国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

外源γ-氨基丁酸對蛇龍珠葡萄葉片碳氮代謝的影響

2023-07-27 02:18:00王春恒韓愛民張立梅李斗王宇航金鑫馮麗丹楊江山
果樹學(xué)報(bào) 2023年7期
關(guān)鍵詞:氨基丁酸葡萄

王春恒 韓愛民 張立梅 李斗 王宇航 金鑫 馮麗丹 楊江山

摘 ? ?要:【目的】碳氮代謝是植物體內(nèi)重要的生理過程,探究γ-氨基丁酸(GABA)對葡萄碳氮代謝的影響,并篩選最適調(diào)控濃度。【方法】以10年生釀酒葡萄蛇龍珠為試材,于開花期、坐果期、膨大期、轉(zhuǎn)色期對長勢一致的植株進(jìn)行葉面噴施,研究了不同濃度γ-氨基丁酸5、10、15、20 mmol·L-1處理對葉片碳、氮代謝及其關(guān)鍵酶活性的影響?!窘Y(jié)果】與對照相比,噴施外源GABA提高了葡萄葉片碳代謝相關(guān)蔗糖合酶(SuSy)、蔗糖磷酸合成酶(SPS)、酸性轉(zhuǎn)化酶(AI)和中性轉(zhuǎn)化酶(NI)活性,增加淀粉、可溶性糖、果糖、葡萄糖和蔗糖含量;GABA處理也增強(qiáng)了氮代謝相關(guān)硝酸還原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)、谷氨酸脫氫酶(GDH)、谷氨酸草酰乙酸轉(zhuǎn)氨酶(GOT)、谷氨酸丙酮酸轉(zhuǎn)氨酶(GPT)活性,增加硝態(tài)氮(NO3-·N)含量,增加了內(nèi)源GABA含量?!窘Y(jié)論】外源GABA增加葡萄葉片內(nèi)源GABA含量,從而增強(qiáng)碳代謝和氮代謝相關(guān)酶活性,增加淀粉、可溶性糖的積累,促進(jìn)硝態(tài)氮(NO3-·N)吸收和銨態(tài)氮(NH4+·N)的轉(zhuǎn)化,其中以10 mmol·L-1外源γ-氨基丁酸效果最佳。

關(guān)鍵詞:葡萄;γ-氨基丁酸;碳代謝;氮代謝

中圖分類號:S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)07-1386-13

Effects of γ-aminobutyric acid on carbon and nitrogen metabolism in leaves of Cabernet Gernischt grape

WANG Chunheng1, HAN Aimin1, ZHANG Limei1, LI Dou1, WANG Yuhang1, JIN Xin1, FENG Lidan2, YANG Jiangshan1*

(1College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Gansu Wine Industry Technology Research and Development Center, Lanzhou 730070, Gansu, China)

Abstract: 【Objective】 Carbon metabolism and nitrogen metabolism are the most basic and important physiological processes in plant. The ability of carbon and nitrogen metabolism can directly affect the quality and yield of crops. It has been shown that regulating carbon and nitrogen metabolism is an important measure to improve plant yield and quality. The aim of this study was to investigate the effect of γ-aminobutyric acid (GABA) on carbon and nitrogen metabolism in grape and to screen the optimal regulation concentration. 【Methods】 Using 10-year-old wine grape Cabernet Gernischt as test material, the effects of different concentrations of γ-aminobutyric acid (GABA) on the carbon and nitrogen metabolism and key enzyme activities in the leaves of grape were studied. A total of 4 GABA concentration treatments were set up: 5 mmol·L-1 (T1), 10 mmol·L-1 (T2), 15 mmol·L-1 (T3), 20 mmol·L-1 (T4), and distilled water treatment was used as the control (CK). The leaves of grape plants with the same growth and without diseases and pests were sprayed at the flowering stage, fruit setting stage, fruit expansion stage and fruit color conversion stage. Each treatment had 3 replicates and each replicate had 5 plants. The amount of spray was controlled by the appearance of initial drip from the leaves. The leaf sampling time was 8:00 am on the third day after treatment, and the leaves were sampled again at mature stage. After freezing in liquid nitrogen, the samples were placed in an ultra-low temperature refrigerator at -80 ℃ for later use. 【Results】Compared with CK, the exogenous GABA treatments increased the activities of sucrose synthase (SuSy), sucrose phosphate synthase (SPS), acid invertase (AI) and neutral invertase (NI) related to the carbon metabolism in the grape leaves, and increased the contents of starch, soluble sugar, fructose, glucose and sucrose. The GABA treatments also enhanced the activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), and also increased the content of nitrate nitrogen (NO3-·N) and the endogenous GABA content. The exogenous GABA treatments significantly increased the contents of starch, soluble sugar, NO3-·N and the activities of SuSy-s, NR, GS, GDH, GOT and GPT in the leaves of Cabernet Gernischt during the growth period, and significantly increased the contents of fructose, glucose, sucrose, NH4+·N and the activities of SuSy-c, SPS, AI, NI and GOGAT, and also increased the content of endogenous GABA. Specifically, the endogenous GABA content in the grape leaves increased significantly at flowering stage, fruit setting stage, veraison stage and maturity stage after the exogenous 10 mmol·L-1 GABA treatment. The starch content in the leaves increased significantly in the growth period, the fructose content increased significantly at the fruit setting stage, the expanding stage and the mature stage, the glucose content increased significantly at the expanding stage and the turning stage, the sucrose content increased significantly at the expanding stage and the mature stage, and the total soluble sugar increased significantly from the flowering stage to the mature stage. The activity of carbon metabolism-related enzyme AI increased significantly at the expansion stage, the turning stage and the mature stage, and the activity of NI increased significantly at the fruit setting stage and the mature stage. At the same time, the GABA treatments significantly increased the SPS activity at the fruit setting stage, the expansion stage and the mature stage, respectively. The activity of SuSy-s increased significantly at the fruit setting stage, the turning stage and the mature stage, and the activity of SuSy-c increased significantly at the expansion stage, the turning stage and the mature stage. Similarly, after the exogenous GABA treatments, the content of NO3-·N in grape leaves increased significantly from flowering stage to maturity stage, and maintained a higher level of NO3-·N at the late stage of grape growth compared with the control, while the content of NH4+·N had no significant difference with those of the CK except for that at maturity stage. The activity of GOGAT, GS and NR increased significantly from fruit setting stage to maturity stage, the activity of GDH increased significantly from flowering stage to maturity stage, and the activity of GOT and GPT increased significantly except for maturity stage. 【Conclusion】 During the growth period, the GABA treatments increased the carbon metabolism and nitrogen metabolism related substances and enzyme activities in the grape leaves. It was speculated that the exogenous GABA treatments increased the carbon and nitrogen metabolism activity of the grape leaves, and affected the carbon metabolism of the leaves as a nitrogen source, which strengthened the relationship between nitrogen metabolism and carbon metabolism to some extent. The exogenous GABA increased the endogenous GABA in the grape leaves, thereby enhanced the activities of enzymes related to carbon metabolism and nitrogen metabolism, increased the accumulation of starch and soluble sugar, and promoted the absorption of nitrate nitrogen (NO3-·N) and the transformation of ammonium nitrogen (NH4+·N). 10 mmol·L-1 exogenous GABA had the best effect.

