宋娟 胡曉靜 唐誠(chéng) 刁明 柴亞倩 關(guān)思慧 高子淵
摘? 要:【目的】比較不同防寒處理對(duì)提升突尼斯軟籽石榴微域溫度的影響,為今后新疆產(chǎn)區(qū)露地匍匐栽培安全越冬提供技術(shù)支撐?!痉椒ā恳?年生突尼斯軟籽石榴為試材,以露地石榴無(wú)覆蓋為對(duì)照,比較當(dāng)?shù)貧鉁嘏c石榴園近地表氣溫,以及3種覆土厚度(15、20、30 cm)下各7組防寒處理(T0:?jiǎn)我桓餐?;T1:草簾+覆土;T2:鋼筋架+草簾+覆土;T3:EVA塑料膜+草簾+覆土;T4:彩條布+覆土;T5:?jiǎn)蚊珰?覆土;T6:雙毛氈+覆土)的微域溫度動(dòng)態(tài)變化特征。【結(jié)果】當(dāng)?shù)貧鉁嘏c石榴園近地表氣溫相比具有明顯滯后性,差異顯著(p<0.05)。3種覆土厚度各處理微域溫度差異顯著(p<0.05),與對(duì)照相比,15 cm覆土厚度T1提升微域溫度的效果最佳,T0和T6較差;20 cm覆土厚度T3提升微域溫度的效果最佳,T4和T5較差;30 cm覆土厚度T2提升微域溫度的效果最佳,其余處理差異不明顯。【結(jié)論】3種覆土厚度各處理均能不同程度地提升突尼斯軟籽石榴微域溫度。綜合比較,采用30 cm覆土厚度的T2(鋼筋架+草簾+覆土)可最大程度提升突尼斯軟籽石榴微域溫度。
關(guān)鍵詞:突尼斯軟籽石榴;防寒處理;微域溫度
中圖分類(lèi)號(hào):S665.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1399-12
Temperature increasing effect of cold-prevention treatments in micro-environment of Tunisian soft seed pomegranate trees in South Xinjiang
SONG Juan1, HU Xiaojing1*, TANG Cheng2*, DIAO Ming, CHAI Yaqian2, GUAN Sihui2, GAO Ziyuan2
(1College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830000, Xinjiang, China; 2College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China)
Abstract: 【Objective】 The demand for soft seed pomegranate in market is rising year by year. The Tunisian soft seed pomegranate has the widest commercial area for cultivation. However, due to the special geographical climate of Xinjiang and the freezing damage temperature threshold of Tunisian soft seed pomegranates, traditional soil covering methods cannot ensure safe overwintering, resulting in plant damage and low survival rate. Therefore, it is important to explore cold-prevention treatment methods that can maximize the safe overwintering of Tunisian soft seed pomegranate seedlings, providing technical support for the application of cold-prevention measures in winter for Tunisian soft seed pomegranate in the open field in Xinjiang production areas. 【Methods】 The test pomegranate orchard was located in the 12th Company of the 51st Regiment of the Third Division of Xinjiang Production and Construction Corps, with an altitude of 1 046.20 meters. It belongs to a warm temperate continental arid climate with an average temperature of -6.6 ℃ to -7.3 ℃ in the coldest month (January). The test plants were 2-year-old Tunisian soft seed pomegranate cuttings, planted in a creeping manner at a 40° inclination in a south-north direction with a planting distance of 2.0 m×5.0 m. The soil was sandy with a deep layer and moderate fertility. During the winter from 2021 to 2022, the open field pomegranate plants without cover were used as the control (control), seven cold-prevention treatments were designed [T0: soil cover at one of three thicknesses (15 cm, 20 cm, and 30 cm); T1: straw curtain + soil cover; T2: double-bar holder + straw curtain + soil cover; T3: EVA plastic film cover + straw curtain + soil cover; T4: covering with colored fabric cloth strips+ soil cover; T5: single sheet cover + soil cover; T6: double sheet cover + soil cover]. The experiment used IoT dynamic monitoring technology to monitor in real-time the temperature changes in the orchard and in the micro-environment under each treatment. The data were collected every 5 minutes from November 7, 2021, to March 15, 2022. The daily minimum temperature, the longest duration of ≤-10 ℃, thermal insulation performance, and negative accumulated temperature in the micro-environment under each treatment with the three soil cover thicknesses were analyzed to explore the relationship between the temperature collected from local weather station and near-surface temperature of the pomegranate orchard and the temperature changes of each treatment micro-environment under the treatments. 【Results】 There were significant differences in the daily maximum and minimum values between the near surface area in the orchard and local weather report (p<0.05), which displayed an upward trend and a downward trend respectively, and there was an obvious lag in the appearance of the peak temperature value compared to the local weather station. There were significant differences in the temperature variations among treatments with the three soil thicknesses (p<0.05). With the freezing threshold as the reference, it was found that compared with the control group (control), the 15 cm soil cover thickness in T1 (grass cover + soil cover) had the best effect in raising the micro-environment temperature. The daily minimum temperature was increased by 14.4 ℃, with no ≤-10 ℃ low temperature, and the negative accumulated temperature was increased by 769.6 ℃; the thermal insulation performance was good. However, temperature elevation effects in T0 and T6 were poor and the longest duration of ≤-10 ℃ temperature (11 hours). Under the 20 cm soil cover thickness, T3 (EVA plastic film cover + grass cover + soil cover) had the best effect in raising the micro-environment temperature, with the daily minimum temperature increased by 15.4 ℃, no ≤-10 ℃ temperature, and the negative accumulated temperature increased by 780 ℃, indicating that the thermal insulation performance was good. The temperature elevation effects of T4 and T5 were poor, and the longest duration of ≤-10 ℃ temperature could reach 8 hours. Under the 30 cm soil cover thickness, T2 (steel frame + grass cover + soil cover) had the best effect in raising the micro-environment temperature, with the daily minimum temperature increased by 17 ℃, good thermal insulation performance, and the negative accumulated temperature increased by 880.4 ℃. The temperature elevation effects of the other treatments were not significant. 【Conclusion】 Compared with control, all the treatments had a positive effect in raising the micro-environment temperature to different degrees under the three soil cover thicknesses. Comprehensively T2 (double bar holder + straw curtain + 30 cm soil cover) had the best cold prevention effect in the orchard of Tunisian soft seed pomegranate.
