeling proteins including xylosidase, pectate lyase, polygalacturonase, endo-1,4-beta-glucanase, expansin, arabino galactan-proteins. Recent evidence emphasizes the important role of NAC in regulation the biosynthesis of anthocyanins mainly by targeting the promotor of MYBs. Two apple NACs, MdNAC52 and MdNAC42, and a peach NAC (BL) have been shown to promote the anthocyanin biosynthesis by enhancing the expression of the key MYB members. In litchi, a developmental upregulated NAC, LcNAC13, enhance the accumulation of anthocyanins by repressing the expression of the LcR1MYB1. Although the NACs have been shown play critical role in the leaf degreening during senescence, their roles in chlorophyll loss in the fruits and how it works are still largely unclear. But studies have implicated the NAC genes in the regulation of carotenoid biosynthesis by promoting the expression of key synthetic enzyme genes like phytoene desaturase, ζ-carotene desaturase, lycopene cyclase-e, carotene hydroxylase-b. The NACs was found to regulate the biosynthesis of aroma compounds by directly binding to the promotor sequence of ester biosynthesis key alcohol acyltransferase (AAT) gene. The overexpression of apple MdNAC5 enhanced the production of esters through promoting the expression of the MdAAT1. In studies of strawberry and kiwifruit, the NACs were found to regulate the expression of terpene volatility biosynthesis pathway genes such as eugenol synthase 2, nerolidol synthase 1, terpene synthase 1. Phytohormones are essential regulating signals during fruit development and ripening with ethylene and ABA as the critical hormones. The mumerous evidence have suggested that the NACs be involved in fruit ripening regulation through modulating the ethylene biosynthesis and signal transduction. In kiwifruit, AdNAC6/7 enhance ethylene production and fruit ripening by binding the promotor of key ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and ACC oxidase. The NACs have also been reported to be involved in the biosynthesis and/or signaling of ABA. The expressions of peach NACs were upregulated in response to exogenous ABA. The downregulation of strawberry NAC retarded the expression of ABA biosynthesis key gene FaNCED2/3/5 and FaZEP (zeaxanthin epoxidase). These results indicated that a interaction between NAC transcription factors and phytohormone mainly ethylene and abscisicaid might co-regulate fruit ripening. Hopefully, our paper would provide references for genetic improvement and the development of techniques to manipulate fruit ripening.
Key words: Fruit ripening; NAC transcription factors; Fruit softening; Pigmentation; Sugar accumulation; Aroma compounds
果實(shí)成熟是果實(shí)生長發(fā)育歷程中重要的階段,是一種高度協(xié)調(diào)的、基因程序化的、不可逆的現(xiàn)象,涉及一系列生理生化和感官變化,形成成熟果實(shí)特有的風(fēng)味、質(zhì)地和色澤等可食用的品質(zhì)屬性[1]。在果實(shí)成熟過程中,通常伴隨著果實(shí)的軟化、有機(jī)酸減少、淀粉降解、可溶性糖分積累、單寧物質(zhì)消失、芳香化合物合成、葉綠素降解與類胡蘿卜素或花色苷積累等一系列的生理生化變化。
果實(shí)成熟是風(fēng)味和營養(yǎng)品質(zhì)形成的重要過程,影響果實(shí)的商品價(jià)值和采后的貯藏性能。果實(shí)成熟調(diào)控機(jī)制的揭示可為提高果實(shí)品質(zhì)分子育種技術(shù)提供重要的參考,也是提升果實(shí)品質(zhì)和研發(fā)采后保鮮技術(shù)的基礎(chǔ)。因此,果實(shí)成熟的調(diào)控一直是國內(nèi)外研究的熱點(diǎn),研究主要集中在植物激素調(diào)控果實(shí)成熟的分子機(jī)制和轉(zhuǎn)錄因子調(diào)控果實(shí)成熟的分子機(jī)制兩個(gè)方面。
在果實(shí)成熟過程中,不同家族的轉(zhuǎn)錄因子(transcription factors,TFs)在相關(guān)基因的表達(dá)中起著轉(zhuǎn)錄調(diào)控作用,它們通過DNA結(jié)合基序與目標(biāo)基因啟動(dòng)子的特定結(jié)構(gòu)域結(jié)合進(jìn)而對目標(biāo)基因的表達(dá)進(jìn)行轉(zhuǎn)錄激活或抑制,從而調(diào)控果實(shí)成熟進(jìn)程[2]。根據(jù)目標(biāo)基因DNA結(jié)合區(qū)域的不同,靳進(jìn)樸等[3]將轉(zhuǎn)錄因子分為58個(gè)家族,例如bZIP(basic region-leucine zipper)、MYB(myeloblastosis oncogene)、bHLH(basic helix-loop-helix)、NAC(NAM,ATAF1/2,CUC)、MADS(MCM1-agamous-deficiens-SSRF)、AP2/ERF(apetalous 2/ethylene response factors)、C2H2(cys2/ his2-type zinc finger)、DREB(dehydration responsive element binding protein)、SPL(SQUAMOSA promoter binding protein-like)、WRKY(WRKY transcription factors)等。近年來隨著對NAC轉(zhuǎn)錄因子家族研究的不斷深入,發(fā)現(xiàn)其在果實(shí)發(fā)育成熟中有重要的調(diào)控作用,筆者總結(jié)了近年來NAC轉(zhuǎn)錄因子家族在果實(shí)發(fā)育及成熟過程中的作用及潛在機(jī)制相關(guān)研究,以期為果實(shí)關(guān)鍵品質(zhì)性狀調(diào)控與改良提供參考。
1 NAC基因家族特征
NAC是廣泛存在于植物中的轉(zhuǎn)錄因子家族之一,為陸生植物特有,家族成員眾多。最初發(fā)現(xiàn)的是矮牽牛(Petunia hybrida)NAM (no apical meristem)、擬南芥(Arabidopsis thaliana)ATAF1/2(arabidopsis transcription activation factor)和CUC2(cup shaped cotyledon)3個(gè)基因,因它們都有相似的保守結(jié)構(gòu),故以它們的首字母命名為NAC轉(zhuǎn)錄因子[4-5]。目前通過全基因組分析NAC轉(zhuǎn)錄因子,發(fā)現(xiàn)擬南芥有113個(gè)、矮牽牛有41個(gè)、本氏煙草(Nicotiana benthamiana)有227個(gè)NAC成員[2,6]。在許多果樹中也鑒定了NAC轉(zhuǎn)錄因子(表1),其中蘋果(Malus domestica)轉(zhuǎn)錄因子成員最多達(dá)253個(gè),其次白梨(Pyrus bretschneideri)和沙梨(P. pyrifolia)兩種梨屬果樹均為185個(gè),而草本果樹菠蘿(Ananas comosus)和番木瓜(Carica papaya)以及歐亞種葡萄(Vitis vinifera)的NAC家族成員比較少,分別為73、82和70個(gè)。研究表明這些NAC轉(zhuǎn)錄因子在植物生長發(fā)育[12-15]、脅迫應(yīng)答[16]、果實(shí)發(fā)育[17]、植株衰老[18]和果實(shí)成熟[17,19]等過程中發(fā)揮著重要的作用。