Key words: Grape; γ-aminobutyric acid; Carbon metabolism; Nitrogen metabolism

碳代謝和氮代謝是植物生命活動(dòng)中最基礎(chǔ)的代謝和重要生理過程[1],植物碳氮代謝能力直接影響作物的品質(zhì)和產(chǎn)量[2]。為提高作物碳氮代謝能力,降低干旱、鹽堿、低溫、水澇、病蟲害等不利條件對產(chǎn)量和品質(zhì)的影響,以及在正常生長條件下增強(qiáng)植物碳氮代謝能力,前人已做大量研究。研究表明,在鹽脅迫條件下,可通過褪黑素提高水稻幼苗碳、氮代謝能力來提升抗性抵御環(huán)境脅迫,恢復(fù)生長力[3]。呂騰飛等[4]利用緩釋氮肥與尿素配施顯著提高雜交秈稻幼穗和劍葉細(xì)胞碳、氮代謝關(guān)鍵酶活性,進(jìn)一步提高雜交稻產(chǎn)量。李健忠等[5]通過打頂后噴施油菜素內(nèi)酯和生長素增強(qiáng)煙草碳氮代謝從而提高煙葉質(zhì)量和產(chǎn)量。金正勛等[6]對水稻噴施6-BA和ABA,調(diào)控籽粒碳氮代謝相關(guān)酶基因表達(dá)從而提高稻米品質(zhì)。因此,調(diào)控碳氮代謝是提高植物產(chǎn)量和品質(zhì)的重要措施。

γ-氨基丁酸(GABA)是動(dòng)植物體內(nèi)一種天然存在的非蛋白組成氨基酸,是一種重要的抑制性神經(jīng)遞質(zhì),多數(shù)研究側(cè)重于醫(yī)藥研究,能有效抑制谷氨酸的脫羧反應(yīng),提高葡萄糖磷酸酯酶的活性,具有鎮(zhèn)靜、催眠、抗驚厥、降血壓的生理作用;在植物界的研究中發(fā)現(xiàn),GABA是植物生長所必需的,它與碳和氮代謝密切相關(guān),是橋接碳和氮代謝的關(guān)鍵因素[7-8]。植物細(xì)胞遭受脅迫時(shí),可誘導(dǎo)體內(nèi)谷氨酸脫羧酶(GAD)催化谷氨酸脫羧產(chǎn)生高于正常水平的GABA,同時(shí)消耗H+,因此認(rèn)為GABA的生成可維持細(xì)胞pH的穩(wěn)定[9]。王泳超[10]和于立堯[11]的研究證明適量的外源GABA能恢復(fù)鹽脅迫和干旱條件下玉米和甜瓜幼苗的株高、根系發(fā)育以及各種生長指標(biāo),對植物形態(tài)建成具有調(diào)控作用。閆妮等[12]利用GABA浸種提高了番茄出苗率以及促進(jìn)植株生長緩解鹽脅迫;適度噴施GABA可恢復(fù)NaCl脅迫下西伯利亞白刺葉肉細(xì)胞光合活性[13];降低高溫、干旱脅迫下高羊茅葉綠素含量下降速度[14];增強(qiáng)硝酸鈣脅迫下甜瓜幼苗對NO3-·N的同化能力[15]。目前,通過施用含氮肥料來提高作物產(chǎn)量和品質(zhì)一直是綠色革命的一個(gè)重要因素[16],然而,在生態(tài)方面,過度施用化肥會造成災(zāi)難性的影響,例如富營養(yǎng)化[17]。更好地了解植物氮代謝對于提高植物產(chǎn)量和減少肥料過度使用至關(guān)重要[18]。GABA可作為氮源被植株直接吸收[19],且外源GABA在葡萄生長發(fā)育過程中對葉片碳氮代謝的影響鮮有報(bào)道。筆者在本試驗(yàn)中通過對葡萄葉面GABA的噴施處理,探究外源GABA對葡萄碳氮代謝的影響,以期為葡萄生產(chǎn)施用γ-氨基丁酸類肥料提供理論依據(jù)和技術(shù)參數(shù)。

1 材料和方法

1.1 植物材料和試驗(yàn)地概況

試驗(yàn)以10年生釀酒葡萄蛇龍珠(Cabernet Gernischt)為試材,對葡萄葉片進(jìn)行不同濃度GABA處理,于2021年4—11月在甘肅農(nóng)業(yè)大學(xué)葡萄園進(jìn)行,行株距0.75 m×1.5 m,單干雙臂Y形整形,南北走向。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)共設(shè)4個(gè)GABA濃度處理:5 mmol·L-1(T1)、10 mmol·L-1(T2)、15 mmol·L-1(T3)、20 mmol·L-1(T4),以蒸餾水處理為對照,于開花期、坐果期、膨大期、轉(zhuǎn)色期對長勢一致、無病蟲害的植株進(jìn)行葉面噴施,以葉片開始滴液為準(zhǔn),每個(gè)處理設(shè)3個(gè)重復(fù),每個(gè)重復(fù)5株。葉片采樣時(shí)間為處理后第3天上午8:00,成熟期再取樣1次,液氮冷凍后放入-80 ℃超低溫冰箱備用。

1.3 測定項(xiàng)目與方法

1.3.1 ? ?葉片碳代謝指標(biāo)測定 ? ?可溶性總糖含量采用蒽酮-硫酸法測定[20],使用高效液相色譜儀(美國Waters Acquity Arc)測定蔗糖、葡萄糖和果糖含量,參照賀雅娟等[21]的方法,色譜條件:XBridge BEH Amide色譜柱(4.6 mm×150.0 mm、2.5 μm),柱溫40 ℃,流動(dòng)相為75%乙腈、0.2%乙胺以及24.8%超純水,流速0.8 mL·min-1,進(jìn)樣量 20 μL,檢測波長為254 nm。

蔗糖合酶合成方向(SuSy-s)、蔗糖合酶分解方向(SuSy-c)、蔗糖磷酸合成酶(SPS)、酸性轉(zhuǎn)化酶(AI)、中性轉(zhuǎn)化酶(NI)酶液提取參考張弦[22]的方法,酶活性測定參考潘儼[23]的方法。