Key words: Tunisian soft seed pomegranate; Cold-resistant treatment; Micro-environment temperature
石榴(Punica granatum L.)屬于石榴科(Punicaceae)石榴屬(Punica),是亞熱帶、熱帶果樹(shù),喜暖畏寒[1-2]。石榴品種繁多,根據(jù)種子的軟硬程度,可將其劃分為軟籽、半軟籽(半硬籽)和硬籽石榴[3-5]。與硬籽石榴相比,軟籽石榴甜而無(wú)渣,是石榴中的珍品,生產(chǎn)與消費(fèi)市場(chǎng)潛力巨大[6]。突尼斯軟籽石榴(Punica granatum ‘Tunisia)作為我國(guó)早期首例引種成功的軟籽品種,因其抗旱、適應(yīng)性強(qiáng)和果實(shí)品質(zhì)突出等特點(diǎn),商業(yè)栽培推廣速度最快,在四川、云南、河南、陜西等多地栽培[7-8]。但是,突尼斯軟籽石榴露地栽培極易受極端天氣影響,在其不斷向北引種栽培時(shí)發(fā)現(xiàn),與部分石榴品種(休眠期最低能耐-17 ℃的低溫)相比,突尼斯軟籽石榴耐寒性明顯較差,氣溫低于-10 ℃超過(guò)12 h即可發(fā)生凍害[9],導(dǎo)致樹(shù)體存活率較低及果實(shí)產(chǎn)量下降。新疆地區(qū)露地種植仍處于試驗(yàn)階段,沒(méi)有穩(wěn)定成熟的規(guī)?;豙8]。因此,有關(guān)突尼斯軟籽石榴在新疆引種安全越冬的問(wèn)題,亟須探索更科學(xué)、合理且普適性強(qiáng)的防寒處理方法,對(duì)新疆地區(qū)具有較強(qiáng)的現(xiàn)實(shí)迫切性和實(shí)際生產(chǎn)意義,是當(dāng)前重要的研究熱點(diǎn)。
近幾年,國(guó)內(nèi)外有關(guān)預(yù)防植物凍害的防寒處理方式有許多。國(guó)外學(xué)者對(duì)植物的防寒方式進(jìn)行了主動(dòng)防寒和被動(dòng)防寒的區(qū)分,在被動(dòng)防寒方面認(rèn)為所有的防寒方法都是基于提高溫度或減少植物的熱量損失,并提出可以通過(guò)選址、灌溉、風(fēng)力機(jī)、加熱器、覆蓋物或噴灑防凍物質(zhì)對(duì)植物進(jìn)行防寒處理[10-11]。Dabney等[12]證實(shí)了冬季覆蓋植物可顯著改變土壤內(nèi)部微域溫度進(jìn)而有效防寒。Smith[13]則安裝高架灌溉自動(dòng)防護(hù)系統(tǒng),以對(duì)南部高叢藍(lán)莓凍害發(fā)生時(shí)的氣溫條件調(diào)查為依據(jù),觸發(fā)系統(tǒng)對(duì)植物進(jìn)行防寒。Román-Figueroa等[14]通過(guò)調(diào)研國(guó)際市場(chǎng)上研發(fā)的防凍產(chǎn)品,利用產(chǎn)品形成的半滲透膜或滲透膜來(lái)預(yù)防植物外在和/或內(nèi)在結(jié)冰情況。在國(guó)內(nèi)防寒處理的研究主要集中在提高植物越冬期不同區(qū)域的微域溫度方面,如利用設(shè)施栽培或覆蓋不同材料保護(hù)植物免于受凍。趙乾等[15]和林紅梅等[16]利用設(shè)施大棚的保溫性栽培軟籽石榴和西瓜,提升各自的生存溫度,提高植物種植效益。王靜等[17]和李紅英等[18]針對(duì)不同埋土厚度和不同覆蓋措施下葡萄根區(qū)微域內(nèi)土壤溫度的變化研究,發(fā)現(xiàn)土壤溫度會(huì)隨著埋土厚度的增加而升高,但使用“草苫+大棚膜”的防寒處理比埋土更能有效提高根區(qū)微域內(nèi)的土壤溫度,降低葡萄的受凍風(fēng)險(xiǎn)。曹德航等[19]、李太魁等[20]和楊書(shū)運(yùn)等[21]則通過(guò)設(shè)置搭建小拱棚、秸稈和稻草覆蓋對(duì)茶園的土壤溫度動(dòng)態(tài)變化進(jìn)行了探索,表明搭建小拱棚可對(duì)微域內(nèi)的地表溫度提升9.4 ℃,并認(rèn)為利用秸稈或稻草覆蓋還可有效降低土壤溫度的變化幅度,具有雙向動(dòng)態(tài)調(diào)控作用,可維持同層土壤溫度的穩(wěn)定性。但是,目前針對(duì)突尼斯軟籽石榴的凍害主要是從其品種屬性[22-24]和地理氣象因素[25-27]等方面進(jìn)行探討,對(duì)實(shí)施防寒處理方式及不同防寒處理所能提升的微域溫度變化研究卻鮮有報(bào)道。
因此,針對(duì)新疆引種突尼斯軟籽石榴栽培過(guò)程中預(yù)防越冬凍害的生產(chǎn)需求,筆者在本研究中以引種2年生突尼斯軟籽石榴為對(duì)象,以石榴園近地表氣溫為對(duì)照,通過(guò)設(shè)置3種覆土厚度下7組防寒處理的復(fù)合方法,分析突尼斯軟籽石榴越冬期微域溫度動(dòng)態(tài)變化,探討各處理內(nèi)部微域最低溫度、低溫持續(xù)時(shí)間、保溫性能及負(fù)積溫條件,以期為保障突尼斯軟籽石榴在新疆石榴產(chǎn)區(qū)安全越冬和高效生產(chǎn)提供科學(xué)指導(dǎo)。
1 材料和方法
1.1 試驗(yàn)地概況
供試石榴園位于新疆生產(chǎn)建設(shè)兵團(tuán)第三師五十一團(tuán)十二連。地處39°98′ N,79°12′ E,海拔1 046.20 m,屬暖溫帶大陸性干旱氣候,年平均氣溫11.6 ℃,最熱月(7月)平均氣溫25.85 ℃,最冷月(1月)平均氣溫-6.95 ℃,年平均無(wú)霜期225 d,年降水量38.3 mm。土壤為砂質(zhì)土,土層深厚,肥力中等。圖1是當(dāng)?shù)匮芯繀^(qū)2012—2021年冬季(11—12月至翌年1—3月)氣象溫度的氣溫變化圖。
1.2 試驗(yàn)設(shè)計(jì)
供試植株為2年生突尼斯軟籽石榴扦插苗,2021年3月定植,南北行向傾斜40°匍匐栽植,株行距2.0 m×5.0 m。為更好地驗(yàn)證不同處理的防寒效果,以試驗(yàn)地近十年冬季氣溫變化為依據(jù)(圖1),以露地石榴無(wú)覆蓋為對(duì)照(CK),設(shè)置3種覆土厚度(15、20、30 cm)下7組防寒處理的復(fù)合方法(表1)。3種覆土厚度下各處理供試石榴植株分別選擇同等規(guī)格、相同立地條件,養(yǎng)護(hù)管理水平和植株生態(tài)環(huán)境相一致的3株石榴。