與模式植物擬南芥一樣,果樹NAC轉(zhuǎn)錄因子家族的蛋白序列由約400個(gè)氨基酸組成,具有典型(圖1-a~i)和非典型兩種NAC結(jié)構(gòu)域[20](圖1-a-ii~iv)。其蛋白結(jié)構(gòu)通過x射線結(jié)晶學(xué)分析確定不同于經(jīng)典的螺旋-轉(zhuǎn)角-螺旋結(jié)構(gòu),而為對稱的均二聚體[21](圖1-b)。結(jié)構(gòu)特征的多樣性使得NAC轉(zhuǎn)錄因子家族具有功能上的多樣性,賦予其在植物生長發(fā)育各個(gè)過程中重要的作用[23]。
Ooka等[24]根據(jù)結(jié)構(gòu)域中氨基酸序列的相似性預(yù)測,將擬南芥和水稻中預(yù)測的NAC蛋白分為Ⅰ和Ⅱ兩組,Ⅰ組中有14個(gè)亞組,Ⅱ組中有4個(gè)亞組。筆者在本文中根據(jù)氨基酸序列的相似性,構(gòu)建了荔枝、蘋果、香蕉、草莓、甜橙、寬皮柑橘、獼猴桃、葡萄、桃、梨、番木瓜、柿、越橘等果樹和水稻、番茄、擬南芥、矮牽牛、煙草、小麥、馬鈴薯共368個(gè)NAC轉(zhuǎn)錄因子蛋白的系統(tǒng)進(jìn)化樹。結(jié)果如圖2所示,將果樹中NAC轉(zhuǎn)錄因子蛋白分別聚類到NAP、NAM、SENU5、ONAC003、NAC1、ANAC001、ONAC001、ONAC022、ATAF、NAC2、TERN、AtNAC3、ANAC011、TIP、OsNAC3、OsNAC7、OsNAC8、ANAC063等18個(gè)亞組,其中ANAC063、ONAC003、ANAC001、ONAC001等4個(gè)亞組為Ⅰ組成員,其余的14個(gè)亞組為Ⅱ組成員(圖2)。大多數(shù)果樹NAC轉(zhuǎn)錄因子蛋白聚類到ANAC001、NAM、ANAC063、NAP亞組中,其中與ANAC001和NAP亞組聚類的果樹NAC轉(zhuǎn)錄因子數(shù)量多。果樹與擬南芥及其他大田作物的主要區(qū)別是多年生和產(chǎn)品器官果實(shí)發(fā)育成熟過程中特有的生理生化變化,這兩個(gè)亞組成員可能在果樹的特有性狀的形成和調(diào)控中發(fā)揮重要的功能。ONAC022、ONAC003、ONAC001、SENU5、OsNAC8、OsNAC7、NAC1、ATAF、AtNAC3、TERN、TIP、ANAC011、NAC2亞組只聚類少數(shù)果樹NAC轉(zhuǎn)錄因子蛋白,說明這些亞組在進(jìn)化關(guān)系上與果樹NAC轉(zhuǎn)錄因子較遠(yuǎn),而沒有果樹NAC轉(zhuǎn)錄因子蛋白聚類在OsNAC3亞組。以上聚類分析結(jié)果表明,果樹中NAC轉(zhuǎn)錄因子在進(jìn)化上呈現(xiàn)多樣性,為其功能的多樣化提供一定的遺傳基礎(chǔ)。
2 NAC轉(zhuǎn)錄因子在果實(shí)成熟中的作用
近年的研究表明,NAC轉(zhuǎn)錄因子家族在果實(shí)成熟中發(fā)揮著重要的調(diào)控作用,參與果實(shí)軟化、風(fēng)味物質(zhì)代謝、色素的合成以及成熟激素合成和信號(hào)傳導(dǎo)(表2)。
2.1 果實(shí)軟化
果實(shí)軟化是成熟的重要特征之一,直接影響采后物流、貨架壽命和商品性。在草莓中,通過研究112個(gè)NAC基因的表達(dá)模式,發(fā)現(xiàn)FaNAC006/021/022/035/042/096在果實(shí)軟化過程中表達(dá)上調(diào),其中FaNAC035轉(zhuǎn)錄水平最高,可能參與草莓果實(shí)軟化過程的調(diào)控[42]。在智利草莓(F. chiloensis)果實(shí)成熟過程中也發(fā)現(xiàn)FcNAC1可以調(diào)節(jié)細(xì)胞壁果膠代謝,導(dǎo)致果實(shí)軟化[43]。在美味獼猴桃(A. deliciosa)中,AdNAC6和AdNAC7可以促進(jìn)獼猴桃果實(shí)成熟過程中的軟化[31]。另外,在對蘋果的研究中發(fā)現(xiàn),與番茄成熟調(diào)控關(guān)鍵轉(zhuǎn)錄因子NON-RIPENING(NOR)的直系同源基因MdNAC18.1是果實(shí)硬度多態(tài)性的決定因子,可以作為成熟采收時(shí)和冷藏3個(gè)月后果實(shí)硬度的預(yù)測基因,通過調(diào)節(jié)乙烯的產(chǎn)生以一種保守的方式控制蘋果果實(shí)的成熟,是決定蘋果果實(shí)硬度和收獲期的決定因子[49,68]。
2.2 果實(shí)著色
在果實(shí)成熟過程中往往伴隨著葉綠素的降解、不同類型花色苷的合成和在液泡中的積累以及類胡蘿卜素(如β-胡蘿卜素、葉黃素酯、葉黃素、番茄紅素等)的積累[69],在外觀上表現(xiàn)為果實(shí)著色。果實(shí)的色澤是決定果實(shí)品質(zhì)的關(guān)鍵因素之一,均勻且鮮艷的果實(shí)著色吸引動(dòng)物采食,繼而為種子的傳播提供可能,而對于生產(chǎn)者來說,著色良好的果實(shí)意味著具有更好的商品價(jià)值與市場競爭力。
2.2.1 ? ?葉綠素降解和類胡蘿卜素積累 ? ?葉綠素降解是果實(shí)底色消退和良好著色的前提條件。大蕉(Musa × paradisiaca)中,過表達(dá)MpSNAC67會(huì)降低葉片葉綠素含量,促進(jìn)其脫綠和黃化,說明該基因可能正向調(diào)控葉綠素降解過程[48]。雖然目前葉綠素降解途徑比較清楚,但關(guān)于NAC轉(zhuǎn)錄因子在果實(shí)成熟過程中對葉綠素降解所起的具體作用研究報(bào)道很少。
研究者更多關(guān)注于NAC轉(zhuǎn)錄因子在果實(shí)成熟過程中表色如花色苷和類胡蘿卜素生物合成的作用。番木瓜中,CpNAC1是果實(shí)成熟過程中類胡蘿卜素生物合成的正調(diào)控因子[34,36]。CpNAC2和乙烯不敏感3a (ethylene-insensitive 3a)CpEIN3a相互作用,共同參與番木瓜果實(shí)采后成熟過程中的類胡蘿卜素合成[35-36]。金橘果實(shí)中的FcrNAC22轉(zhuǎn)錄水平受紅光誘導(dǎo),并隨果實(shí)顏色變化而表達(dá)上調(diào),可以加速果實(shí)脫色和類胡蘿卜素積累促進(jìn)果實(shí)著色[44]。類胡蘿卜素的積累是生物合成和降解代謝的綜合體現(xiàn)。黃肉桃果實(shí)中類胡蘿卜素含量顯著高于白肉桃果實(shí),黃肉桃果實(shí)中PpNAC19表達(dá)量較高,而類胡蘿卜素降解關(guān)鍵基因類胡蘿卜素裂解雙加氧酶4(carotenoid-cleaving dioxygenase 4)PpCCD4的表達(dá)量卻顯著低于白肉桃果實(shí),PpNAC19能夠轉(zhuǎn)錄抑制PpCCD4啟動(dòng)子活性,從而促進(jìn)桃果實(shí)成熟過程中果肉類胡蘿卜素的積累[60]。在紅肉枇杷大紅袍中,EjNAC82表達(dá)量也顯著高于白肉枇杷白沙,在枇杷果實(shí)類胡蘿卜素合成中起著積極調(diào)控作用[41]。
2.2.2 ? ?類黃酮和花色苷合成 ? ?對蘋果的研究發(fā)現(xiàn),NAC轉(zhuǎn)錄因子MdNAC52轉(zhuǎn)錄水平在果實(shí)著色期間增加,過表達(dá)MdNAC52能夠促進(jìn)蘋果愈傷組織花色苷的積累[53]。在紅肉蘋果中,MdNAC42表達(dá)量高于白肉蘋果,與果實(shí)成熟時(shí)花色苷含量積累呈正相關(guān),在紅肉蘋果花色苷生物合成中起著重要的作用[54]。另一NAC成員MdNAC9則與紅肉蘋果的黃酮醇生物合成密切相關(guān),該基因轉(zhuǎn)錄水平與黃酮醇積累呈正相關(guān),在蘋果愈傷組織中過表達(dá)MdNAC9后黃酮醇含量顯著增加[55]。在荔枝果實(shí)成熟過程中,轉(zhuǎn)錄組分析發(fā)現(xiàn)6個(gè)NAC轉(zhuǎn)錄因子在果皮成熟過程中有著很高的轉(zhuǎn)錄豐度,可能在荔枝果皮成熟中扮演著積極的角色[70]。后續(xù)研究中發(fā)現(xiàn),LcNAC13能夠負(fù)調(diào)控果皮花色苷生物合成[45]。對紅色和白色草莓果實(shí)比較轉(zhuǎn)錄組分析發(fā)現(xiàn),NAC家族成員可能參與草莓果實(shí)成熟過程中花色苷積累的調(diào)控[71]。進(jìn)一步的研究發(fā)現(xiàn)沉默F(xiàn)aNAC035的草莓株系花色苷生物合成相關(guān)酶基因表達(dá)下調(diào),果實(shí)著色延遲,而過表達(dá)FaNAC035則會(huì)使草莓果實(shí)著色提前[42]。在越橘中克隆出1個(gè)NAC基因VcNAC072,該基因的表達(dá)隨著果實(shí)成熟著色而上調(diào),可能在越橘果實(shí)花色苷的積累中起正向調(diào)節(jié)作用[66]。在血桃中研究者鑒定出屬于NAC轉(zhuǎn)錄因子家族的基因BL(BLOOD),該基因的表達(dá)蛋白在果實(shí)發(fā)育后期能與PpNAC1轉(zhuǎn)錄因子形成異源二聚體激活PpMYB10.1的表達(dá),進(jìn)而促進(jìn)花色苷生物合成途徑結(jié)構(gòu)基因的表達(dá),最終導(dǎo)致果肉大量積累花色苷而呈血紅色[56,59]。
2.3 糖分積累
可溶性糖積累是果實(shí)成熟的重要生化變化,與果實(shí)風(fēng)味品質(zhì)密切相關(guān)。果實(shí)成熟過程中甜度增加主要是可溶性糖持續(xù)輸入或多糖淀粉等降解的結(jié)果,少數(shù)果實(shí)還存在葡糖異生現(xiàn)象,有機(jī)酸的持續(xù)下降也是果實(shí)甜度體系的一個(gè)重要方面,糖酸比是判斷果實(shí)成熟度的重要指標(biāo)[69]。荔枝果肉糖的組分主要決定于蔗糖水解酶特別是酸性轉(zhuǎn)化酶,而蔗糖轉(zhuǎn)運(yùn)載體LcSUT4的表達(dá)則是糖分積累量的重要決定因子[72-74],但關(guān)于糖積累的上游調(diào)控因子則尚無相關(guān)報(bào)道。近年研究發(fā)現(xiàn)NAC轉(zhuǎn)錄因子家族在果實(shí)成熟過程中對糖分積累起著積極作用。在草莓成熟過程中,F(xiàn)aNAC035上調(diào)表達(dá),促進(jìn)蔗糖在草莓果實(shí)成熟早期的積累[42]。在甜橙中鑒定出在晚熟突變體和正常熟期品種之間存在差異表達(dá)NAC基因RD26(responsive to desiccation 26),在果實(shí)成熟過程中該基因的表達(dá)與果糖、葡萄糖的積累具有高度的相關(guān)性[33]。
2.4 芳香化合物的合成