1.3.2 ? ?葉片氮代謝指標(biāo)測定 ? ?硝態(tài)氮含量通過水楊酸-硫酸溶液比色法測定[24]。銨態(tài)氮含量采用靛酚藍(lán)-分光光度法測定[25]。硝酸還原酶(NR)活性采用磺胺比色法測定[26]。谷氨酰胺合成酶(GS)活性采用FeCl3絡(luò)合顯色比色法測定[27]。谷氨酸合成酶(GOGAT)活性參照趙鵬等[28]的方法測定。谷氨酸脫氫酶(GDH)活性參考王小純等[29]的方法測定。谷氨酸草酰乙酸轉(zhuǎn)氨酶(GOT)和谷氨酸丙酮酸轉(zhuǎn)氨酶(GPT)活性參考吳良?xì)g等[30]的方法測定。

1.3.3 ? ?數(shù)據(jù)分析 ? ?用 Excel 2016進(jìn)行數(shù)據(jù)處理及作圖,用SPSS 23.0對數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。

2 結(jié)果與分析

2.1 GABA對蛇龍珠葡萄葉片碳代謝的影響

2.1.1 ? ?GABA對葉片可溶性糖、果糖、葡萄糖、蔗糖以及淀粉含量的影響 ? ?不同濃度GABA對蛇龍珠葡萄葉片可溶性糖、果糖、葡萄糖、蔗糖和淀粉含量的影響如表1所示,生育期內(nèi)葉片可溶性糖含量呈“下降-上升-下降”的變化趨勢,果糖、葡萄糖和蔗糖含量均呈先上升的波動(dòng)變化趨勢,淀粉含量呈先降后升的趨勢。與對照相比,GABA處理于坐果期、膨大期、轉(zhuǎn)色期明顯提高可溶性糖含量;于開花期至成熟期提高果糖、葡萄糖和蔗糖含量;開花期、坐果期、膨大期、轉(zhuǎn)色期明顯增加淀粉含量,并隨GABA濃度增大均呈現(xiàn)出先升后降的變化趨勢。在不同濃度GABA處理中,可溶性糖含量在T2、T3處理后各時(shí)期較對照顯著增加(p<0.05),T2處理提升效果最佳,開花期至成熟期較對照提高了13.48%、85.94%、31.09%、58.72%、34.65%。T1、T2處理使果糖含量于坐果期、膨大期和成熟期顯著增加(p<0.05)及葡萄糖含量在膨大期、轉(zhuǎn)色期顯著增加(p<0.05),而T2和T3處理使蔗糖含量在膨大期、成熟期顯著增加(p<0.05)。淀粉含量在T3、T4處理后于開花期至轉(zhuǎn)色期提升效果較好,在成熟期反而顯著降低其含量(p<0.05),而T1、T2處理使其含量各時(shí)期顯著增加(p<0.05),T2處理提高效果最佳,開花期至成熟期分別較對照提高25.00%、76.63%、101.74%、112.6%、8.47%。

2.1.2 ? ?GABA對葉片蔗糖合酶(SuSy)和蔗糖磷酸合成酶(SPS)活性的影響 ? ?不同濃度GABA對葡萄葉片蔗糖合酶合成方向(SuSy-s)活性影響如圖1-A所示,隨著果實(shí)的生長發(fā)育,葉片SuSy-s活性呈“上升-下降-上升”的變化趨勢。與對照相比,GABA處理明顯增強(qiáng)坐果期、膨大期、成熟期SuSy-s活性,尤其在成熟期急劇增強(qiáng),其中,T4處理增強(qiáng)效果最佳,分別較對照提高了40.95%、95.50%、138.16%(p<0.05);開花期、轉(zhuǎn)色期T1處理顯著提高其活性(p<0.05),較對照提升33.33%、56.07%,而T4處理降低了其活性。

生育期葉片SPS活性逐漸升高(圖1-B)。與對照相比,GABA處理后SPS活性于坐果期、膨大期和成熟期明顯增強(qiáng)。T3、T4處理于坐果期、膨大期提升效果較好,在轉(zhuǎn)色期、成熟期降低其活性。而T2處理于坐果期、膨大期、成熟期顯著增強(qiáng)其活性(p<0.05),較對照提升21.57%、30.44%、15.82%。

葉片蔗糖合酶分解方向(SuSy-c)活性呈逐漸上升趨勢(圖1-C)。與對照相比,GABA處理使SuSy-c活性于坐果期、膨大期、轉(zhuǎn)色期、成熟期明顯增強(qiáng);其中,坐果期、成熟期T4處理提升SuSy-c活性效果突出,于膨大期、轉(zhuǎn)色期、成熟期T2、T3處理使其活性顯著上升(p<0.05),T2處理增強(qiáng)效果最佳,較對照提升86.63%、32.27%、35.72%。

2.1.3 ? ?GABA對葉片酸性轉(zhuǎn)化酶(AI)、中性轉(zhuǎn)化酶(NI)活性的影響 ? ?不同濃度GABA對葡萄葉片AI活性影響如圖1-D所示,AI活性總體呈逐漸上升趨勢。與對照相比,GABA處理使AI活性在膨大期、轉(zhuǎn)色期、成熟期明顯增強(qiáng),尤其在成熟期T2、T3、T4處理使其活性急劇增強(qiáng);其中,T4處理于坐果期、膨大期、成熟期明顯增強(qiáng)AI活性,但在轉(zhuǎn)色期顯著降低其活性(p<0.05);而T2處理使AI活性在膨大期和成熟期顯著增強(qiáng)(p<0.05);T3處理使其活性在膨大期、轉(zhuǎn)色期、成熟期顯著增強(qiáng)(p<0.05),較對照提升94.19%,20.21%,95.90%。

葉片NI活性呈先上升的波動(dòng)變化趨勢(圖1-E)。與對照相比,GABA處理使NI活性于坐果期、膨大期、轉(zhuǎn)色期明顯增強(qiáng)及成熟期急劇增強(qiáng),并隨GABA濃度增加呈先升后降的變化趨勢;其中,NI活性在T3、T4處理后,成熟期顯著升高、膨大期和轉(zhuǎn)色期反而明顯降低;而T1處理于坐果期、膨大期、轉(zhuǎn)色期、成熟期提升效果顯著(p<0.05),較對照提升40.61%、14.84%、39.10%、55.20%。