于2021年10月底,將所有待處理石榴進(jìn)行根莖部培土,再順南北行向墊土30 cm厚做弧形土枕,預(yù)防壓倒時(shí)石榴主干的折斷或折裂并起到緩沖地溫的作用,其次順行向壓倒匍匐石榴枝條,用土輕覆蓋固定(圖2)。
1.3 數(shù)據(jù)測(cè)定與獲取
石榴園近地表氣溫(對(duì)照)和3種覆土厚度下(15、20、30 cm)各處理微域溫度采用彭云物聯(lián)S10A遠(yuǎn)程溫濕度計(jì)測(cè)定,可監(jiān)測(cè)范圍為-40~90 ℃,測(cè)量精度為±0.2 ℃。石榴園近地表氣溫(對(duì)照)通過(guò)將溫濕度計(jì)的監(jiān)測(cè)探頭固定在無(wú)覆蓋露地石榴主干上離地35 cm處測(cè)定獲得。
各處理微域溫度通過(guò)將溫濕度計(jì)的監(jiān)測(cè)探頭固定在匍匐壓倒石榴枝的中部離地35 cm處測(cè)定獲得,避免覆蓋材料或覆土?xí)r導(dǎo)致的探頭移動(dòng)(圖2)。
所有數(shù)據(jù)連續(xù)測(cè)定,每5 min自動(dòng)記錄1次,觀測(cè)時(shí)間從2021-11-07開(kāi)始至2022-03-15結(jié)束。
當(dāng)?shù)貧鉁厥茄芯繀^(qū)的溫度數(shù)據(jù),來(lái)源于ERA5 hourly data on single levels from 1979 to present數(shù)據(jù)集,ERA5(ECMWF Re-Analysis 5)是歐洲中期天氣預(yù)報(bào)中心(ECMWF,The European Centre for Medium-Range Weather Forecasts)對(duì)過(guò)去40到70年全球氣候和天氣數(shù)值的第五代再分析資料,選用分辨率為0.25°×0.25°。
1.4 數(shù)據(jù)處理方法
1.4.1 標(biāo)準(zhǔn)劃分 根據(jù)李銀芳等[28]提出的以最高氣溫穩(wěn)定在0 ℃作為石榴樹(shù)體在漸冷期、寒冷期和轉(zhuǎn)暖期的界限劃分。以當(dāng)?shù)卦蕉跉庀髷?shù)據(jù)為依據(jù),確定試驗(yàn)區(qū)漸冷期在2021-11-07至2021-12-10(34 d),寒冷期在2021-12-11至2022-02-07(59 d),轉(zhuǎn)暖期在2022-02-08至2022-03-15(36 d),處理時(shí)長(zhǎng)共計(jì)129 d。
1.4.2 保溫性能 保溫性能主要從低溫時(shí)各處理內(nèi)部微域保溫性和低溫抗干擾性2個(gè)角度進(jìn)行綜合分析。
保溫性比較,以對(duì)照組石榴園近地表氣溫(對(duì)照)測(cè)定0 ℃以下低溫為標(biāo)準(zhǔn),與同期各處理0 ℃以下低溫進(jìn)行溫差分析。根據(jù)各處理溫差變化幅度的范圍大小進(jìn)行保溫性判斷,溫差幅度范圍提升越高,保溫性就越好。
抗干擾性通常是指系統(tǒng)對(duì)于外界干擾所受影響的程度。建立以對(duì)照組石榴園近地表氣溫(對(duì)照)測(cè)定0 ℃以下低溫為自變量,同期各處理0 ℃以下低溫為因變量,建立各處理擬合低溫線性方程[28]。根據(jù)方程斜率的大小進(jìn)行比較,斜率越小,說(shuō)明處理抵抗低溫的效果越好,抗干擾性越強(qiáng)。
1.4.3 數(shù)據(jù)分析方法 試驗(yàn)數(shù)據(jù)利用Microsoft Excel 2021進(jìn)行統(tǒng)計(jì)整理,運(yùn)用R語(yǔ)言4.2.2版本進(jìn)行方差分析和圖表繪制,顯著性檢驗(yàn)采用卡方檢驗(yàn),顯著性水平選取0.05。
2 結(jié)果與分析
2.1 當(dāng)?shù)貧鉁嘏c石榴園近地表氣溫(對(duì)照)的變化特征
將石榴園近地面35 cm處的溫度數(shù)據(jù)與研究區(qū)當(dāng)?shù)赝瑫r(shí)期的氣象數(shù)據(jù)進(jìn)行對(duì)比分析。由圖3可知,越冬期石榴園近地表氣溫與當(dāng)?shù)貧鉁氐淖兓▌?dòng)相一致,總體表現(xiàn)為逐漸下降再逐漸上升的趨勢(shì)。與當(dāng)?shù)貧鉁叵啾?,石榴園近地表氣溫的日最大值和最小值分別出現(xiàn)了顯著的抬升和降低(p<0.05),表明石榴園近地表氣溫比當(dāng)?shù)貧鉁刈兓舾?。因此,近地表氣溫更能反映熱通量變化,表達(dá)石榴園的生存環(huán)境。在漸冷期,石榴園近地表氣溫最大值相比當(dāng)?shù)貧鉁馗呒s3 ℃,提前5 d出現(xiàn),在寒冷期則比當(dāng)?shù)貧鉁馗呒s8 ℃,滯后14 d出現(xiàn),進(jìn)入轉(zhuǎn)暖期比當(dāng)?shù)貧鉁馗呒s1 ℃,提前7 d出現(xiàn),石榴園近地表氣溫的最大值出現(xiàn)早,在寒冷期的下降速度慢于同期當(dāng)?shù)貧鉁亍?/p>
同理,在漸冷期石榴園近地表氣溫最小值相比氣象溫度低約7.5 ℃,出現(xiàn)時(shí)間一致;在寒冷期則比當(dāng)?shù)貧鉁氐图s8 ℃,提前15 d出現(xiàn);進(jìn)入轉(zhuǎn)暖期比當(dāng)?shù)貧鉁氐图s12 ℃,提前11 d出現(xiàn);石榴園近地表氣溫的最小值出現(xiàn)早,在轉(zhuǎn)暖期上升速度快于當(dāng)?shù)貧鉁?。這說(shuō)明在越冬期石榴園近地表氣溫最大值或最小值的絕對(duì)值均高于當(dāng)?shù)貧鉁?,且?dāng)?shù)貧鉁貙?duì)比石榴園近地面氣溫變化具有明顯的滯后性,滯后程度隨溫度出現(xiàn)的時(shí)期而有所不同。
2.2 不同覆土厚度下各處理微域日最低溫度及≤-10 ℃ 持續(xù)時(shí)間的比較
由表2可知,對(duì)照組日最低溫度可達(dá)-20.2 ℃,遠(yuǎn)低于其他處理最低溫度,且≤ -10 ℃的時(shí)間長(zhǎng)達(dá)103 d,說(shuō)明越冬期突尼斯軟籽石榴必須采取一定的防寒措施進(jìn)行保護(hù)。T1、T2、T3和T0的日最低溫度隨覆土厚度的增加而逐漸降低,但T3、T4和T5的日最低溫度并不遵循此規(guī)律,具體原因還需進(jìn)一步探索。