果實(shí)成熟過程中香氣的增加得益于揮發(fā)性芳香化合物包括醛、酯、醇、酮、酸、萜類、內(nèi)酯和硫化物等的合成與積累,通常只有幾種揮發(fā)性化合物組成特定水果的整體香氣和獨(dú)特味道[75-77]。揮發(fā)性化合物是決定水果風(fēng)味的重要因素,濃厚的香氣能夠使果樹吸引動(dòng)物采食繼而使其種子得到傳播,同時(shí)賦予水果更好的商品價(jià)值。在桃的研究中發(fā)現(xiàn)轉(zhuǎn)錄因子PpNAC1能夠調(diào)控?fù)]發(fā)性酯類化合物的合成[56]。最新的研究發(fā)現(xiàn),過表達(dá)PpNAC1可以促進(jìn)桃果實(shí)揮發(fā)性化合物(E)-2-己烯醛和(Z)-3-己烯醇合成前體ω-3脂肪酸亞麻酸(18∶3)及其衍生揮發(fā)物的產(chǎn)生,說明PpNAC1在調(diào)節(jié)脂肪酸通路產(chǎn)生果實(shí)風(fēng)味相關(guān)揮發(fā)性有機(jī)物中也起著重要作用[57]。此外,PpNAC1也可以與PpNAC2相互作用調(diào)控酯類化合物合成[58]。草莓中,轉(zhuǎn)錄因子FaNAC035在控制芳香化合物的生物合成中發(fā)揮重要作用[42]。AaNAC2、AaNAC3、AaNAC4在軟棗獼猴桃果實(shí)成熟過程中正調(diào)控單萜芳香化合物的形成[26]。同樣在美味獼猴桃中發(fā)現(xiàn)AdNAC6和AdNAC7促進(jìn)獼猴桃成熟過程中萜類香氣化合物的形成[28]。
2.5 參與果實(shí)成熟其他過程
在柿果實(shí)脫澀過程中,DkNAC1/3/5/6/7/13/16表達(dá)上調(diào),可能在柿果實(shí)成熟脫澀過程中起重要作用[38-40]。在柑橘成熟過程中,CitNAC62和CitWRKY1可以相互作用激活CitAco3的啟動(dòng)子,促進(jìn)其表達(dá),從而降低果實(shí)的檸檬酸含量[33]。
3 NAC調(diào)節(jié)果實(shí)成熟的機(jī)制
3.1 NAC通過調(diào)控結(jié)構(gòu)基因或與其他轉(zhuǎn)錄因子互作影響果實(shí)成熟
3.1.1 ? ?NAC影響果實(shí)軟化的機(jī)制 ? ?果實(shí)的軟化主要是由細(xì)胞壁組成和結(jié)構(gòu)的變化引起的,包括果膠溶解、解聚以及果膠側(cè)鏈上中性糖損失、纖維素和半纖維素解聚、纖維素-半纖維素網(wǎng)絡(luò)松弛、細(xì)胞壁膨脹等[78-81]。這些變化是細(xì)胞壁的降解與重塑的結(jié)果,其中細(xì)胞壁降解酶與重塑酶發(fā)揮著關(guān)鍵的作用。在智利草莓果實(shí)成熟過程中發(fā)現(xiàn)FcNAC1與果膠裂解酶(pectate lyase,PL)基因FcPL的啟動(dòng)子結(jié)合并激活其轉(zhuǎn)錄,調(diào)節(jié)果實(shí)軟化過程中的細(xì)胞壁果膠代謝[43]。在鳳梨草莓中,F(xiàn)aNAC035通過促進(jìn)β-木糖苷酶(β-xylosidase,XYL)基因FaXYL3、果膠裂解酶(pectate lyase,PL)基因FaPL3-4、內(nèi)切-1,4-葡聚糖酶(endo-1,4-beta-glucanase,GH9B)基因FaGH9B15、松弛蛋白(expansin,EXP)基因FaEXP1-3、果膠甲基酯酶(pectin methylesterase,PME)基因FaPME39、阿拉伯半乳糖蛋白(arabino galactan-proteins,AGPs)基因FaAGPs等細(xì)胞壁降解與重塑相關(guān)酶基因的表達(dá),參與草莓果實(shí)軟化過程的調(diào)控。
3.1.2 ? ?NAC影響果實(shí)著色的機(jī)制 ? ?在果實(shí)著色方面,過表達(dá)MdNAC52通過增強(qiáng)與MdMYB9、MdMYB11的啟動(dòng)子相互作用促進(jìn)蘋果愈傷組織花色苷的積累,MdNAC52還可以與MdLAR啟動(dòng)子結(jié)合增強(qiáng)其表達(dá)從而促進(jìn)原花青素的合成[53]。在紅肉蘋果中,MdNAC42可與MdMYB10相互作用,過表達(dá)MdNAC42能夠上調(diào)MdCHS、MdCHI、MdF3H、MdDFR、MdANS和MdUFGT等結(jié)構(gòu)基因的表達(dá)而增加花色苷的積累[54]。另外,在蘋果愈傷組織中過表達(dá)MdNAC9后黃酮醇合成酶基因MdFLS轉(zhuǎn)錄水平和黃酮醇含量顯著升高,進(jìn)一步研究發(fā)現(xiàn)MdNAC9通過激活MdFLS表達(dá)正向調(diào)控黃酮醇[55]。
BL(BLOOD)在血桃果實(shí)發(fā)育后期通過與PpNAC1形成的異源二聚體激活PpMYB10.1的表達(dá),促進(jìn)血桃花色苷生物合成途徑的結(jié)構(gòu)基因表達(dá)[56]。荔枝LcNAC13能負(fù)調(diào)控果皮花色苷生物合成相關(guān)基因LcCHS1/2、LcCHI、LcF3H、LcF3H、LcDFR和關(guān)鍵轉(zhuǎn)錄因子基因LcMYB1的表達(dá),而荔枝中R1MYB成員LcR1MYB1可與LcNAC13發(fā)生物理相互作用并消除其對上述基因表達(dá)的抑制作用[45,82-83]。與此相反,越橘中VcNAC072可結(jié)合于MYB轉(zhuǎn)錄因子AtPAP1啟動(dòng)子并激活其表達(dá),在擬南芥中過表達(dá)VcNAC072可以促進(jìn)AtPAP1及AtDFR、AtANS表達(dá)而獲得花色苷積累顯著增加的種子,揭示VcNAC072在越橘果實(shí)中正調(diào)控花色苷的積累的機(jī)制[67]。
番木瓜CpNAC1可結(jié)合類胡蘿卜素生物合成關(guān)鍵基因八氫番茄紅素去飽和酶2/4(phytoene desaturase 2/4)CpPDS2/4啟動(dòng)子的NAC結(jié)合位點(diǎn)基序,是果實(shí)成熟過程中類胡蘿卜素生物合成的正調(diào)控因子[34,36]。除了CpPDS2/4外,進(jìn)一步研究還發(fā)現(xiàn)CpNAC1可以通過激活類胡蘿卜素合成相關(guān)基因ζ-胡蘿卜素去飽和酶(ζ-carotene desaturase)CpZDS、番茄紅素環(huán)化酶-e(lycopene cyclase-e)CpLCY-e和胡蘿卜素羥化酶-b(carotene hydroxylase-b)CpCHY-b的表達(dá)來調(diào)控番木瓜類胡蘿卜素代謝[35-36]。在金橘果實(shí)中,F(xiàn)crNAC22能夠激活編碼類胡蘿卜素生物合成途徑中三個(gè)關(guān)鍵酶基因的啟動(dòng)子,包括番茄紅素β-環(huán)化酶(lycopene β-cyclase)FcrLCYB1、β-胡蘿卜素羥化酶2(β-carotene Hydroxylase 2)FcrBCH2和9-順式-環(huán)氧類胡蘿卜素雙加氧酶5(9-cis-epoxycarotenoid dioxygenases 5)FcrNCED5,在柑橘和番茄愈傷組織中過表達(dá)FcrNAC22能夠增強(qiáng)類胡蘿卜素生物合成途徑中多數(shù)基因的表達(dá)以促進(jìn)色素積累,而敲除FcrNAC22則減弱組織著色,表明FcrNAC22通過激活類胡蘿卜素代謝途徑關(guān)鍵基因的表達(dá)促進(jìn)柑橘果實(shí)的著色[44]。
3.1.3 ? ?NAC影響果實(shí)香氣物質(zhì)合成的機(jī)制 ? ?除了影響果實(shí)軟化,草莓FaNAC035被沉默后,丁香酚合成酶2(eugenol synthase 2)基因FaEGS2和苯丙烷丁香酚生物合成關(guān)鍵基因FaEOBII、FaDOF2表達(dá)下調(diào),參與萜烯類揮發(fā)性化合物芳樟醇和橙花醇的生物合成的橙花醇合成酶(nerolidol synthase 1)FaNES1表達(dá)也同時(shí)下調(diào)。說明FaNAC035在共同調(diào)控草莓果實(shí)的軟化和芳香化合物的生物合成中發(fā)揮重要的功能。相同的,美味獼猴桃AdNAC6和AdNAC7可以結(jié)合細(xì)胞壁降解途徑中β-甘露聚糖酶(endo-β- mannanase,MAN)基因AdMAN1和高松油烯形成關(guān)鍵酶萜烯合成酶1(terpene synthase 1)AaTPS1的啟動(dòng)子區(qū)域并激活其表達(dá),同時(shí)促進(jìn)獼猴桃果實(shí)成熟過程中的軟化和芳香物質(zhì)的形成[28]。在軟棗獼猴桃中,AaNAC2、AaNAC3、AaNAC4可結(jié)合萜烯合成酶1(terpene synthase 1)AaTPS1啟動(dòng)子而促進(jìn)其表達(dá),而在中華獼猴桃中,因?yàn)镹AC結(jié)合位點(diǎn)突變使AcNAC2、AcNAC3、AcNAC4不能與AcTPS1啟動(dòng)子結(jié)合,導(dǎo)致萜類化合物生物合成受阻,通過引入12 bp的NAC核心結(jié)合區(qū)域可以恢復(fù)對AcTPS1啟動(dòng)子的激活作用,進(jìn)一步揭示NAC轉(zhuǎn)錄因子在獼猴桃成熟過程中調(diào)控單萜芳香化合物形成的機(jī)制[26]。
桃PpNAC1通過直接結(jié)合揮發(fā)性酯類合成的重要酶乙醇?;D(zhuǎn)移酶(alcohol acyltransferases,AATs)基因PpAAT1的啟動(dòng)子促進(jìn)其表達(dá)而調(diào)控酯類化合物的合成,在番茄SlAAT1突變體植株中過表達(dá)PpNAC1可以恢復(fù)SlAAT1的表達(dá)及成熟果實(shí)揮發(fā)性酯類的形成,另外,蘋果中PpNAC1的同源基因MdNAC5的蛋白也能通過結(jié)合MdAAT1的啟動(dòng)子激活其表達(dá),調(diào)控?fù)]發(fā)性酯類的合成[57]。最新的研究發(fā)現(xiàn),過表達(dá)PpNAC1可以促進(jìn)桃果實(shí)揮發(fā)性化合物(E)-2-己烯醛和(Z)-3-己烯醇合成前體ω-3脂肪酸亞麻酸(18∶3)及其衍生揮發(fā)物的產(chǎn)生,進(jìn)一步的實(shí)驗(yàn)證明PpNAC1可以結(jié)合亞麻酸(18:3)合成基因PpFAD3-1啟動(dòng)子并激活其表達(dá),說明PpNAC1在調(diào)節(jié)脂肪酸通路產(chǎn)生果實(shí)風(fēng)味相關(guān)揮發(fā)性有機(jī)物中也起著重要作用[58]。此外,PpNAC1可以與PpNAC2形成二聚體,后者也可以結(jié)合PpAAT1啟動(dòng)子激活轉(zhuǎn)錄[59]。
3.1.4 ? ?NAC影響果實(shí)脫澀和糖積累的機(jī)制 ? ?柿果實(shí)中,DkNAC7不僅可以反式靶向激活脫澀關(guān)鍵調(diào)控基因乙烯反應(yīng)因子DkERF9的表達(dá),還可以激活柿果實(shí)丙酮酸脫羧酶2(pyruvate decarboxylase)基因DkPDC2的表達(dá),從而調(diào)控柿果實(shí)的脫澀[39]。DkNAC13和DkNAC16可以分別結(jié)合脫澀相關(guān)基因DkPDC2的激活因子DkERF9和乙醇脫氫酶(alcohol dehydrogenase)基因DkADH1的啟動(dòng)子區(qū)域并激活其表達(dá),從而促進(jìn)柿果實(shí)脫澀[40]。