2.2 GABA對蛇龍珠葡萄葉片氮代謝的影響

2.2.1 ? ?GABA對葉片硝態(tài)氮(NO3-·N)和銨態(tài)氮(NH4+·N)及GABA含量的影響 ? ?不同濃度GABA對葡萄葉片NO3-·N含量影響如圖2-A所示,NO3-·N含量在生育期內(nèi)呈先升后降的變化趨勢,與對照相比,GABA處理使其含量在轉(zhuǎn)色期、成熟期上升并趨于穩(wěn)定,并隨GABA處理濃度增加呈先升后降的變化趨勢,其中,T2、T3處理明顯提升其含量,T2處理顯著提升NO3-·N含量(p<0.05),開花期至成熟期分別較對照提升51.80%、17.75%、5.86%、64.97%、89.53%。

葉片NH4+·N含量呈先升后降的變化趨勢(圖2-B),與對照相比,GABA處理后NH4+·N含量于膨大期、轉(zhuǎn)色期、成熟期明顯上升,其中,T4處理提升效果顯著(p<0.05),分別較對照升高16.31%、14.42%、18.10%;而在成熟期T2、T3處理顯著提升NH4+·N含量(p<0.05),其他時(shí)期T1、T2、T3處理與對照基本無顯著差異。

不同濃度GABA對葡萄葉片內(nèi)源GABA含量的影響如圖2-C所示,內(nèi)源GABA含量從開花期至成熟期呈逐漸上升的變化趨勢。與對照相比,外源GABA處理使得葉片內(nèi)源GABA含量在開花期、坐果期、轉(zhuǎn)色期、成熟期增加,尤其成熟期T2、T3處理明顯增加其含量,并隨外源GABA濃度增加其含量呈先升后降的變化趨勢,其中,T2處理顯著增加其含量(p<0.05),開花期、坐果期、轉(zhuǎn)色期、成熟期分別較對照提高73.55%、10.46%、18.41%、30.91%。

2.2.2 ? ?GABA對葉片硝酸還原酶(NR)活性的影響 不同濃度GABA對葡萄葉片NR活性的影響如圖3-A所示,NR活性呈先升后降的變化趨勢。與對照相比,GABA處理在各時(shí)期明顯增強(qiáng)NR活性,并隨GABA處理濃度增加呈先升后降的變化趨勢,其中,坐果期T1、T2、T3處理急劇增強(qiáng)其活性。T2處理NR活性顯著增強(qiáng)(p<0.05),開花期至成熟期分別較對照提高了58.93%、57.30%、72.43%、38.36%、63.83%。

2.2.3 ? ?GABA對葉片谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)以及谷氨酸脫氫酶(GDH)活性的影響 ? ?不同濃度GABA對葡萄葉片GS活性的影響如圖3-B所示,GS活性總體呈逐漸增強(qiáng)的趨勢。與對照相比,GABA處理在各物候期均提高GS活性,并隨GABA濃度增加其活性呈先升后降的變化趨勢,其中,除膨大期T3、T4處理急劇增強(qiáng)GS活性外,其他時(shí)期T2處理增強(qiáng)效果最佳,GS活性顯著增強(qiáng)(p<0.05),開花期至成熟期分別較對照升高53.40%、28.72%、25.85%、25.18%、15.05%。

葉片GOGAT(圖3-C)和GDH活性(圖3-D)均呈先升后降的變化趨勢,GOGAT和GDH活性隨GABA濃度增加均呈先升后降的變化趨勢,GOGAT活性除開花期外其他時(shí)期明顯增強(qiáng),GDH活性在各時(shí)期均明顯增強(qiáng)。其中,T2、T3處理提升二者活性效果顯著(p<0.05),GOGAT活性于坐果期至成熟期T2處理較對照升高46.78%、33.41%、86.55%、58.53%,以及T3處理較對照提升48.53%、65.54%、103.11%、46.92%;GDH活性于開花期至成熟期T2處理較對照升高12.63%、46.78%、33.41%、86.55%、58.53及T3處理較對照提高5.96%、48.53%、65.53%、103.11%、46.92%。

2.2.4 ? ?GABA對葉片谷氨酸草酰乙酸轉(zhuǎn)氨酶(GOT)和谷氨酸丙酮酸轉(zhuǎn)氨酶(GPT)活性的影響 ? ?不同濃度GABA對葡萄葉片GOT和GPT活性影響如圖3-E和圖3-F所示,GOT和GPT活性均呈先升后降的變化趨勢。與對照相比,GABA處理在各時(shí)期明顯增強(qiáng)二者活性,并隨GABA濃度增加二者活性呈先升后降的趨勢;其中,在成熟期T1、T2處理使GOT和GPT活性顯著增強(qiáng)(p<0.05),于開花期、坐果期、膨大期和轉(zhuǎn)色期T2、T3處理顯著增強(qiáng)二者活性(p<0.05),T2處理提升效果最優(yōu),GOT活性于開花期至成熟期T2處理較對照升高47.75%、31.84%、10.89%、16.83%、8.01%,GPT活性在開花期至成熟期較對照升高63.10%、11.80%、16.22%、48.28%、5.56%。

3 討 論

植物生長過程中碳氮代謝在植株體內(nèi)的動(dòng)態(tài)變化直接影響著光合產(chǎn)物的合成、轉(zhuǎn)化以及礦質(zhì)營養(yǎng)的吸收、蛋白質(zhì)的合成等[1],氮代謝為碳代謝提供酶和光合色素,碳代謝為氮代謝提供碳源和能量,且二者需要共同的還原力和ATP、碳骨架等[31]。植物碳代謝產(chǎn)物主要是淀粉、可溶性糖、蔗糖、葡萄糖、果糖等,SPS、SuSy、AI、NI等酶參與碳代謝物質(zhì)的形成和轉(zhuǎn)化[32]。韓麗娜等[33]對葡萄的試驗(yàn)研究中,通過控制施氮量增強(qiáng)碳代謝關(guān)鍵酶SPS、SS活性,進(jìn)一步促進(jìn)蔗糖、葡萄糖和果糖的積累,從而提高葡萄產(chǎn)量和品質(zhì)。植物氮代謝主要包括NO3-·N、NH4+·N的合成和固定,NR、GOGAT、GS、GDH、GOT、GPT等酶參與二者的吸收及固定[34]。吳薇等[35]的研究表明,通過控制施氮量增強(qiáng)NR活性和氮代謝物含量從而促進(jìn)烤煙生長發(fā)育提高品質(zhì)。高松等[36]的研究通過增加大蔥葉片蔗糖、還原糖、NO3-·N、NH4+·N含量和提高SPS、SS、NR、GS、GDH、GOGAT等的活性,增強(qiáng)大蔥生長力。因此,研究植物碳氮代謝規(guī)律,探索有效調(diào)控途徑和方法,對提高作物產(chǎn)量和品質(zhì)具有重要的作用[5,9,34]。筆者課題組在GABA對果實(shí)品質(zhì)影響的研究結(jié)果中顯示,GABA處理顯著提高了果實(shí)可溶性糖、蔗糖、果糖、葡萄糖和有機(jī)酸含量[37],改善了果實(shí)品質(zhì)。本研究中外源GABA處理在生育期顯著增加了蛇龍珠葡萄葉片淀粉、可溶性糖、NO3-·N含量及提高SuSy-s、NR、GS、GDH、GOT、GPT活性,明顯增加了果糖、葡萄糖、蔗糖、NH4+·N含量及提高SuSy-c、SPS、AI、NI、GOGAT活性,增加了內(nèi)源GABA含量,與對照相比,在各處理中10 mmol·L-1 GABA提升效果最佳。