以突尼斯軟籽石榴在低于-10 ℃環(huán)境下超過(guò)12 h即可發(fā)生凍害為依據(jù)[9],對(duì)比各處理與對(duì)照的日最低溫度,日最低溫度差值越大,增溫效果就越明顯。15 cm覆土厚度下,T1增溫效果最好,對(duì)比-10 ℃提高了4.2 ℃,T0和T6增溫效果最差,對(duì)比-10 ℃分別降低了2.4、0.1 ℃,且T1和T0、T6之間分別相差6.6、4.3 ℃;20 cm覆土厚度下,T3增溫效果最好,對(duì)比-10 ℃提高了5.2 ℃,T4和T5增溫效果最差,對(duì)比-10 ℃分別降低了1.2、0.6 ℃,且T3和T4、T5之間分別相差6.4、5.8 ℃;30 cm覆土厚度下,T2增溫效果最好,對(duì)比-10 ℃ 提高了6.8 ℃,T5增溫效果較差,對(duì)比-10 ℃ 提高了0.7 ℃,且T2和T5兩者相差6.1 ℃。這說(shuō)明在30 cm覆土厚度下各處理日最低溫度均高于-10 ℃,增溫效果最好。
低溫出現(xiàn)時(shí)間與持續(xù)時(shí)長(zhǎng)也是影響防寒處理效果的重要指標(biāo)之一。不同覆土厚度下各處理日最低溫度出現(xiàn)的時(shí)間基本一致,主要集中在12月底至1月初,說(shuō)明這段時(shí)間是試驗(yàn)地極端溫度的易發(fā)時(shí)期,若防寒處理不佳,偶然的極端低溫就會(huì)導(dǎo)致植株發(fā)生嚴(yán)重凍害,持續(xù)的低溫時(shí)長(zhǎng),甚至使植株死亡。在15 cm覆土厚度下,T0≤-10 ℃最長(zhǎng)持續(xù)時(shí)間長(zhǎng)達(dá)11 h,共出現(xiàn)22 d,T6≤-10 ℃ 最長(zhǎng)持續(xù)時(shí)間長(zhǎng)達(dá)2 h,僅出現(xiàn)1 d;20 cm 覆土厚度下,T4≤-10 ℃最長(zhǎng)持續(xù)時(shí)間長(zhǎng)達(dá)8 h,共出現(xiàn)11 d,T5≤-10 ℃最長(zhǎng)持續(xù)時(shí)間長(zhǎng)達(dá)5 h,共出現(xiàn)4 d;30 cm 覆土厚度下各處理未出現(xiàn)-10 ℃以下低溫,進(jìn)一步表明增加覆土厚度可顯著提高防寒處理的保溫效果。
2.3 不同覆土厚度下各處理微域保溫性能的分析
在相同覆土厚度下各處理間均具有顯著差異變化(p<0.05)。由圖4可知,在3種覆土厚度下各處理溫差波動(dòng)變化趨于基本一致,由漸冷期至轉(zhuǎn)暖期,波動(dòng)逐漸劇烈。各處理溫差幅度的上移速度隨覆土厚度的增加而增加,說(shuō)明覆土越厚,各處理微域內(nèi)的溫差變化幅度越大。在寒冷期1月,各處理溫差變化幅度相比12月和2月明顯降低,表明1月是防寒越冬的關(guān)鍵期。關(guān)鍵月期間各處理溫差變化幅度不同,15 cm覆土厚度下,T1變化幅度最大,其次是T2和T3,T0和T6變化幅度最?。?0 cm覆土厚度下,T3變化幅度最大,其次是T2,T4變化幅度最??;30 cm覆土厚度下,T2變化幅度最大,明顯高于其他處理,其次是T1和T3,其余處理溫差變化幅度無(wú)明顯差距。在寒冷期T1、T2和T3在3種覆土厚度下的溫差變化幅度均較大,隨覆土厚度的增加,T2增幅最明顯。從漸冷期也可以看出,15 cm覆土厚度下,T1、T2變化幅度最大,且T2>T1,T0變化幅度最小;20 cm覆土厚度下,T1、T2和T3變化幅度最大,且T1>T3>T2,T5變化幅度最??;30 cm覆土厚度下,T2變化幅度最大,其次是T1和T3。而轉(zhuǎn)暖期各處理溫差變化幅度隨外界溫度的升溫總體逐漸趨于一致。
由圖5可知,各處理與對(duì)照組測(cè)定的溫度關(guān)系不同,隨著覆土厚度的增加,僅有T6和T2的斜率逐漸減小,這與李銀芳等[28]認(rèn)為的防寒處理隨覆蓋厚度的增加斜率減少的結(jié)果并不一致,具體原因還需進(jìn)一步探索。根據(jù)各處理斜率越小,抵抗露地低溫的抗干擾性越好可知,15 cm覆土厚度下,各處理抗干擾性表現(xiàn)為T(mén)1>T2>T3>T5>T4>T6>T0,表明T1抵抗低溫的抗干擾效果最好,T0效果最差;20 cm覆土厚度下,各處理抗干擾性為T(mén)3>T1>T2>T0>T6>T5>T4,表明T3抵抗低溫的抗干擾效果最好,T4最差;30 cm覆土厚度下,各處理抗干擾性則為T(mén)2>T3>T1>T0>T6>T5>T4,表明T2抵抗低溫的抗干擾效果最好,T4最差。
2.4 不同覆土厚度下各處理微域負(fù)積溫變化分析
越冬期負(fù)積溫是指某一時(shí)段內(nèi)各處理微域內(nèi)小于0 ℃日平均氣溫累積值,既可以表示越冬期內(nèi)3個(gè)時(shí)期的寒冷強(qiáng)度,又可以表示各處理在越冬期間的低溫強(qiáng)度,是反映植物能否具有安全越冬條件的重要限制因素之一[29]。由圖6可知,3種覆土厚度下各處理與對(duì)照組在不同時(shí)期的負(fù)積溫隨時(shí)間變化趨勢(shì)基本一致,整體上都呈先升高后降低的趨勢(shì),各處理負(fù)積溫值明顯高于對(duì)照組。由對(duì)照組可知,越冬期外界負(fù)積溫在漸冷期和轉(zhuǎn)暖期基本持平,而在寒冷期驟增,與漸冷期和轉(zhuǎn)暖期之間相差約690 ℃。這說(shuō)明寒冷期低溫強(qiáng)度更大,石榴越冬條件最差。在寒冷期內(nèi),各處理負(fù)積溫差值隨著覆土厚度的增加而降低。15 cm覆土厚度下,T1最高,T0最低,兩者相差約310 ℃;20 cm覆土厚度下,T3最高,T4最低,兩者相差約279 ℃;30 cm覆土厚度下,T2最高,T5最低,兩者相差約262 ℃??梢?jiàn),覆土30 cm時(shí),各處理負(fù)積溫差值最小。不同覆土厚度間比較,各處理負(fù)積溫隨覆土厚度的增加,僅有T0、T2和T6隨之降低。
3 討 論
3.1 當(dāng)?shù)貧鉁嘏c近地表氣溫之間的關(guān)系