草莓FaNAC035除了正調(diào)控果實(shí)軟化和香氣合成,還通過上調(diào)表達(dá)抑制糖酵解、發(fā)酵等消耗糖的過程,并調(diào)節(jié)蔗糖合酶(sucrose synthase 1)FaSUS和蔗糖磷酸合成酶(sucrose phosphate synthase)FaSPS1的表達(dá)而在草莓果實(shí)成熟早期的蔗糖積累中起重要調(diào)控作用[42]。
3.2 NAC通過調(diào)控激素生物合成和信號(hào)轉(zhuǎn)導(dǎo)影響果實(shí)成熟
植物激素對果實(shí)發(fā)育和成熟的調(diào)節(jié)是不可或缺的,而乙烯和ABA(abscisic acid,ABA)被認(rèn)為是調(diào)控果實(shí)成熟的核心激素,乙烯在呼吸躍變型果實(shí)中起著明顯的作用,而呼吸非躍變型果實(shí)通常與ABA有關(guān),但越來越多的研究表明果實(shí)成熟涉及多種內(nèi)源激素的交互[84]。對荔枝的研究結(jié)果顯示ABA在果皮花色苷合成中而乙烯在葉綠素降解中發(fā)揮重要的調(diào)控作用[85]。近年來隨著對NAC轉(zhuǎn)錄因子研究的不斷深入,許多的研究發(fā)現(xiàn)NAC通過參與乙烯和ABA生物合成和信號(hào)轉(zhuǎn)導(dǎo)過程,在調(diào)控果實(shí)成熟中發(fā)揮重要的作用。
3.2.1 ? ?通過乙烯通路調(diào)控 ? ?乙烯是一種重要的果實(shí)成熟植物激素,微量的乙烯可以觸發(fā)許多細(xì)胞代謝事件,特別是在呼吸躍變型果實(shí)中[1]。近年來大量的研究表明NAC轉(zhuǎn)錄因子參與乙烯生物合成和乙烯信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控,在果實(shí)成熟調(diào)控中起著積極的作用。An等[51]研究發(fā)現(xiàn)MdNAC47能夠直接與乙烯生物合成的正調(diào)控因子MdERF3啟動(dòng)子區(qū)域結(jié)合并激活其表達(dá),說明MdNAC47可以通過乙烯依賴途徑參與果實(shí)發(fā)育的調(diào)控。在金冠(Golden Delicious)蘋果中,MdNAC2可能通過響應(yīng)乙烯和與恢復(fù)乙烯敏感性基因(reversion to ethylene sensitivity,RTE)MdRTE1b相互作用,參與乙烯信號(hào)介導(dǎo)的果實(shí)成熟調(diào)控[52]。
在香蕉中,MaNAC1和MaNAC2能與乙烯信號(hào)通路下游元件MaEIL5(ethylene insensitive 3-like protein)相互作用并下調(diào)其表達(dá)。在后續(xù)研究中發(fā)現(xiàn),MdNAC1和MdNAC2可以直接與乙烯生物合成的負(fù)調(diào)控因子MaERF11的啟動(dòng)子區(qū)結(jié)合,抑制其轉(zhuǎn)錄,從而激活MaERF11的下游靶基因MaACS1和MaACO1的表達(dá),促進(jìn)乙烯的生物合成。乙烯反應(yīng)抑制因子RTE1-HOMOLOG 1(RTH1)是果實(shí)成熟的負(fù)調(diào)控因子,也作為MaNAC2的下游靶標(biāo),并受其轉(zhuǎn)錄抑制,因此,MaNAC1和MaNAC2可能通過介導(dǎo)乙烯促進(jìn)的一系列事件而參與調(diào)節(jié)香蕉果實(shí)的成熟[46,86-87]。
在美味獼猴桃果實(shí)軟化等成熟變化過程中,AdNAC2和AdNAC3兩個(gè)基因可以直接結(jié)合乙烯生物合成關(guān)鍵酶1-氨基環(huán)丙烷-1-羧酸合成酶(1-aminocyclopropane-1-carboxylic acid synthase)基因AdACS1的啟動(dòng)子區(qū)域,激活A(yù)dACS1表達(dá),促進(jìn)內(nèi)源乙烯產(chǎn)生。此后的研究也發(fā)現(xiàn),AdNAC6和AdNAC7可以直接結(jié)合AdACS1和AdACO1的啟動(dòng)子區(qū)域并激活它們的表達(dá)[28],從而促進(jìn)乙烯生物合成和果實(shí)成熟。AdNAC2和AdNAC72的表達(dá)被乙烯上調(diào),它們的表達(dá)蛋白可以結(jié)合于甲硫氨酸亞砜還原酶(methionine sulfoxide reductase B)基因AdMsrB1啟動(dòng)子上促進(jìn)該基因的表達(dá),過表達(dá)AdNAC72不僅上調(diào)AdMsrB1的表達(dá),還提高游離甲硫氨酸(methionine,Met)和乙烯合成直接前體ACC的含量和乙烯生成速率,這些結(jié)果揭示了NAC轉(zhuǎn)錄因子在促進(jìn)乙烯合成進(jìn)而調(diào)控獼猴桃果實(shí)成熟中的重要作用[30]。Nieuwenhuizen等[27]在中華獼猴桃中也發(fā)現(xiàn)AcNAC2/3/4通過控制AcACS1的表達(dá)水平來調(diào)控果實(shí)成熟早期系統(tǒng)Ⅰ乙烯和成熟后期系統(tǒng)Ⅱ乙烯的生物合成,進(jìn)而影響果實(shí)成熟與品質(zhì)形成。
在呼吸躍變型果實(shí)桃中,NAC轉(zhuǎn)錄因子亞家族NAP轉(zhuǎn)錄因子PpNAP1、PpNAP4、PpNAP6在果實(shí)軟化過程中表達(dá)上調(diào),并伴隨著乙烯的快速生成,參與桃果實(shí)成熟的調(diào)控[61,63]。與番茄NOR[68]高度相似的Purpe.4G181700在早熟桃果實(shí)成熟階段表達(dá)量很高,可能通過一個(gè)以依賴乙烯的保守方式控制果實(shí)的成熟時(shí)間和過程[62]。PpNAC.A59能夠結(jié)合于乙烯響應(yīng)因子A16(ethylene response factor A16)PpERF.A16啟動(dòng)子促進(jìn)其表達(dá),并通過NAC-ERF信號(hào)級(jí)聯(lián)間接介導(dǎo)乙烯的生物合成,誘導(dǎo)PpACS1和ACC氧化酶(ACC oxidase)PpACO1的表達(dá)[63]。
在番木瓜果實(shí)中,CpNAC3可以單獨(dú)或與CpMADS4相互作用特異結(jié)合于乙烯信號(hào)轉(zhuǎn)導(dǎo)的關(guān)鍵基因CpERF9和CpEIL5的啟動(dòng)子并激活它們表達(dá),說明CpNAC3可以獨(dú)立或與CpMADS4協(xié)同激活乙烯信號(hào)轉(zhuǎn)導(dǎo)通路而在果實(shí)成熟調(diào)控過程中發(fā)揮作用[37]。在秋子梨果實(shí)成熟過程中,PuNAC2和PuNAC8表達(dá)水平在呼吸高峰后顯著上調(diào),可能參與果實(shí)成熟過程中乙烯生物合成和信號(hào)轉(zhuǎn)導(dǎo),而PuNAC21表達(dá)顯著下調(diào),說明它可能是梨果實(shí)成熟的負(fù)調(diào)節(jié)因子[65]。
3.2.2 ? ?通過ABA通路調(diào)控 ? ?ABA是參與果實(shí)成熟調(diào)控的重要激素,在果實(shí)的軟化、淀粉和糖分積累、色澤發(fā)育等過程中起著重要的作用[88]。近年的研究表明NAC轉(zhuǎn)錄因子家族在ABA調(diào)控果實(shí)成熟分子網(wǎng)絡(luò)扮演重要的角色。在草莓果實(shí)成熟過程中,沉默F(xiàn)aNAC035會(huì)下調(diào)ABA生物合成關(guān)鍵基因FaNCED2/3/5和玉米黃質(zhì)環(huán)氧化酶(zeaxanthin epoxidase)FaZEP的表達(dá),使果實(shí)ABA含量減少,同時(shí)ABA信號(hào)轉(zhuǎn)導(dǎo)基因表達(dá)也有顯著的差異,著色等成熟進(jìn)程明顯延遲,表明FaNAC035通過調(diào)控ABA生物合成和信號(hào)轉(zhuǎn)導(dǎo)參與草莓果實(shí)成熟的調(diào)控[42]。Zhu等[31]在寬皮柑橘中獲得了一個(gè)由CrNAC036異常高表達(dá)引起的ABA缺失突變體,CrNAC036可以直接或與CrMYB68互作結(jié)合于CrNCED5啟動(dòng)子區(qū)域并抑制其表達(dá),說明CrNAC036在抑制ABA積累和調(diào)控柑橘成熟過程中發(fā)揮積極作用。
3.2.3 ? ?其他激素 ? ?除了乙烯和ABA,近年研究證明其他激素在果實(shí)成熟過程中也具有重要作用,NAC通過參與這些激素的生物合成或信號(hào)轉(zhuǎn)導(dǎo)途徑,對果實(shí)成熟進(jìn)行調(diào)控。在草莓成熟過程中沉默F(xiàn)aNAC035后,與生長素和多胺生物合成及信號(hào)轉(zhuǎn)導(dǎo)的相關(guān)基因表達(dá)有顯著差異,說明FaNAC035可能也通過生長素和多胺信號(hào)途徑參與果實(shí)成熟的調(diào)控[42]。
4 影響NAC基因表達(dá)的因素與機(jī)制
4.1 響應(yīng)乙烯、ABA等激素信號(hào)
Zhang等[50]在182個(gè)蘋果NAC基因中篩選出13個(gè)在果實(shí)生長和成熟階段具有差異表達(dá)和組織特異性表達(dá)的成員,其中MdNAC1a和MdNAC78的表達(dá)在采后儲(chǔ)藏過程中受到乙烯的抑制和1-MCP的誘導(dǎo),而MdNAC2/26/41/57/80/91/119/141則被乙烯上調(diào)表達(dá),其轉(zhuǎn)錄與乙烯的產(chǎn)生速率一致,說明NAC轉(zhuǎn)錄因子可能通過乙烯依賴性和非依賴性機(jī)制參與蘋果發(fā)育和成熟過程的調(diào)控。乙烯處理能夠明顯上調(diào)香蕉果皮和果肉中MaNAC1和MaNAC2的表達(dá),并與乙烯產(chǎn)生量的增加保持一致,MaNAC2啟動(dòng)子在乙烯處理后被激活,證實(shí)其受乙烯誘導(dǎo)[46]。Li等[9]在香蕉成熟過程中進(jìn)行乙烯處理,發(fā)現(xiàn)有10個(gè)MaNACs基因表達(dá)上調(diào),其中MaNAC016/083/094/095基因在果肉中被乙烯顯著上調(diào),而MaNAC094被認(rèn)為是香蕉乙烯信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)鍵調(diào)控因子[47]。外源茉莉酸甲酯(methyl jasmonate,MeJA)可以協(xié)同加強(qiáng)外源乙烯對美味獼猴桃成熟的誘導(dǎo),同時(shí)誘導(dǎo)AdNAC2和AdNAC3表達(dá)[28]。用ABA處理桃果實(shí)后,PpNAC1、PpNAC4、PpNAC6(文獻(xiàn)中稱為PpNAP1、PpNAP4、PpNAP6)表達(dá)水平升高,果實(shí)硬度顯著下降,說明PpNAC1、PpNAC4、PpNAC6能夠響應(yīng)ABA信號(hào),參與果實(shí)成熟的調(diào)控[61-62]。外源施加ABA還可以反饋促進(jìn)FaNAC035的表達(dá),進(jìn)而增加ABA生物合成量[42]。FcNAC1在智利草莓果實(shí)成熟過程中表達(dá)增加,其啟動(dòng)子序列中含有ABA和生長素等多種激素的順式反應(yīng)元件,表明FcNAC1可能響應(yīng)ABA等激素信號(hào)參與果實(shí)成熟的調(diào)控[43]。