試驗(yàn)研究表明,外源10 mmol·L-1 GABA處理在生育期顯著增加了蛇龍珠葡萄葉片淀粉含量,與宋鎖玲[34]的研究結(jié)論相似,GABA增加了甜瓜幼苗葉片淀粉含量。Chen等[38]研究發(fā)現(xiàn)GABA顯著增加楊樹莖中蔗糖、果糖和非結(jié)構(gòu)性碳水化合物含量。GABA噴施后果糖含量于坐果期、膨大期和成熟期顯著增加,葡萄糖含量在膨大期和轉(zhuǎn)色期顯著提升,蔗糖含量在膨大期和成熟期顯著增加,可溶性糖總量于開花期至成熟期顯著增強(qiáng)。GABA處理使AI活性在膨大期、轉(zhuǎn)色期和成熟期顯著增強(qiáng),NI活性于坐果期和成熟期顯著增加。同時(shí)GABA處理使得SPS活性分別于坐果期、膨大期和成熟期顯著增強(qiáng),SuSy-s活性于坐果期、轉(zhuǎn)色期和成熟期顯著增強(qiáng),SuSy-c活性在膨大期、轉(zhuǎn)色期和成熟期顯著增強(qiáng),與劉金平[39]的研究結(jié)果一致,GABA增強(qiáng)了不結(jié)球白菜幼苗SPS、SuSy活性。GABA通過提高GAD、GABA-T活性和CmGAD基因表達(dá)量,促進(jìn)GABA的生物合成[40-41],外源GABA處理后開花期、坐果期、轉(zhuǎn)色期和成熟期葡萄葉片內(nèi)源GABA含量顯著上升。研究表明,給楊樹幼苗施用GABA后樹體莖中蔗糖含量增加并伴隨蔗糖代謝相關(guān)基因SUS和SPS表達(dá)上調(diào)[38,42]。在植物碳代謝中,SPS活性強(qiáng)弱直接影響植株體內(nèi)蔗糖和淀粉的分配,其活性越低蔗糖積累越少[32];SuSy在植株體內(nèi)對蔗糖的轉(zhuǎn)化方向存在催化合成(SuSy-s)和催化分解(SuSy-c),兩個(gè)催化方向的轉(zhuǎn)換與自身是否被磷酸化有關(guān)[43],通常SuSy被認(rèn)為主要起分解蔗糖作用,也有研究者認(rèn)為其在光合器官中具有較強(qiáng)的催化蔗糖合成能力,還有研究者提出SuSy的作用在不同植物中存在較大差異[44]。表明外源GABA處理增加葡萄葉片蔗糖含量與SPS、SuSy活性的增強(qiáng)有關(guān)。蔗糖在葉片內(nèi)的貯存和轉(zhuǎn)化還與AI、NI活性變化相關(guān),可被AI、NI不可逆分解為果糖和葡萄糖[45]。蔗糖可作為信號分子調(diào)控基因的表達(dá),從而影響酶催化活性[46]。推測蔗糖含量變化影響了蔗糖催化分解反應(yīng)活性,增強(qiáng)AI、NI活性促進(jìn)果糖、葡萄糖的生成。外源GABA也可提高正常條件和低溫條件下番茄葉片葉綠素含量,提高抗氧化酶活性和葉片凈光合速率,從而增加可溶性糖、還原糖及非還原糖含量[47]。推斷淀粉、可溶性糖含量的增加也與GABA影響葉片光合作用相關(guān)。表明外源GABA增加蛇龍珠葡萄葉片內(nèi)源GABA含量,進(jìn)一步影響碳代謝相關(guān)酶活性,從而調(diào)控淀粉、可溶性糖含量增加。

本試驗(yàn)結(jié)果表明,外源10 mmol·L-1 GABA處理在生育期使得蛇龍珠葡萄葉片NO3-·N含量在開花期至成熟期顯著增加,且在葡萄生長后期與對照相比保持較高NO3-·N水平,與任文奇[48]的研究結(jié)果一致,GABA增加了甜瓜幼苗葉片NO3-·N含量。而GABA處理后葉片NH4+·N含量除成熟期外其他時(shí)期與對照無顯著差異,可能與GS/GOGAT途徑活性和GDH活性增強(qiáng)影響NH4+轉(zhuǎn)化有關(guān)。劉金平[39]和弓瑞娟[9]的研究發(fā)現(xiàn),GABA增強(qiáng)了不結(jié)球白菜和生菜GS、GOGAT和NR活性。本試驗(yàn)結(jié)果顯示,GABA處理使得GOGAT活性于坐果期至成熟期顯著增強(qiáng),GS和NR活性在開花期至成熟期均顯著增強(qiáng)。GABA處理使GDH活性在開花期至成熟期顯著增強(qiáng),與燕博文[49]的研究結(jié)論相似,GABA增強(qiáng)了玉米幼苗GDH活性。GABA處理后GOT、GPT活性除成熟期外其他時(shí)期顯著增強(qiáng),與谷海濤等[50]的研究結(jié)果一致,GABA增強(qiáng)了粳稻葉片GOT、GPT活性。研究表明,外源GABA使生菜葉片硝酸還原酶基因表達(dá)上調(diào),從而顯著增強(qiáng)NR活性[51]。GABA可有效促進(jìn)甜瓜根系對NO3-·N的吸收及其向地上部分的運(yùn)輸[15]。表明GABA處理增加葡萄葉片NO3-·N的積累與NR活性增強(qiáng)有關(guān)。植株吸收NO3-被NR還原為NH4+,NH4+在植物體內(nèi)必須及時(shí)被同化來消除其對細(xì)胞的毒性,再通過主要途徑GS/GOGAT循環(huán)催化下進(jìn)一步被固定為酰胺態(tài)氮[15]。前人研究發(fā)現(xiàn),GABA也可誘導(dǎo)植株葉片中GS2/GOGAT基因表達(dá)上調(diào)進(jìn)一步增強(qiáng)GS/GOGAT途徑活性從而提升氮的通量[52]。推測內(nèi)源GABA含量的增加影響葡萄葉片氮代謝關(guān)鍵酶活性,促進(jìn)NO3-·N的吸收及向NH4+·N的轉(zhuǎn)化固定。GDH是除GS/GOGAT途徑以外的另一種NH4+同化途徑,GDH既能催化NH4+與a-酮戊二酸合成谷氨酸,又能催化谷氨酸氧化脫氨釋放出NH4+,在氮代謝中起著重要的作用[53]。葡萄葉片GDH活性增強(qiáng)加速了NH4+的轉(zhuǎn)化,同時(shí)促進(jìn)谷氨酸氧化脫氨釋放出NH4+。而GOT和GPT活性增強(qiáng)會消耗GDH催化NH4+反應(yīng)的合成物谷氨酸,可催化谷氨酸與其他底物的反應(yīng)生成天冬氨酸和丙氨酸[54]。使NH4+的消耗大于累積,與本試驗(yàn)中葉片NH4+·N含量變化不顯著相契合,內(nèi)源GABA含量的增加進(jìn)一步促進(jìn)NH4+·N的轉(zhuǎn)化。