植物發(fā)生凍害不僅與氣象溫度變化有關(guān),還與地形地勢(shì)、栽培管理技術(shù)和田間小氣候的變化密切相關(guān)[23]。受周?chē)h(huán)境條件的影響,田間小氣候形成的近地表氣溫與當(dāng)時(shí)當(dāng)?shù)卮髤^(qū)域氣象溫度有所不同,從而導(dǎo)致植物凍害的輕重程度也有所差異。因此,要想深入了解溫度對(duì)植物凍害的影響,不應(yīng)只局限于了解氣溫變化,還要進(jìn)一步探究當(dāng)?shù)亟乇須鉁氐淖兓闆r,將氣象溫度與近地表溫度相結(jié)合,為農(nóng)業(yè)生產(chǎn)服務(wù)提供全面的溫度數(shù)據(jù)支撐。筆者通過(guò)分析越冬期當(dāng)?shù)貧鉁刈兓c石榴園近地表氣溫變化的過(guò)程,發(fā)現(xiàn)當(dāng)?shù)貧鉁嘏c石榴園近地表氣溫間存在著較緊密的關(guān)聯(lián)性,兩者隨時(shí)間的變化規(guī)律基本一致,且當(dāng)?shù)貧鉁叵噍^石榴園近地表氣溫的變化具有明顯的滯后性,這與Shen等[30]和張浩鑫[31]研究認(rèn)為氣象溫度變化,總是滯后于近地面監(jiān)測(cè)溫度變化的結(jié)論相一致,其滯后性的產(chǎn)生與區(qū)域的地形地勢(shì)、下墊面利用及植被覆蓋等因素相關(guān)。同時(shí),筆者在本研究中也發(fā)現(xiàn),石榴園近地表氣溫的最大值和最小值均高于當(dāng)?shù)貧鉁兀@與Jiang等[32]研究得出的0 cm平均地表溫度尺度指數(shù)的區(qū)域平均值、最小值和最大值高于平均氣溫的結(jié)論相符合。
因此,在新疆發(fā)展突尼斯軟籽石榴產(chǎn)業(yè),僅以當(dāng)?shù)貧庀蟀l(fā)布的低溫?cái)?shù)據(jù)為依據(jù),會(huì)對(duì)突尼斯軟籽石榴植株安全越冬的論斷存在一定的滯后性和偏差,故加強(qiáng)對(duì)石榴園近地表低溫的實(shí)時(shí)監(jiān)測(cè)也是十分重要的。未來(lái)還可建立不同區(qū)域氣溫與石榴園近地表氣溫的相關(guān)性模型,為及時(shí)制定園區(qū)突尼斯軟籽石榴相關(guān)防寒保溫措施提供更科學(xué)有效的數(shù)據(jù)支撐。
3.2 各處理微域防寒優(yōu)劣的成因
溫度變化作為影響植物生長(zhǎng)發(fā)育和生產(chǎn)力的關(guān)鍵氣候因子之一,對(duì)創(chuàng)造植物越冬條件具有重要意義。溫度變化中的絕對(duì)低溫、低溫持續(xù)時(shí)間、降溫幅度以及低溫驟降都是直接影響植物凍害發(fā)生程度的重要因素[33]。研究表明,在不同覆土厚度下各處理相較于對(duì)照組的日最低溫度、溫差幅度、低溫抗干擾性及負(fù)積溫變化均有所改善,這是覆蓋材料的保溫性造成的,但各處理之間微域溫度的提升程度卻各有不同,這與楊書(shū)運(yùn)等[21]研究認(rèn)為覆蓋可有效提高地表最低溫度,減小地表最低溫度日變幅且不同覆蓋材料作用有較大差異的結(jié)果相一致。
研究結(jié)果顯示,3種覆土厚度下各處理中以T1(草簾+覆土)、T2(鋼筋架+草簾+覆土)和T3(EVA塑料膜+草簾+覆土)的微域溫度提升效果相對(duì)較佳。從處理的微域溫度變化與結(jié)構(gòu)具體來(lái)看,T1在15、20、30 cm覆土厚度下,與對(duì)照組相比,分別提升了14.4、14.4、14.5 ℃ ,溫差幅度在16.7~5.1 ℃之間,抵抗低溫的干擾性(斜率)在0.315~0.403之間,負(fù)積溫與寒冷期對(duì)照組相比,分別提升了769.6、755.6、715.3 ℃。這說(shuō)明T1具有良好的保溫性,極大提升了微域日最低溫度和縮小了溫差浮動(dòng)范圍,耐寒程度隨覆土厚度的增加逐漸升高。這是因?yàn)樵诓莺熒线M(jìn)行覆土,草簾本身作為一種疏松多孔的材料,空氣的導(dǎo)熱系數(shù)小,且不同厚度的覆土經(jīng)過(guò)白天吸收的太陽(yáng)光,將光能轉(zhuǎn)化為熱能儲(chǔ)藏于土壤中,最大程度保持了處理內(nèi)部氣溫的相對(duì)穩(wěn)定性。這與馬凱等[34]和李從娟等[35]研究認(rèn)為覆蓋草簾的防寒方式比其他措施保溫效果更好、能起到一定的保墑作用、具有良好生態(tài)效益的結(jié)論相符合。
T2(鋼筋架+草簾+覆土)在15、20、30 cm覆土厚度下,最低溫度與對(duì)照組相比,分別提升了13.3、14.3、17.0 ℃ ,溫差幅度在17.9~5.9 ℃之間,抵抗低溫的干擾性(斜率)在0.205~0.402之間,負(fù)積溫與對(duì)照組相比,分別提升了719.5、756.2、880.4 ℃。與TI相比,T2在30 cm厚度下,具有更好的保溫性和更高的耐寒程度。這是因?yàn)殇摻罴芘c草簾搭建的小拱棚形成了一定的內(nèi)部空間,再通過(guò)最上部覆土和草簾在地表上形成一層防護(hù),既阻礙內(nèi)部空間與大氣的熱量交換,為植株越冬休眠創(chuàng)造了一個(gè)相對(duì)穩(wěn)定的小氣候環(huán)境,又充分緩解了T1(草簾+覆土)中隨越冬時(shí)間的延長(zhǎng)草簾與植株和地下土壤直接接觸過(guò)程中受潮腐爛對(duì)植株的影響。這和曹德航等[19]、謝輝等[36]和曹長(zhǎng)明等[37]研究認(rèn)為搭建小拱棚和小拱棚結(jié)合覆草均可較大幅度地提升地溫、防止植物受凍的研究結(jié)果一致。
T3(EVA塑料膜+草簾+覆土)在15、20、30 cm覆土厚度下,最低溫度與對(duì)照組相比,分別提升了13.9、15.4、15.0 ℃,溫差幅度在16.1~5.3 ℃之間,抵抗低溫的干擾性(斜率)在0.306~0.514之間,負(fù)積溫與對(duì)照組相比,分別提升了715.3、780、763.6 ℃。與T2相比,T3的保溫性略差,耐寒程度略低。這是因?yàn)樵诓莺煾餐恋慕Y(jié)構(gòu)上加入EVA塑料膜,利用EVA塑料膜的防水性和保溫性,使得內(nèi)部濕度和熱通量均有所增大,減緩溫度下降趨勢(shì),但若受潮時(shí)間過(guò)長(zhǎng),也易引發(fā)草簾腐爛。這與郭萬(wàn)輝等[38]研究認(rèn)為稻草覆蓋和薄膜覆蓋可顯著提高土壤溫度,以及李紅英等[18]研究認(rèn)為的“草苫+大棚膜”的防寒技術(shù)更佳的結(jié)論相一致。