許田等[89]也發(fā)現(xiàn)草莓果實(shí)成熟過程中FaNAC56表達(dá)量急劇增加,其啟動(dòng)子區(qū)含有ABA、赤霉素、生長素、乙烯等激素響應(yīng)元件,該基因的表達(dá)水平受這些激素誘導(dǎo),說明多種激素通過調(diào)控FaNAC56影響草莓果實(shí)的發(fā)育和成熟。
4.2 受轉(zhuǎn)錄或翻譯后水平修飾調(diào)控
香蕉中,RING E3連接酶XA21結(jié)合蛋白3(MaXB3)可以與MaNAC2、MaACS1和MaACO1相互作用,并通過泛素化途徑促進(jìn)其降解,從而在轉(zhuǎn)錄或翻譯后水平上抑制乙烯生物合成和下游反應(yīng),在香蕉果實(shí)和番茄中的瞬時(shí)和異源過表達(dá)MaXB3,可以抑制乙烯生物合成、推遲果實(shí)成熟,證實(shí)了MaXB3的作用。同時(shí)MaXB3也是MaNAC1和MaNAC2的下游目標(biāo)基因,并受到它們的直接轉(zhuǎn)錄抑制。MaXB3和MaNAC1、MaNAC2、MaACS1和MaACO1在乙烯形成中依賴反饋調(diào)節(jié)機(jī)制的多層次調(diào)控級(jí)聯(lián)[86]。研究發(fā)現(xiàn)AdNAC6和AdNAC7轉(zhuǎn)錄后被miR164靶向降解,這一降解途徑位于乙烯信號(hào)的下游并受乙烯抑制,亞細(xì)胞定位分析表明,AdNAC6和AdNAC7在細(xì)胞核和細(xì)胞質(zhì)中都有分布,AdNAC6和AdNAC7可以形成同源二聚體或異源二聚體,只在細(xì)胞核中定位。然而,miR164的存在會(huì)阻止AdNAC6和AdNAC7進(jìn)入細(xì)胞核,并導(dǎo)致它們留在細(xì)胞質(zhì)中。這種miR164-NAC轉(zhuǎn)錄后水平調(diào)控途徑保守存在于蘋果、香蕉、草莓、桃、柑橘、葡萄等果實(shí)中并與水果成熟調(diào)控有關(guān)[28]。此外,功能性或調(diào)節(jié)性蛋白的氧化還原修飾已成為翻譯后修飾的一個(gè)重要機(jī)制,在香蕉中,MaNAC42在氧化脅迫下直接與氧化應(yīng)激和成熟相關(guān)基因的啟動(dòng)子結(jié)合,MaNAC42中的蛋氨酸氧化會(huì)導(dǎo)致其DNA結(jié)合能力和轉(zhuǎn)錄活性下降,而蛋氨酸亞砜還原酶B可以靶向MaNAC42,在氧化脅迫下,MaMsrB2可以部分修復(fù)氧化的MaNAC42并恢復(fù)其DNA結(jié)合能力,這些研究結(jié)果揭示了一個(gè)涉及MaMsrB2介導(dǎo)的成熟相關(guān)轉(zhuǎn)錄因子MaNAC42的氧化還原調(diào)節(jié)機(jī)制[90]。在血桃果實(shí)發(fā)育早期,BL-PpNAC1異源二聚體的反式激活活性被上游轉(zhuǎn)錄因子PpSPL1(SQUAMOSA promoter-binding-like 1)所抑制,阻遏下游靶標(biāo)基因PpMYB10.1的轉(zhuǎn)錄,從而限制了花色苷的合成,而在發(fā)育后期,PpSPL1表達(dá)下調(diào),BL-PpNAC1異源二聚體轉(zhuǎn)錄激活活性升高,同時(shí)可能涉及bHLH-WD40復(fù)合體的協(xié)同作用,增強(qiáng)PpMYB10.1的轉(zhuǎn)錄,從而促進(jìn)后期花色苷的形成[59]。除了轉(zhuǎn)錄控制外,表觀遺傳學(xué)分析表明,桃果實(shí)成熟期間,PpNAC1和PpAAT1表達(dá)的增加與表觀遺傳標(biāo)記H3K4me3的增加有關(guān),在未成熟的果實(shí)中觀察到PpNAC1和PpAAT1位點(diǎn)的抑制性組蛋白標(biāo)記hyper-H3K27me3,但在成熟的果實(shí)中沒有,揭示了表觀遺傳因素的變化在調(diào)節(jié)NAC基因表達(dá)和隨后的揮發(fā)性酯類合成的保守機(jī)制[57]。
4.3 響應(yīng)環(huán)境因子及非生物脅迫
大蕉中MpSNAC67能夠響應(yīng)干旱、高鹽和過氧化物等脅迫,過量表達(dá)MpSNAC67的轉(zhuǎn)基因香蕉品系會(huì)加速葉片脫綠和黃化,進(jìn)一步研究發(fā)現(xiàn)MpSNAC67可以激活葉綠素降解基因PAO-like(Pheophorbide-a-oxygenase,脫鎂葉綠酸a加氧酶)、HCAR-like(hydroxymethyl chlorophyll-a-reductase,羥甲基葉綠素加氧酶)、NYC/NOL-like(Chlorophyll-b-reductase,葉綠素b還原酶)以及ORS1-like的表達(dá),正向調(diào)節(jié)葉綠素的降解[48]。金橘果實(shí)中的FcrNAC22轉(zhuǎn)錄水平在紅光照射下被顯著誘導(dǎo),并隨果實(shí)顏色變化而表達(dá)上調(diào)[44]。在蘋果著色期間,MdNAC52受光誘導(dǎo)表達(dá)上調(diào),并且受編碼光調(diào)節(jié)器(light-regulator)的MdHY5靶向而對光信號(hào)做出反應(yīng),進(jìn)一步的實(shí)驗(yàn)證明MdHY5可以結(jié)合MdNAC52啟動(dòng)子中的G-box順式作用元件,通過激發(fā)MdNAC52的啟動(dòng)子活性參與著色[52]。通過RNA-Seq和實(shí)時(shí)定量PCR分析,PpNAC61/70/172/176/23可能參與藍(lán)光誘導(dǎo)下梨果實(shí)的著色[10]。在香蕉果實(shí)中,低溫條件可以抑制MaNAC67-like的表達(dá),抑制其對β-淀粉酶基因MaBAM6、磷酸葡聚糖磷酸酶基因MaSEX4、麥芽糖轉(zhuǎn)運(yùn)體MaMEX1淀粉降解關(guān)鍵酶基因的轉(zhuǎn)錄激活和乙烯信號(hào)轉(zhuǎn)導(dǎo)因子MaEBF1(EIN3 binding F-box-1)的相互作用,有助于延緩香蕉果實(shí)成熟[91]。在柿果實(shí)脫澀過程中,DkNAC1/3/5/6/7/13/16能夠響應(yīng)CO2處理并表達(dá)上調(diào),促進(jìn)果實(shí)脫澀[38~40]。
5 總結(jié)與展望
NAC轉(zhuǎn)錄因子是植物中最大的轉(zhuǎn)錄因子家族之一,其結(jié)構(gòu)特征、表達(dá)特性及功能已在幾十種植物中得到描述和鑒定。NAC轉(zhuǎn)錄因子在植物的生長發(fā)育和響應(yīng)生物、非生物逆境以及果實(shí)發(fā)育和成熟過程中發(fā)揮著關(guān)鍵的調(diào)控作用。隨著現(xiàn)代分子生物學(xué)技術(shù)的飛速發(fā)展,NAC轉(zhuǎn)錄因子在果實(shí)發(fā)育及成熟中的具體功能逐漸得到揭示,NAC與MYB、乙烯、ABA相關(guān)轉(zhuǎn)錄因子協(xié)同作用形成調(diào)控網(wǎng)絡(luò),響應(yīng)內(nèi)源和環(huán)境信號(hào),調(diào)節(jié)果實(shí)成熟過程的不同方面。但對于NAC轉(zhuǎn)錄因子發(fā)揮功能的更多具體分子機(jī)制,調(diào)控網(wǎng)絡(luò)及不同蛋白的結(jié)構(gòu)與功能的內(nèi)在聯(lián)系,仍有待進(jìn)一步深入研究,NAC上游的調(diào)控因子和更多的下游靶標(biāo)基因等仍急需深入挖掘。相關(guān)的研究一方面將有助于NAC轉(zhuǎn)錄因子家族在果實(shí)成熟和品質(zhì)形成中功能和調(diào)控機(jī)制的深入揭示,另一方面自高效的成簇規(guī)律間隔短回文重復(fù)序列(clustered regularly interspaced short palindromic repeats,CRISPR)/CRISPR相關(guān)蛋白9(Cas9)基因組編輯技術(shù)出現(xiàn)及高速發(fā)展以來,已經(jīng)在香蕉[92]、草莓[93]、獼猴桃[94]、葡萄[95-97]及蘋果[95]等果樹中實(shí)現(xiàn)決定果實(shí)品質(zhì)關(guān)鍵性狀的改良[98],通過基因編輯精準(zhǔn)調(diào)控NAC基因表達(dá)水平或NAC蛋白活性從而加強(qiáng)其對果實(shí)成熟和品質(zhì)形成的調(diào)控在未來的研究或會(huì)得到更多的應(yīng)用。研究將為利用改良果實(shí)特定品質(zhì)性狀的果樹分子育種方法,以及在果實(shí)成熟調(diào)控技術(shù)研發(fā)和理論創(chuàng)新方面奠定堅(jiān)實(shí)的基礎(chǔ)。
參考文獻(xiàn) References:
[1] PRASANNA V,PRABHA T N,THARANATHAN R N. Fruit ripening phenomena:An overview[J]. Critical Reviews in Food Science and Nutrition,2007,47(1):1-19.
[2] MOHANTA T K,YADAV D,KHAN A,HASHEM A,TABASSUM B,KHAN A L,ABD ALLAH E F,AL-HARRASI A. Genomics,molecular and evolutionary perspective of NAC transcription factors[J]. PLoS One,2020,15(4):e0231425.
[3] 靳進(jìn)樸,郭安源,何坤,張禾,朱其慧,陳新,高歌,羅靜初. 植物轉(zhuǎn)錄因子分類、預(yù)測和數(shù)據(jù)庫構(gòu)建[J]. 生物技術(shù)通報(bào),2015,31(11):68-77.
JIN Jinpu,GUO Anyuan,HE Kun,ZHANG He,ZHU Qihui,CHEN Xin,GAO Ge,LUO Jingchu. Classification,prediction and database construction of plant transcription factors[J]. Biotechnology Bulletin,2015,31(11):68-77.
[4] SOUER E,VAN HOUWELINGEN A,KLOOS D,MOL J,KOES R. The No apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.