在生育期內(nèi),GABA處理不同程度提高了葡萄葉片碳代謝和氮代謝有關(guān)物質(zhì)的含量和酶的活性。研究發(fā)現(xiàn),GABA參與氮的儲存與運(yùn)輸,其代謝途徑被認(rèn)為能夠調(diào)節(jié)碳、氮營養(yǎng)平衡,維持植物正常的生長和發(fā)育[19]。氮素是植物必需的元素,給小麥?zhǔn)┑鰪?qiáng)旗葉SS活性、蔗糖和淀粉含量[55]。擬南芥在GABA作為唯一氮源的培養(yǎng)基上可正常生長[56]。推測外源GABA處理激發(fā)了葡萄葉片碳、氮代謝活力,同時(shí)作為氮源影響葉片碳代謝,在一定程度加強(qiáng)了氮代謝與碳代謝的聯(lián)系。

4 結(jié) 論

綜上所述,10 mmol·L-1外源GABA增加葡萄葉片內(nèi)源GABA含量,從而誘導(dǎo)碳、氮代謝相關(guān)酶SPS、SuSy、AI、NI、NR、GS、GOGAT、GDH、GOT、GPT活性增強(qiáng),增加淀粉、可溶性糖、蔗糖、果糖、葡萄糖的積累和促進(jìn)了氮素的吸收轉(zhuǎn)化,提升葡萄葉片碳氮代謝水平,促進(jìn)植株生長。

參考文獻(xiàn) References:

[1] 寧宇,鄧惠惠,李清明,米慶華,韓賓,艾希珍. 紅藍(lán)光質(zhì)對芹菜碳氮代謝及其關(guān)鍵酶活性的影響[J]. 植物生理學(xué)報(bào),2015,51(1):112-118.

NING Yu,DENG Huihui,LI Qingming,MI Qinghua,HAN Bin,AI Xizhen. Effects of red and blue light quality on the metabolites and key enzyme activities of carbon-nitrogen metabolism in celery[J]. Plant Physiology Journal,2015,51(1):112-118.

[2] GANGWAR S,SINGH V P. Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (Ⅵ) phytotoxicity:Implication of oxidative stress[J]. Scientia Horticulturae,2011,129(2):321-328.

[3] 陳麗珊,周紅艷,林偉偉. 外源褪黑素對鹽脅迫下水稻苗期碳氮代謝的影響[J/OL]. 生態(tài)學(xué)雜志,2022:1-11. http://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html.

CHEN Lishan,ZHOU Yanhong,LIN Weiwei. Effects of exogenous melatonin on carbon and nitrogen metabolism of rice seedlings under salt stress[J/OL]. Chinese Journal of Ecology,2022:1-11. http://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html.

[4] 呂騰飛,諶潔,代鄒,馬鵬,楊志遠(yuǎn),鄭傳剛,馬均. 緩釋氮肥與尿素配施對機(jī)插雜交秈稻碳氮積累的影響[J]. 作物學(xué)報(bào),2021,47(10):1966-1977.

L? Tengfei,SHEN Jie,DAI Zou,MA Peng,YANG Zhiyuan,ZHENG Chuangang,MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice[J]. Acta Agronomica Sinica,2021,47(10):1966-1977.

[5] 李健忠,薛立新,朱金峰,許自成,許儀,金磊,郝浩浩,蘇謙. 打頂后噴施油菜素內(nèi)酯和生長素對烤煙田間生長、碳氮代謝及煙葉品質(zhì)的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(11):1404-1412.

LI Jianzhong,XUE Lixin,ZHU Jinfeng,XU Zicheng,XU Yi,JIN Lei,HAO Haohao,SU Qian. Effects of brassinolide and auxin on growth,carbon and nitrogen metabolism and tobacco quality of flue-cured tobacco leaves after topping[J]. Chinese Journal of Eco-Agriculture,2015,23(11):1404-1412.

[6] 金正勛,王思宇,王珊,王劍,張忠臣,李鋼夑,樸鐘澤. 外源激素對水稻籽粒碳氮代謝相關(guān)酶基因表達(dá)影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,51(7):1-9.

JIN Zhengxun,WANG Siyu,WANG Shan,WANG Jian,ZHANG Zhongchen,LEE Gangseob,PIAO Zhongze. Effect of exogenous hormones on gene expression of carbon and nitrogen metabolism-related enzymes in rice grains[J]. Journal of Northeast Agricultural University,2020,51(7):1-9.

[7] BATUSHANSKY A,KIRMA M,GRILLICH N,TOUBIANA D,PHAM P A,BALBO I,F(xiàn)ROMM H,GALILI G,F(xiàn)ERNIE A R,F(xiàn)AIT A. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic[J]. Molecular Plant,2014,7(6):1065-1068.

[8] FAIT A,F(xiàn)ROMM H,WALTER D,GALILI G,F(xiàn)ERNIE A R. Highway or byway:The metabolic role of the GABA shunt in plants[J]. Trends in Plant Science,2008,13(1):14-19.

[9] 弓瑞娟. γ-氨基丁酸對生菜氮代謝及營養(yǎng)品質(zhì)的影響[D]. 保定:河北農(nóng)業(yè)大學(xué),2012.

GONG Ruijuan. Effect of exogenous aminobutyric acid on nitrogen metabolism and nutrition quality of lettuce[D]. Baoding:Hebei Agricultural University,2012.