T0(單一覆土)、T4(彩條布+覆土)、T5(單毛氈+覆土)和T6(雙毛氈+覆土)這4種防寒處理微域溫度的提升效果在3種覆土厚度下相對(duì)較差。T0是因?yàn)樵摰貐^(qū)冬季寒冷,地表溫度極低,而田間砂質(zhì)土因土壤顆粒粗糙,孔隙較大等特點(diǎn),使得土壤保蓄性差,失墑引起土壤干旱,且土溫變化幅度大,白晝升溫快,夜晚降溫也快,故單一的覆土處理提溫效果差。而T4、T5和T6保溫效果差,則是因?yàn)椴什紬l和毛氈的保溫性能不及草簾,在疏松通氣的結(jié)構(gòu)及覆蓋厚度上也有些不足,這與田壽樂(lè)等[39]研究認(rèn)為毛氈+覆土10~30 cm后的土層溫度提升效果差、溫度變化最小的結(jié)論相符合,但與張建軍等[40]對(duì)葡萄進(jìn)行彩條布+覆土30 cm處理后的地溫提高0.81~14.77 ℃的試驗(yàn)結(jié)果不同,還需進(jìn)一步探討。
4 結(jié) 論
與露地石榴無(wú)覆蓋相比,3種覆土厚度下各處理對(duì)提升突尼斯軟籽石榴微域溫度均有積極的影響。綜合比較,T2(鋼筋架+草簾+覆土)提升微域溫度的效果最佳,鋼筋架加草簾形成小拱棚,既能明顯提高微域溫度,又能充分緩解單獨(dú)覆蓋草簾易受潮腐爛的影響,為新疆未來(lái)突尼斯軟籽石榴越冬防寒措施的制定提供技術(shù)支撐。
參考文獻(xiàn) References:
[1] CHEN Y H,GAO H F,WANG S,LIU X Y,HU Q X,JIAN Z H,WAN R,SONG J H,SHI J L. Comprehensive evaluation of 20 pomegranate (Punica granatum L.) cultivars in China[J]. Journal of Integrative Agriculture,2022,21(2):434-445.
[2] 陳利娜,敬丹,唐麗穎,曹尚銀. 新中國(guó)果樹(shù)科學(xué)研究70年:石榴[J]. 果樹(shù)學(xué)報(bào),2019,36(10):1389-1398.
CHEN Lina,JING Dan,TANG Liying,CAO Shangyin. Fruit scientific research in New China in the past 70 years:Pomegranate[J]. Journal of Fruit Science,2019,36(10):1389-1398.
[3] PUJARI K H,RANE D A. Concept of seed hardness in pomegranate - Ⅱ) histo-chemical studies relation to seed hardness in pomegranate[J]. Acta Horticulturae,2015(1089):111-118.
[4] KHADIVI-KHUB A,KAMELI M,MOSHFEGHI N,EBRAHIMI A. Phenotypic characterization and relatedness among some Iranian pomegranate (Punica granatum L.) accessions[J]. Trees,2015,29(3):893-901.
[5] 秦改花,黎積譽(yù),劉春燕,陳晨,賈波濤,徐義流. 石榴籽粒硬度研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2021,38(5):806-816.
QIN Gaihua,LI Jiyu,LIU Chunyan,CHEN Chen,JIA Botao,XU Yiliu. Progresses in research on pomegranate seed hardness[J]. Journal of Fruit Science,2021,38(5):806-816.
[6] 薛輝,曹尚銀,牛娟,李好先,張富紅,趙弟廣. 軟籽石榴的生產(chǎn)現(xiàn)狀與發(fā)展前景[J]. 江蘇農(nóng)業(yè)科學(xué),2016,44(3):24-27.
XUE Hui,CAO Shangyin,NIU Juan,LI Haoxian,ZHANG Fuhong,ZHAO Diguang. Production status and development prospect of soft-seeded pomegranate[J]. Jiangsu Agricultural Sciences,2016,44(3):24-27.
[7] 吳紅,周霞,陳晶,陳麗,張成霞. 突尼斯軟籽石榴在蘇中地區(qū)引種的適應(yīng)性鑒定[J]. 湖南農(nóng)業(yè)科學(xué),2018(12):66-68.
WU Hong,ZHOU Xia,CHEN Jing,CHEN Li,ZHANG Chengxia. Adaptability of Tunisian soft-seed pomegranate in central Jiangsu region[J]. Hunan Agricultural Sciences,2018(12):66-68.
[8] 陳延惠,史江莉,萬(wàn)然,簡(jiǎn)在海,胡青霞. 中國(guó)軟籽石榴產(chǎn)業(yè)發(fā)展現(xiàn)狀與發(fā)展建議[J]. 落葉果樹(shù),2020,52(3):1-4.
CHEN Yanhui,SHI Jiangli,WAN Ran,JIAN Zaihai,HU Qingxia. Development status and suggestions of soft seed pomegranate industry in China[J]. Deciduous Fruits,2020,52(3):1-4.
[9] 薛華柏,曹尚銀,郭俊英,司鵬,劉麗,譚洪花. 突尼斯軟籽石榴氣候區(qū)劃北限及次適宜區(qū)的防寒栽培[J]. 中國(guó)果樹(shù),2010(2):63-64.
XUE Huabai,CAO Shangyin,GUO Junying,SI Peng,LIU Li,TAN Honghua. Cold-proof cultivation of soft-seed pomegranate in northern limit and sub-suitable area of climate division in Tunisia[J]. China Fruits,2010(2):63-64.
[10] RIEGER M. Freeze protection for horticultural crops[M]//JANICK J. Horticultural Reviews. Hoboken,NJ,USA:John Wiley & Sons,Inc.,1989:45-109.