[5] AIDA M,ISHIDA T,TASAKA M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis:interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes[J]. Development,1999,126(8):1563-1570.
[6] TRUPKIN S A,ASTIGUETA F H,BAIGORRIA A H,GARC?A M N,DELFOSSE V C,GONZ?LEZ S A,DE LA TORRE M C P,MOSCHEN S,L?A V V,F(xiàn)ERN?NDEZ P,HEINZ R A. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida[J]. Plant Science,2019,287:110195.
[7] MUNIR N,CHEN Y K,CHEN X H,NAWAZ M A,IFTIKHAR J,RIZWAN H M,SHEN X,LIN Y L,XU X H,LAI Z X. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression patterns during somatic embryogenesis in Dimocarpus longan Lour.[J]. Plant Physiology and Biochemistry,2020,157:169-184.
[8] 亢超,郭彩華,張雪蒙,劉金明,袁星,全紹文,牛建新. 核桃NAC基因家族的全基因組鑒定與分析[J]. 果樹學(xué)報(bào),2021,38(9):1444-1458.
KANG Chao,GUO Caihua,ZHANG Xuemeng,LIU Jinming,YUAN Xing,QUAN Shaowen,NIU Jianxin. Genome-wide identification and analysis of NAC gene family in walnut (Juglans regia L. )[J]. Journal of Fruit Science,2021,38(9):1444-1458.
[9] LI B,F(xiàn)AN R Y,YANG Q S,HU C H,SHENG O,DENG G M,DONG T,LI C Y,PENG X X,BI F C,YI G J. Genome-wide identification and characterization of the NAC transcription factor family in Musa acuminata and expression analysis during fruit ripening[J]. International Journal of Molecular Sciences,2020,21(2):634.
[10] AHMAD M,YAN X H,LI J Z,YANG Q S,JAMIL W,TENG Y W,BAI S L. Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears[J]. BMC Plant Biology,2018,18(1):214.
[11] 李圣龍,王傳銘,李曉靜. 石榴NAC轉(zhuǎn)錄因子家族的生物信息學(xué)分析[J]. 分子植物育種,2021,19(1):88-99.
LI Shenglong,WANG Chuanming,LI Xiaojing. Bioinformatic analysis of the NAC transcription factor family in Punica granatum L.[J]. Molecular Plant Breeding,2021,19(1):88-99.
[12] NAKANO Y,YAMAGUCHI M,ENDO H,REJAB N A,OHTANI M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants[J]. Frontiers in Plant Science,2015,6:288.
[13] XIE Q,F(xiàn)RUGIS G,COLGAN D,CHUA N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development,2000,14(23):3024-3036.
[14] HE X J,MU R L,CAO W H,ZHANG Z G,ZHANG J S,CHEN S Y. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.
[15] KO J H,YANG S H,PARK A H,LEROUXEL O,HAN K H. ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J]. The Plant Journal,2007,50(6):1035-1048.
[16] NURUZZAMAN M,SHARONI A M,KIKUCHI S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[17] FORLANI S,MIZZOTTI C,MASIERO S. The NAC side of the fruit:Tuning of fruit development and maturation[J]. BMC Plant Biology,2021,21(1):238.
[18] PODZIMSKA-SROKA D,OSHEA C,GREGERSEN P L,SKRIVER K. NAC transcription factors in senescence:From molecular structure to function in crops[J]. Plants,2015,4(3):412-448.
[19] KOU X H,ZHOU J Q,WU C E,YANG S,LIU Y F,CHAI L P,XUE Z H. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening:A review[J]. Plant Molecular Biology,2021,106(3):223-238.
[20] PURANIK S,SAHU P P,SRIVASTAVA P S,PRASAD M. NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science,2012,17(6):369-381.
[21] ERNST H A,OLSEN A N,SKRIVER K,LARSEN S,LO LEGGIO L. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.
[22] 趙才美,黃興奇,殷富有,李定琴,陳越,陳玲,程在全. 水稻NAC轉(zhuǎn)錄因子家族的研究進(jìn)展[J]. 植物科學(xué)學(xué)報(bào),2020,38(2):278-287.
ZHAO Caimei,HUANG Xingqi,YIN Fuyou,LI Dingqin,CHEN Yue,CHEN Ling,CHENG Zaiquan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal,2020,38(2):278-287.
[23] DIAO P F,CHEN C,ZHANG Y Z,MENG Q W,L? W,MA N N. The role of NAC transcription factor in plant cold response[J]. Plant Signaling & Behavior,2020,15(9):1785668.
[24] OOKA H,SATOH K,DOI K,NAGATA T,OTOMO Y,MURAKAMI K,MATSUBARA K,OSATO N,KAWAI J,CARNINCI P,HAYASHIZAKI Y,SUZUKI K,KOJIMA K,TAKAHARA Y,YAMAMOTO K,KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research,2003,10(6):239-247.
[25] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[26] NIEUWENHUIZEN N J,CHEN X Y,WANG M Y,MATICH A J,PEREZ R L,ALLAN A C,GREEN S A,ATKINSON R G. Natural variation in monoterpene synthesis in kiwifruit:Transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors[J]. Plant Physiology,2015,167(4):1243-1258.
[27] NIEUWENHUIZEN N J,CHEN X Y,PELLAN M,ZHANG L,GOU L,LAING W A,SCHAFFER R J,ATKINSON R G,ALLAN A C. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit[J]. BMC Plant Biology,2021,21(1):411.
[28] WANG W Q,WANG J,WU Y Y,LI D W,ALLAN A C,YIN X R. Genome-wide analysis of coding and non-coding RNA reveals a conserved miR164-NAC regulatory pathway for fruit ripening[J]. New Phytologist,2020,225(4):1618-1634.
[29] WU Y Y,LIU X F,F(xiàn)U B L,ZHANG Q Y,TONG Y,WANG J,WANG W Q,GRIERSON D,YIN X R. Methyl jasmonate enhances ethylene synthesis in kiwifruit by inducing NAC genes that activate ACS1[J]. Journal of Agricultural and Food Chemistry,2020,68(10):3267-3276.
[30] FU B L,WANG W Q,LIU X F,DUAN X W,ALLAN A C,GRIERSON D,YIN X R. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening[J]. New Phytologist,2021,232(1):237-251.