[10] 王泳超. γ-氨基丁酸(GABA)調(diào)控鹽脅迫下玉米種子萌發(fā)和幼苗生長的機(jī)制[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2016.

WANG Yongchao. Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seedling growth under salt stress[D]. Harbin:Northeast Agricultural University,2016.

[11] 于立堯. 外源γ-氨基丁酸對甜瓜幼苗生長、抗干旱脅迫的影響[D]. 上海:上海交通大學(xué),2018.

YU Liyao. Effects of exogenous γ- aminobutyric acid on growth,drought stress resistance of melon seedlings in greenhouse[D]. Shanghai:Shanghai Jiao Tong University,2018.

[12] 閆妮,馮棣,楊鳳娟,張敬敏,桑茂鵬,祝海燕. γ-氨基丁酸浸種對鹽分脅迫下番茄出苗及幼苗生長的影響[J]. 中國瓜菜,2022,35(10):58-63.

YAN Ni,F(xiàn)ENG Di,YANG Fengjuan,ZHANG Jingmin,SANG Maopeng,ZHU Haiyan. GABA soaking affects tomato emergence and seedling growth under salt stress[J]. China Cucurbits and Vegetables,2022,35(10):58-63.

[13] 王馨,閆永慶,殷媛,劉威,王賀,季紹旭. 外源γ-氨基丁酸(GABA)對鹽脅迫下西伯利亞白刺光合特性的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2019,35(5):1032-1039.

WANG Xin,YAN Yongqing,YIN Yuan,LIU Wei,WANG He,JI Shaoxu. Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica pall under salt stress[J]. Jiangsu Journal of Agricultural Sciences,2019,35(5):1032-1039.

[14] 陳梓健. 外源GABA對高溫、干旱脅迫下高羊茅的生理影響[D]. 廣州:仲愷農(nóng)業(yè)工程學(xué)院,2017.

CHEN Zijian. Physiological effects of exogenous GABA on Festuca arundinacea under high temperature and drought stress[D]. Guangzhou:Zhongkai University of Agriculture and Engineering,2017.

[15] 甄愛,胡曉輝,任文奇,蘇春杰,靳曉青,孫先鵬. 外源γ-氨基丁酸對Ca(NO3)2脅迫下甜瓜幼苗NO3--N同化的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(12):3987-3995.

ZHEN Ai,HU Xiaohui,REN Wenqi,SU Chunjie,JIN Xiaoqing,SUN Xianpeng. Effect of exogenous γ-aminobutyric acid on NO3--N assimilation in muskmelon under Ca(NO3)2 stress[J]. Chinese Journal of Applied Ecology,2016,27(12):3987-3995.

[16] TILMAN D,CASSMAN K G,MATSON P A,NAYLOR R,POLASKY S. Agricultural sustainability and intensive production practices[J]. Nature,2002,418(6898):671-677.

[17] SINHA E,MICHALAK A M,BALAJI V. Eutrophication will increase during the 21st century as a result of precipitation changes[J]. Science,2017,357(6349):405-408.

[18] GAUDINIER A,RODRIGUEZ-MEDINA J,ZHANG L F,OLSON A,LISERON-MONFILS C,B?GMAN A M,F(xiàn)ORET J,ABBITT S,TANG M,LI B H,RUNCIE D E,KLIEBENSTEIN D J,SHEN B,F(xiàn)RANK M J,WARE D,BRADY S M. Transcriptional regulation of nitrogen-associated metabolism and growth[J]. Nature,2018,563(7730):259-264.

[19] 宋紅苗,陶躍之,王慧中,徐祥彬. GABA在植物體內(nèi)的合成代謝及生物學(xué)功能[J]. 浙江農(nóng)業(yè)科學(xué),2010,51(2):225-229.

SONG Hongmiao,TAO Yuezhi,WANG Huizhong,XU Xiangbin. The anabolism and biological function of GABA in plants[J]. Journal of Zhejiang Agricultural Sciences,2010,51(2):225-229.

[20] 劉曉涵,陳永剛,林勵(lì),莊滿賢,方曉娟. 蒽酮硫酸法與苯酚硫酸法測定枸杞子中多糖含量的比較[J]. 食品科技,2009,34(9):270-272.

LIU Xiaohan,CHEN Yonggang,LIN Li,ZHUANG Manxian,F(xiàn)ANG Xiaojuan. Comparison of methods in determination of polysaccharide in Lycium barbarum L.[J]. Food Science and Technology,2009,34(9):270-272.

[21] 賀雅娟,馬宗桓,韋霞霞,李玉梅,李彥彪,馬維峰,丁孫磊,毛娟,陳佰鴻. 黃土高原旱塬區(qū)不同品種蘋果果實(shí)糖及有機(jī)酸含量比較分析[J]. 食品工業(yè)科技,2021,42(10):248-254.

HE Yajuan,MA Zonghuan,WEI Xiaxia,LI Yumei,LI Yanbiao,MA Weifeng,DING Sunlei,MAO Juan,CHEN Baihong. Comparative analysis of sugar and organic acid contents of different apple cultivars in dryland of loess plateau[J]. Science and Technology of Food Industry,2021,42(10):248-254.

[22] 張弦. 不同施鉀水平對‘嘎拉蘋果果實(shí)糖、酸生理代謝的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.

ZHANG Xian. Effects of different potassium level on sugar and acid metabolism in‘Gala apple fruit[D]. Yangling:Northwest A & F University,2016.

[23] 潘儼. 庫爾勒香梨果實(shí)發(fā)育及采后糖代謝與呼吸代謝關(guān)系的研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學(xué),2016.

PAN Yan. The relationship between sugar metabolism and respiratory metabolism throughout fruit development and postharvest of Korla fragrant pear (Pyrus sinkiangensis Yu)[D]. Urumqi:Xinjiang Agricultural University,2016.

[24] 黎冰. 氮素形態(tài)對赤霞珠葡萄氮代謝和蔗糖代謝調(diào)控機(jī)制的研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.

LI Bing. Study on regulation mechanism of nitrogen forms on nitrogen and sucrose metabolism in Cabernet Sauvignon grape[D]. Yangling:Northwest A & F University,2017.

[25] 梁劍光,朱玲,徐正軍. 靛酚藍(lán)-分光光度法測定發(fā)酵液中氨態(tài)氮含量研究[J]. 食品與發(fā)酵工業(yè),2006,32(9):134-137.

LIANG Jianguang,ZHU Ling,XU Zhengjun. Study on the determination of NH4+-N content in microbial fermentation liquor by indophenol blue spectrophotometric method[J]. Food and Fermentation Industries,2006,32(9):134-137.