[11] PERRY K B. Basics of frost and freeze protection for horticultural crops[J]. HortTechnology,1998,8(1):10-15.
[12] DABNEY S M,DELGADO J A,REEVES D W. Using winter cover crops to improve soil and water quality[J]. Communications in Soil Science and Plant Analysis,2001,32(7/8):1221-1250.
[13] SMITH E D. Cold hardiness and options for the freeze protection of southern highbush blueberry[J]. Agriculture,2019,9(1):9.
[14] ROM?N-FIGUEROA C,BRAVO L,PANEQUE M,NAVIA R,CEA M. Chemical products for crop protection against freezing stress:A review[J]. Journal of Agronomy and Crop Science,2021,207(3):391-403.
[15] 趙乾,胡青霞,司曉麗,季亞平,趙玉潔,陳延惠. ‘突尼斯軟籽石榴設(shè)施栽培研究[C]//中國(guó)園藝學(xué)會(huì)石榴分會(huì). 第二屆中國(guó)石榴博覽會(huì)暨第七屆全國(guó)石榴生產(chǎn)與科研研討會(huì)論文集. 2017:136-148.
ZHAO Qian,HU Qingxia,SI Xiaoli,JI Yaping,ZHAO Yujie,CHEN Yanhui. Study on ‘Tunisia soft-seeded pomegranate facility cultivati on environment[C]//Pomegranate Division of Chinese Society for Horticultural Science. Proceedings of the 2nd China pomegranate Exposition & 7th National Symposium on pomegranate production and research. 2017:136-148.
[16] 林紅梅,孫興祥. 雙大棚多層覆蓋保溫效果及對(duì)西瓜生長(zhǎng)的影響[J]. 中國(guó)瓜菜,2016,29(6):25-29.
LIN Hongmei,SUN Xingxiang. Effects of two-layer plastic shed on heat preservation of greenhouse and the growth of watermelon[J]. China Cucurbits and Vegetables,2016,29(6):25-29.
[17] 王靜,張曉煜,張磊,胡宏遠(yuǎn),李娜,李紅英. 越冬期埋土防寒層厚度對(duì)賀蘭山東麓葡萄園土壤溫度的影響[J]. 中國(guó)農(nóng)業(yè)氣象,2022,43(8):633-643.
WANG Jing,ZHANG Xiaoyu,ZHANG Lei,HU Hongyuan,LI Na,LI Hongying. Effects of the thickness of buried soil for cold prevention on the vineyard soil temperature during the overwintering period at the eastern foot of Helan Mountain[J]. Chinese Journal of Agrometeorology,2022,43(8):633-643.
[18] 李紅英,段曉鳳,旭花,楊洋,朱永寧,楊凱凱,張曉煜,張磊. 賀蘭山東西兩麓釀酒葡萄越冬覆蓋防寒措施效果對(duì)比[J]. 中國(guó)農(nóng)業(yè)氣象,2022,43(7):575-586.
LI Hongying,DUAN Xiaofeng,XU Hua,YANG Yang,ZHU Yongning,YANG Kaikai,ZHANG Xiaoyu,ZHANG Lei. Comparison on effect between two anti-freezing measures taken for wine grape overwintering in the east and west foothills of Helan Mountain[J]. Chinese Journal of Agrometeorology,2022,43(7):575-586.
[19] 曹德航,孫海偉,王會(huì),王玉,丁兆堂,尚濤. 不同防寒措施對(duì)幼齡茶園冬季小氣候的影響[J]. 山東農(nóng)業(yè)科學(xué),2014,46(3):28-32.
CAO Dehang,SUN Haiwei,WANG Hui,WANG Yu,DING Zhaotang,SHANG Tao. Effects of different cold-proof measures on infancy tea garden microclimate during winter[J]. Shandong Agricultural Sciences,2014,46(3):28-32.
[20] 李太魁,張香凝,郭戰(zhàn)玲,寇長(zhǎng)林,呂金嶺,楊小林. 覆蓋與間作對(duì)丹江口庫(kù)區(qū)坡地茶園氮磷流失和土壤環(huán)境的影響[J]. 生態(tài)環(huán)境學(xué)報(bào),2020,29(3):543-549.
LI Taikui,ZHANG Xiangning,GUO Zhanling,KOU Changlin,L? Jinling,YANG Xiaolin. Effects of mulching and intercropping on nitrogen and phosphorus runoff losses from sloping land and soil environment of tea garden in the Danjiangkou Reservoir area[J]. Ecology and Environmental Sciences,2020,29(3):543-549.
[21] 楊書(shū)運(yùn),江昌俊. 稻草和地膜覆蓋對(duì)冬季茶園保溫增溫作用的研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(2):327-333.
YANG Shuyun,JIANG Changjun. Effect of straw and plastic film mulching on warming and insulation of tea plantation in winter[J]. Chinese Journal of Eco-Agriculture,2010,18(2):327-333.
[22] 姚方,王寧,曹尚銀,馬貫羊,司守霞,姚海雷. 不同軟籽品種石榴抗寒性綜合評(píng)價(jià)[J]. 森林與環(huán)境學(xué)報(bào),2016,36(3):373-379.
YAO Fang,WANG Ning,CAO Shangyin,MA Guanyang,SI Shouxia,YAO Hailei. Comprehensive evaluation on cold resistance of different pomegranate cultivars[J]. Journal of Forest and Environment,2016,36(3):373-379.
[23] 王慶軍,畢潤(rùn)霞,馬敏,孟健,侯樂(lè)峰,郝兆祥. 我國(guó)北方地區(qū)石榴凍害的發(fā)生原因及預(yù)防措施[J]. 中國(guó)果樹(shù),2017(2):76-79.
WANG Qingjun,BI Runxia,MA Min,MENG Jian,HOU Lefeng,HAO Zhaoxiang. Causes and preventive measures of pomegranate freezing injury in Northern China[J]. China Fruits,2017(2):76-79.
[24] 焦其慶,馮立娟,尹燕雷,崔洪濤. 石榴凍害及抗寒評(píng)價(jià)研究進(jìn)展[J]. 植物生理學(xué)報(bào),2019,55(4):425-432.
JIAO Qiqing,F(xiàn)ENG Lijuan,YIN Yanlei,CUI Hongtao. Research progress on evaluation of freezing injury and cold resistance of pomegranate[J]. Plant Physiology Journal,2019,55(4):425-432.
[25] 朱楨楨,柴麗娜,周小娟. 河陰地區(qū)突尼斯軟籽石榴凍害的發(fā)生及防寒技術(shù)[J]. 農(nóng)業(yè)科技通訊,2015(1):173-175.
ZHU Zhenzhen,CHAI Lina,ZHOU Xiaojuan. Occurrence of freezing injury of Tunisian soft-seeded pomegranate in Heyin area and its cold-proof technology[J]. Bulletin of Agricultural Science and Technology,2015(1):173-175.