[31] ZHU F,LUO T,LIU C Y,WANG Y,ZHENG L,XIAO X,ZHANG M F,YANG H B,YANG W,XU R W,ZENG Y L,YE J L,XU J,XU J G,LARKIN R M,WANG P W,WEN W W,DENG X X,F(xiàn)ERNIE A R,CHENG Y J. A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata[J]. Journal of Experimental Botany,2020,71(12):3613-3625.
[32] LI S J,YIN X R,WANG W L,LIU X F,ZHANG B,CHEN K S. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3[J]. Journal of Experimental Botany,2017,68(13):3419-3426.
[33] WU J X,F(xiàn)U L L,YI H L. Genome-wide identification of the transcription factors involved in Citrus fruit ripening from the transcriptomes of a late-ripening sweet orange mutant and its wild type[J]. PLoS One,2016,11(4):e0154330.
[34] FU C C,HAN Y C,F(xiàn)AN Z Q,CHEN J Y,CHEN W X,LU W J,KUANG J F. The Papaya transcription factor CpNAC1 modulates carotenoid biosynthesis through activating phytoene desaturase genes CpPDS2/4 during fruit ripening[J]. Journal of Agricultural and Food Chemistry,2016,64(27):5454-5463.
[35] FU C C,HAN Y C,KUANG J F,CHEN J Y,LU W J. Papaya CpEIN3a and CpNAC2 co-operatively regulate carotenoid biosynthesis-related genes CpPDS2/4,CpLCY-e and CpCHY-b during fruit ripening[J]. Plant and Cell Physiology,2017,58(12):2155-2165.
[36] 付長春. NAC類轉(zhuǎn)錄因子參與調(diào)控番木瓜果實(shí)后熟過程中類胡蘿卜素代謝的機(jī)制研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2017.
FU Changchun. Mechanism analysis of NAC transcription factors in regulation of carotenoid biosynthesis during Papaya fruit ripening[D]. Guangzhou:South China Agricultural University,2017.
[37] FU C C,CHEN H J,GAO H Y,WANG S L,WANG N,JIN J C,LU Y,YU Z L,MA Q,HAN Y C. Papaya CpMADS4 and CpNAC3 co-operatively regulate ethylene signal genes CpERF9 and CpEIL5 during fruit ripening[J]. Postharvest Biology and Technology,2021,175:111485.
[38] MIN T,WANG M M,WANG H X,LIU X F,F(xiàn)ANG F,GRIERSON D,YIN X R,CHEN K S. Isolation and expression of NAC genes during persimmon fruit postharvest astringency removal[J]. International Journal of Molecular Sciences,2015,16(1):1894-1906.
[39] JIN R,ZHU Q G,SHEN X Y,WANG M M,JAMIL W,GRIERSON D,YIN X R,CHEN K S. DkNAC7,a novel high-CO2/hypoxia-induced NAC transcription factor,regulates persimmon fruit de-astringency[J]. PLoS One,2018,13(3):e0194326.
[40] JAMIL W,WU W,AHMAD M,ZHU Q G,LIU X F,JIN R,YIN X R. High-CO2/hypoxia-modulated NAC transcription factors involved in de-astringency of persimmon fruit[J]. Scientia Horticulturae,2019,252:201-207.
[41] 柴吉釧,王康,楊民杰,董婉琪,曹士鋒,陳偉,楊震峰,施麗愉. 枇杷EjNAC82的克隆及其對類胡蘿卜素合成基因EjPSY、EjBCH的轉(zhuǎn)錄激活分析[J]. 核農(nóng)學(xué)報(bào),2022,36(6):1115-1126.
CHAI Jichuan,WANG Kang,YANG Minjie,DONG Wanqi,CAO Shifeng,CHEN Wei,YANG Zhenfeng,SHI Liyu. Cloning of EjNAC82 in loquat and its transcriptional regulation on carotenoid biosynthetic genes EjPSY and EjBCH[J]. Journal of Nuclear Agricultural Sciences,2022,36(6):1115-1126.
[42] MART?N-PIZARRO C,VALLARINO J G,OSORIO S,MECO V,URRUTIA M,PILLET J,CASA?AL A,MERCHANTE C,AMAYA I,WILLMITZER L,F(xiàn)ERNIE A R,GIOVANNONI J J,BOTELLA M A,VALPUESTA V,POS? D. The NAC transcription factor FaRIF controls fruit ripening in strawberry[J]. The Plant Cell,2021,33(5):1574-1593.
[43] CARRASCO-ORELLANA C,STAPPUNG Y,MENDEZ-YA?EZ A,ALLAN A C,ESPLEY R V,PLUNKETT B J,MOYA-LEON M A,HERRERA R. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit[J]. Scientific Reports,2018,8(1):10524.
[44] GONG J L,ZENG Y L,MENG Q N,GUAN Y J,LI C Y,YANG H B,ZHANG Y Z,AMPOMAH-DWAMENA C,LIU P,CHEN C W,DENG X X,CHENG Y J,WANG P W. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22[J]. Journal of Experimental Botany,2021,72(18):6274-6290.
[45] JIANG G X,LI Z W,SONG Y B,ZHU H,LIN S,HUANG R M,JIANG Y M,DUAN X W. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during Litchi fruit ripening[J]. Biomolecules,2019,9(4):135.
[46] SHAN W,KUANG J F,CHEN L,XIE H,PENG H H,XIAO Y Y,LI X P,CHEN W X,HE Q G,CHEN J Y,LU W J. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening[J]. Journal of Experimental Botany,2012,63(14):5171-5187.
[47] L? P T,YU S,ZHU N,CHEN Y R,ZHOU B Y,PAN Y,TZENG D,F(xiàn)ABI J P,ARGYRIS J,GARCIA-MAS J,YE N H,ZHANG J H,GRIERSON D,XIANG J,F(xiàn)EI Z J,GIOVANNONI J,ZHONG S L. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening[J]. Nature Plants,2018,4(10):784-791.
[48] TAK H,NEGI S,GUPTA A,GANAPATHI T R. A stress associated NAC transcription factor MpSNAC67 from banana (Musa × paradisiaca) is involved in regulation of chlorophyll catabolic pathway[J]. Plant Physiology and Biochemistry,2018,132:61-71.
[49] MIGICOVSKY Z,YEATS T H,WATTS S,SONG J,F(xiàn)ORNEY C F,BURGHER-MACLELLAN K,SOMERS D J,GONG Y H,ZHANG Z Q,VREBALOV J,VAN VELZEN R,GIOVANNONI J G,ROSE J K C,MYLES S. Apple ripening is controlled by a NAC transcription factor[J]. Frontiers in Genetics,2021,12:671300.
[50] ZHANG Q J,LI T,ZHANG L J,DONG W X,WANG A D. Expression analysis of NAC genes during the growth and ripening of apples[J]. Horticultural Science,2018,45(1):1-10.
[51] AN J P,YAO J F,XU R R,YOU C X,WANG X F,HAO Y J. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiologia Plantarum,2018,164(3):279-289.
[52] WANG A D,XU K N. Characterization of two orthologs of REVERSION-TO-ETHYLENE SENSITIVITY1 in apple[J]. Journal of Molecular Biology Research,2012,2(1):24-41.
[53] SUN Q G,JIANG S H,ZHANG T L,XU H F,F(xiàn)ANG H C,ZHANG J,SU M Y,WANG Y C,ZHANG Z Y,WANG N,CHEN X S. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J]. Plant Science,2019,289:110286.
[54] ZHANG S Y,CHEN Y X,ZHAO L L,LI C Q,YU J Y,LI T T,YANG W Y,ZHANG S N,SU H Y,WANG L. A novel NAC transcription factor,MdNAC42,regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10[J]. Tree Physiology,2020,40(3):413-423.
[55] 孫慶國,姜生輝,房鴻成,張?zhí)炝粒蹰?,陳學(xué)森. 蘋果MdNAC9的克隆及其調(diào)控黃酮醇合成功能的鑒定[J]. 園藝學(xué)報(bào),2019,46(11):2073-2081.
SUN Qingguo,JIANG Shenghui,F(xiàn)ANG Hongcheng,ZHANG Tianliang,WANG Nan,CHEN Xuesen. Cloning of MdNAC9 and functional of its regulation on flavonol synthesis[J]. Acta Horticulturae Sinica,2019,46(11):2073-2081.
[56] 周暉. 桃花青苷著色及原花青素合成的調(diào)控機(jī)制研究[D]. 北京:中國科學(xué)院大學(xué)(中國科學(xué)院武漢植物園),2015.
ZHOU Hui. Mechanisms underlving the regulation of anthocyanincoloration and proanthocyanidin synthesis in peach[D]. Beijing:University of Chinese Academy of Sciences (Wuhan Botanical Garden,Chinese Academy of Sciences),2015.
[57] CAO X M,WEI C Y,DUAN W Y,GAO Y,KUANG J F,LIU M C,CHEN K S,KLEE H,ZHANG B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis[J]. The Plant Journal,2021,106(3):785-800.
[58] JIN Z N,WANG J J,CAO X M,WEI C Y,KUANG J F,CHEN K S,ZHANG B. Peach fruit PpNAC1 activates PpFAD3-1 transcription to provide ω-3 fatty acids for the synthesis of short-chain flavor volatiles[J]. Horticulture Research,2022,9:uhac085.
[59] 曹香梅. 桃果實(shí)酯類芳香物質(zhì)的代謝與調(diào)控研究[D]. 杭州:浙江大學(xué),2019.
CAO Xiangmei. Metabolism and regulation of aromatic esters in peach fruit[D]. Hangzhou:Zhejiang University,2019.
[60] 秦娟,余凡,劉璐,朱婷婷,陳偉,曹士鋒,楊震峰,施麗愉. 桃PpNAC19的克隆及其對PpCCD4啟動(dòng)子活性的調(diào)節(jié)分析[J]. 核農(nóng)學(xué)報(bào),2021,35(6):1273-1280.
QIN Juan,YU Fan,LIU Lu,ZHU Tingting,CHEN Wei,CAO Shifeng,YANG Zhenfeng,SHI Liyu. Cloning of peach PpNAC19 and its regulation on PpCCD4 promoter activity[J]. Journal of Nuclear Agricultural Sciences,2021,35(6):1273-1280.
[61] LI F,LI J J,QIAN M,HAN M Y,CAO L J,LIU H K,ZHANG D,ZHAO C P. Identification of peach NAP transcription factor genes and characterization of their expression in vegetative and reproductive organs during development and senescence[J]. Frontiers in Plant Science,2016,7:147.
[62] 李芳. NAP家族成員克隆及其在桃果實(shí)發(fā)育與成熟期間的表達(dá)特性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
LI Fang. Cloning and expression characterization of NAP familymembers during development and ripening of peach[D]. Yangling:Northwest A & F University,2016.
[63] TAN Q P,LI S,ZHANG Y Z,CHEN M,WEN B B,JIANG S,CHEN X D,F(xiàn)U X L,LI D M,WU H Y,WANG Y,XIAO W,LI L. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach[J]. Horticulture Research,2021,8(1):213.
[64] GUO Z H,ZHANG Y J,YAO J L,XIE Z H,ZHANG Y Y,ZHANG S L,GU C. The NAM/ATAF1/2/CUC2 transcription factor PpNAC. A59 enhances PpERF. A16 expression to promote ethylene biosynthesis during peach fruit ripening[J]. Horticulture Research,2021,8(1):209.
[65] HUANG G H,LI T,LI X Y,TAN D M,JIANG Z Y,WEI Y,LI J C,WANG A D. Comparative transcriptome analysis of climacteric fruit of Chinese pear (Pyrus ussuriensis) reveals new insights into fruit ripening[J]. PLoS One,2014,9(9):e107562.
[66] 宋楊,劉紅弟,王海波,張紅軍,劉鳳之. 越橘VcNAC072克隆及其促進(jìn)花青素積累的功能分析[J]. 中國農(nóng)業(yè)科學(xué),2019,52(3):503-511.
SONG Yang,LIU Hongdi,WANG Haibo,ZHANG Hongjun,LIU Fengzhi. Molecular cloning and functional characterization of vc NAC072 reveals its involvement in anthocyanin accumulation in blueberry[J]. Scientia Agricultura Sinica,2019,52(3):503-511.
[67] ZENONI S,DINC? E,TORNIELLI G B. Genetic dissection of grape berry ripening control:defining a role for NAC transcription factors[J]. Acta Horticulturae,2019(1248):387-402.
[68] GIOVANNONI J J. Genetic regulation of fruit development and ripening[J]. The Plant Cell Online,2004,16(S1):S170-S180.
[69] BRADY C J. Fruit ripening[J]. Annual Review of Plant Physiology,1987,38(1):155-178.
[70] LAI B,HU B,QIN Y H,ZHAO J T,WANG H C,HU G B. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics,2015,16(1):225.
[71] LIN Y X,JIANG L Y,CHEN Q,LI Y L,ZHANG Y T,LUO Y,ZHANG Y,SUN B,WANG X R,TANG H R. Comparative transcriptome profiling analysis of red- and white-fleshed strawberry (Fragaria × ananassa) provides new insight into the regulation of the anthocyanin pathway[J]. Plant and Cell Physiology,2018,59(9):1844-1859.
[72] 王惠聰,黃輝白,黃旭明. 荔枝果實(shí)的糖積累與相關(guān)酶活性[J]. 園藝學(xué)報(bào),2003,30(1):1-5.
WANG Huicong,HUANG Huibai,HUANG Xuming. Sugar accumulation and related enzyme activities in the Litchi fruit of‘Nuomiciand‘Feizixiao[J]. Acta Horticulturae Sinica,2003,30(1):1-5.
[73] YANG Z Y,WANG T D,WANG H C,HUANG X M,QIN Y H,HU G B. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.[J]. Journal of Plant Physiology,2013,170(8):731-740.
[74] WANG T D,ZHANG H F,WU Z C,LI J G,HUANG X M,WANG H C. Sugar uptake in the aril of Litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4[J]. Plant and Cell Physiology,2015,56(2):377-387.
[75] SONG J,F(xiàn)ORNEY C F. Flavour volatile production and regulation in fruit[J]. Canadian Journal of Plant Science,2008,88(3):537-550.
[76] DEFILIPPI B G,MANR?QUEZ D,LUENGWILAI K,GONZ?LEZ-AG?ERO M. Aroma volatiles:Biosynthesis and mechanisms of modulation during fruit ripening[J]. Advances in Botanical Research,2009,50:1-37.
[77] WANG L B,BALDWIN E A,BAI J H. Recent advance in aromatic volatile research in tomato fruit:The metabolisms and regulations[J]. Food and Bioprocess Technology,2016,9(2):203-216.
[78] BRUMMELL D A. Cell wall disassembly in ripening fruit[J]. Functional Plant Biology,2006,33(2):103-119.
[79] HAYAMA H,TATSUKI M,ITO A,KASHIMURA Y. Ethylene and fruit softening in the stony hard mutation in peach[J]. Postharvest Biology and Technology,2006,41(1):16-21.
[80] GOULAO L F,OLIVEIRA C M. Cell wall modifications during fruit ripening:When a fruit is not the fruit[J]. Trends in Food Science & Technology,2008,19(1):4-25.
[81] POS? S,PANIAGUA C,MATAS A J,GUNNING A P,MORRIS V J,QUESADA M A,MERCADO J A. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy[J]. Trends in Food Science & Technology,2019,87:47-58.
[82] LAI B,LI X J,HU B,QIN Y H,HUANG X M,WANG H C,HU G B. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,2014,9(1):e86293
[83] LAI B,DU L N,LIU R,HU B,SU W B,QIN Y H,ZHAO J T,WANG H C,HU G B. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,2016,7:166.
[84] FENN M A,GIOVANNONI J J. Phytohormones in fruit development and maturation[J]. The Plant Journal,2021,105(2):446-458.
[85] WANG H C,HUANG H B,HUANG X M. Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. [J]. Plant Growth Regulation,2007,52(3):189-198.
[86] SHAN W,KUANG J F,WEI W,F(xiàn)AN Z Q,DENG W,LI Z G,BOUZAYEN M,PIRRELLO J,LU W J,CHEN J Y. MaXB3 modulates MaNAC2,MaACS1,and MaACO1 stability to repress ethylene biosynthesis during banana fruit ripening[J]. Plant Physiology,2020,184(2):1153-1171.
[87] WEI W,YANG Y Y,SU X G,KUANG J F,CHEN J Y,LU W J,SHAN W. MaRTH1 suppression of ethylene response during banana fruit ripening and is controlled by MaXB3-MaNAC2 regulatory module[J]. Postharvest Biology and Technology,2021,182:111707.
[88] 王鵬洋,曲姍姍. ABA對果實(shí)品質(zhì)的影響研究進(jìn)展[J]. 現(xiàn)代農(nóng)業(yè)科技,2019(7):198.
WANG Pengyang,QU Shanshan. Research progress on the effect of ABA on fruit quality[J]. Modern Agricultural Science and Technology,2019(7):198.
[89] 許田,吳敏,陳雪雪,黃蕓,沈元月. 轉(zhuǎn)錄因子FaNAC56在草莓果實(shí)成熟中的功能分析[J]. 果樹學(xué)報(bào),2021,38(12):2072-2081.
XU Tian,WU Min,CHEN Xuexue,HUANG Yun,SHEN Yuanyue. Functional analysis of transcription factor FaNAC56 in strawberry fruit ripening[J]. Journal of Fruit Science,2021,38(12):2072-2081.
[90] YAN H L,JIANG G X,WU F W,LI Z W,XIAO L,JIANG Y M,DUAN X W. Sulfoxidation regulation of transcription factor NAC42 influences its functions in relation to stress-induced fruit ripening in banana[J]. Journal of Experimental Botany,2021,72(2):682-699.
[91] SONG Z Y,QIN J J,ZHENG Q L,DING X C,CHEN W X,LU W J,LI X P,ZHU X Y. The involvement of the banana F-box protein MaEBF1 in regulating chilling-inhibited starch degradation through interaction with a MaNAC67-like protein[J]. Biomolecules,2019,9(10):552.
[92] KAUR N,ALOK A,SHIVANI,KUMAR P,KAUR N,AWASTHI P,CHATURVEDI S,PANDEY P,PANDEY A,PANDEY A K,TIWARI S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit[J]. Metabolic Engineering,2020,59:76-86.
[93] 陳文君. FvCO4在草莓果實(shí)早期發(fā)育中的功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2019.
CHEN Wenjun. Function analysis of FvCO4 in the early development of strawberry fruit[D]. Shenyang:Shenyang Agricultural University,2019.
[94] 李創(chuàng). 獼猴桃表皮毛發(fā)育基因的篩選及其在海沃德獼猴桃中的基因編輯研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
LI Chuang. Screening the genes regulating trichome development in Actinidia and their genome editing in ‘Hayward kiwifruit[D]. Yangling:Northwest A & F University,2019.
[95] OSAKABE Y,LIANG Z C,REN C,NISHITANI C,OSAKABE K,WADA M,KOMORI S,MALNOY M,VELASCO R,POLI M,JUNG M H,KOO O J,VIOLA R,KANCHISWAMY C N. CRISPR-Cas9-mediated genome editing in apple and grapevine[J]. Nature Protocols,2018,13(12):2844-2863.
[96] REN C,LIU X J,ZHANG Z,WANG Y,DUAN W,LI S H,LIANG Z C. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.)[J]. Scientific Reports,2016,6:32289.
[97] REN C,LIU Y F,GUO Y C,DUAN W,F(xiàn)AN P G,LI S H,LIANG Z C. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters[J]. Horticulture Research,2021,8:52.
[98] 何玉坤,歐陽嫣惟,張秀梅,林文秋,潘曉璐,張紅娜. CRISPR/Cas9基因編輯技術(shù)在果樹作物中的應(yīng)用研究進(jìn)展[J]. 果樹學(xué)報(bào),2022,39(5):870-881.
HE Yukun,OUYANG Yanwei,ZHANG Xiumei,LIN Wenqiu,PAN Xiaolu,ZHANG Hongna. Application of CRISPR/Cas9 gene editing technology in fruit trees[J]. Journal of Fruit Science,2022,39(5):870-881.