[26] 田加才,李甲梁,尹燕雷,王躍華,李春. 2015年山東棗莊石榴凍害情況分析[J]. 落葉果樹(shù),2017,49(1):57-58.
TIAN Jiacai,LI Jialiang,YIN Yanlei,WANG Yuehua,LI Chun. Analysis of pomegranate freezing injury in Zaozhuang,Shandong Province in 2015[J]. Deciduous Fruits,2017,49(1):57-58.
[27] 柴麗娜,劉程宏,鄭華魁. 鄭州地區(qū)突尼斯軟籽石榴防寒栽培技術(shù)[J]. 農(nóng)業(yè)科技通訊,2018(12):307-309.
CHAI Lina,LIU Chenghong,ZHENG Huakui. Cold-proof cultivation techniques of Tunisian soft-seeded pomegranate in Zhengzhou area[J]. Bulletin of Agricultural Science and Technology,2018(12):307-309.
[28] 李銀芳,潘伯榮,阿迪力·吾彼爾,管開(kāi)云,段士民,荊衛(wèi)民,王志強(qiáng),宋政梅,吳玉華. 石榴和無(wú)花果黑白雙膜覆蓋越冬的膜下溫度變化特征[J]. 北方園藝,2016(23):44-50.
LI Yinfang,PAN Borong,Adil·Ubil,GUAN Kaiyun,DUAN Shimin,JING Weimin,WANG Zhiqiang,SONG Zhengmei,WU Yuhua. Effect of double-coated black and white plastic film for overwintering on heat preservation of Punica granatum and Ficus carica[J]. Northern Horticulture,2016(23):44-50.
[29] 鄭冬曉,楊曉光,趙錦,慕臣英,龔宇. 氣候變化背景下黃淮冬麥區(qū)冬季長(zhǎng)寒型凍害時(shí)空變化特征[J]. 生態(tài)學(xué)報(bào),2015,35(13):4338-4346.
ZHENG Dongxiao,YANG Xiaoguang,ZHAO Jin,MU Chenying,GONG Yu. Spatial and temporal patterns of freezing injury during winter in Huang-Huai Winter Wheat Area under climate change[J]. Acta Ecologica Sinica,2015,35(13):4338-4346.
[30] SHEN X Y,JIE B,LI S,CHE X J,LIU Y B,F(xiàn)ENG Y Z. Effects of near-surface low temperature on freezing injury of ‘Tunisian soft-seed pomegranate[J]. Plant Diseases and Pests,2019,10(4):21-25.
[31] 張浩鑫. 中國(guó)區(qū)域土壤溫度與近地面氣溫相互聯(lián)系的研究[D]. 北京:中國(guó)科學(xué)院大學(xué),2020.
ZHANG Haoxin. Study on the relationship between soil temperature and near-surface temperature in China area[D]. Beijing:University of Chinese Academy of Sciences,2020.
[32] JIANG L,LI N N,F(xiàn)U Z T,ZHANG J P. Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China[J]. Theoretical and Applied Climatology,2015,119(1/2):25-31.
[33] 李敏. 突尼斯軟籽石榴凍旱的發(fā)生與預(yù)防[D]. 泰安:山東農(nóng)業(yè)大學(xué),2013.
LI Min. The happening and prevention of the cold and drought in Tunisia soft seeds pomegranate[D]. Taian:Shandong Agricultural University,2013.
[34] 馬凱,王繼勛,盧春生,閆鵬,李世強(qiáng),王斐,樊丁宇. 不同防寒措施對(duì)南疆果樹(shù)越冬溫度指標(biāo)的影響[J]. 新疆農(nóng)業(yè)科學(xué),2012,49(2):230-236.
MA Kai,WANG Jixun,LU Chunsheng,YAN Peng,LI Shiqiang,WANG Fei,F(xiàn)AN Dingyu. Effect of different cold-proof measures on temperature indexes of fruit trees overwintering in southern Xinjiang[J]. Xinjiang Agricultural Sciences,2012,49(2):230-236.
[35] 李從娟,王世杰,孫永強(qiáng),張恒. 葡萄越冬防寒技術(shù)研究綜述[J]. 沙漠與綠洲氣象,2021,15(2):138-143.
LI Congjuan,WANG Shijie,SUN Yongqiang,ZHANG Heng. Overview of the grape protection techniques against the cold in winter[J]. Desert and Oasis Meteorology,2021,15(2):138-143.
[36] 謝輝,常希忠,朱超,李華,盧玉春,張明昌,謝廷剛. 茶樹(shù)越冬防凍試驗(yàn)報(bào)告[J]. 山東林業(yè)科技,2003,33(6):9-10.
XIE Hui,CHANG Xizhong,ZHU Chao,LI Hua,LU Yuchun,ZHANG Mingchang,XIE Tinggang. Experimental report on overwintering and antifreezing of tea trees[J]. Journal of Shandong Forestry Science and Technology,2003,33(6):9-10.
[37] 曹長(zhǎng)明,黃丙玲,段進(jìn)明,賈愛(ài)宏. 拱棚嫁接西瓜水肥一體化栽培技術(shù)[J]. 農(nóng)業(yè)科技通訊,2022(5):304-305.
CAO Changming,HUANG Bingling,DUAN Jinming,JIA Aihong. Integrated cultivation techniques of water and fertilizer for watermelon grafted in arch shed[J]. Bulletin of Agricultural Science and Technology,2022(5):304-305.
[38] 郭萬(wàn)輝,劉挺,余瑜,邱光華,龍崗. 不同覆蓋方式對(duì)烤煙農(nóng)藝性狀及土壤溫度的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2016(18):11-13.
GUO Wanhui,LIU Ting,YU Yu,QIU Guanghua,LONG Gang. Effect of different mulching methods on flue-cured tobacco agronomic characters and soil temperature[J]. Modern Agricultural Science and Technology,2016(18):11-13.
[39] 田壽樂(lè),孫曉莉,沈廣寧. 不同覆蓋物對(duì)山地板栗園土壤性狀及幼苗生長(zhǎng)的影響[J]. 山東農(nóng)業(yè)科學(xué),2017,49(11):37-44.
TIAN Shoule,SUN Xiaoli,SHEN Guangning. Effects of different mulches on soil properties of hilly orchard and chestnut seedling growth[J]. Shandong Agricultural Sciences,2017,49(11):37-44.
[40] 張建軍,勾健,閆衛(wèi)兵,趙國(guó)宏,王軍. 沙城產(chǎn)區(qū)葡萄彩條布機(jī)械埋土防寒及出土技術(shù)[J]. 中外葡萄與葡萄酒,2016(4):32-34.
ZHANG Jianjun,GOU jian,YAN Weibing,ZHAO Guohong,WANG Jun. Cold-proof and unearthing techniques of grape colored stripes by mechanical burying in Shacheng production area[J]. Sino-Overseas Grapevine & Wine,2016(4):32-34.