[26] 李慧,叢郁,常有宏,藺經(jīng),盛寶龍. 豆梨NADH型硝酸還原酶基因克隆、表達(dá)及酶活性分析[J]. 果樹學(xué)報(bào),2014,31(5):760-768.

LI Hui,CONG Yu,CHANG Youhong,LIN Jing,SHENG Baolong. Cloning,expression and enzyme activity analysis of nitrite reductase gene from Pyrus calleryana[J]. Journal of Fruit Science,2014,31(5):760-768.

[27] 馬宗桓,陳佰鴻,毛娟,胡紫璟,李文芳. 施氮時(shí)期對釀酒葡萄葉片氮代謝酶及相關(guān)基因表達(dá)的影響[J]. 西北植物學(xué)報(bào),2018,38(2):298-306.

MA Zonghuan,CHEN Baihong,MAO Juan,HU Zijing,LI Wenfang. Effects of nitrogen metabolism enzymes and related gene expression in leaves of Vitis vinifera during nitrogen application period[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(2):298-306.

[28] 趙鵬,何建國,熊淑萍,馬新明. 氮素形態(tài)對專用小麥旗葉酶活性及籽粒蛋白質(zhì)和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,15(3):29-34.

ZHAO Peng,HE Jianguo,XIONG Shuping,MA Xinming. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses[J]. Journal of China Agricultural University,2010,15(3):29-34.

[29] 王小純,熊淑萍,馬新明,張娟娟,王志強(qiáng). 不同形態(tài)氮素對專用型小麥花后氮代謝關(guān)鍵酶活性及籽粒蛋白質(zhì)含量的影響[J]. 生態(tài)學(xué)報(bào),2005,25(4):802-807.

WANG Xiaochun,XIONG Shuping,MA Xinming,ZHANG Juanjuan,WANG Zhiqiang. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars[J]. Acta Ecologica Sinica,2005,25(4):802-807.

[30] 吳良?xì)g,蔣式洪,陶勤南. 植物轉(zhuǎn)氨酶(GOT和GPT)活度比色測定方法及其應(yīng)用[J]. 土壤通報(bào),1998,29(3):136-138.

WU Lianghuan,JIANG Shihong,TAO Qinnan. Colorimetric determination method of plant transaminase (GOT and GPT) activity and its application[J]. Chinese Journal of Soil Science,1998,29(3):136-138.

[31] 申麗霞,王璞. 玉米穗位葉碳氮代謝的關(guān)鍵指標(biāo)測定[J]. 中國農(nóng)學(xué)通報(bào),2009,25(24):155-157.

SHEN Lixia,WANG Pu. Determination of C-N metabolism indices in ear-leaf of maize (Zea mays L.)[J]. Chinese Agricultural Science Bulletin,2009,25(24):155-157.

[32] 蘇麗英,吳勇,於新建,夏叔芳. 水稻葉片蔗糖磷酸合成酶的一些特性[J]. 植物生理學(xué)報(bào),1989,15(2):117-123.

SU Liying,WU Yong,YU Xinjian,XIA Shufang. Some properties of rice leaf sucrose phosphate synthetase[J]. Physiology and Molecular Biology of Plants,1989,15(2):117-123.

[33] 韓麗娜,馬宗桓,王穎,胡紫璟,史星雲(yún),毛娟,陳佰鴻. 荒漠區(qū)滴灌施氮量對葡萄葉綠素?zé)晒馓匦约疤即x的影響[J]. 華北農(nóng)學(xué)報(bào),2020,35(2):170-177.

HAN Lina,MA Zonghuan,WANG Ying,HU Zijing,SHI Xingyun,MAO Juan,CHEN Baihong. Effects of nitrogen application rate in drip irrigation on chlorophyll fluorescence characteristics and carbon metabolism of grape in desert area[J]. Acta Agriculturae Boreali-Sinica,2020,35(2):170-177.

[34] 宋鎖玲. 低氧脅迫下γ-氨基丁酸對甜瓜幼苗無機(jī)氮代謝、糖代謝及礦質(zhì)元素含量的影響[D]. 保定:河北農(nóng)業(yè)大學(xué),2012.

SONG Suoling. Effects of γ-aminobutyric acid on inorganic nitrogen metabolism,sugar metabolism and mineral elements contents of melon seedling under hypoxia stress[D]. Baoding:Hebei Agricultural University,2012.

[35] 吳薇,韓相龍,鄭璞帆,韋成才,袁帥,張立新. 移栽方式與施氮量對烤煙生長發(fā)育和產(chǎn)質(zhì)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2018,24(2):535-543.

WU Wei,HAN Xianglong,ZHENG Pufan,WEI Chengcai,YUAN Shuai,ZHANG Lixin. Effects of transplanting mode and nitrogen application rate on growth,development and yield of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizers,2018,24(2):535-543.

[36] 高松,劉穎,劉學(xué)娜,曹逼力,陳子敬,徐坤. 光質(zhì)對大蔥葉片碳氮代謝的影響[J]. 植物生理學(xué)報(bào),2020,56(3):565-572.

GAO Song,LIU Ying,LIU Xuena,CAO Bili,CHEN Zijing,XU Kun. Effects of light quality on carbon and nitrogen metabolism in leaves of Welsh onion (Allium fistulosum)[J]. Plant Physiology Journal,2020,56(3):565-572.

[37] 王宇航,韓愛民,張立梅,李斗,金鑫,王春恒,馮麗丹,楊江山. 外源γ-氨基丁酸對蛇龍珠葡萄果實(shí)糖酸代謝的影響[J].果樹學(xué)報(bào),2023,40(4):699-711.

WANG Yuhang,HAN Aimin,ZHANG Limei,LI Dou,JIN Xin,WANG Chunheng,F(xiàn)ENG Lidan,YANG Jiangshan. Effects of exogenous GABA on sugar and acid metabolism of Cabernet Gernischet [J]. Journal of Fruit Science,2023,40(4):699-711.

[38] CHEN W,MENG C,JI J,LI M H,ZHANG X M,WU Y Y,XIE T T,DU C J,SUN J C,JIANG Z P,SHI S Q. Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions[J]. Tree Physiology,2020,40(12):1744-1761.

[39] 劉金平. γ-氨基丁酸對淹水脅迫下不結(jié)球白菜幼苗碳氮代謝相關(guān)指標(biāo)的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2016.

LIU Jinping. Effects of exogenous γ-ambutyric acid on relevant indicators of carbon and nitrogen metabolism of non-heading cabbage under waterlogging stress[D]. Nanjing:Nanjing Agricultural University,2016.

[40] LI Y X,LIU B Y,PENG Y X,LIU C L,ZHANG X Z,ZHANG Z J,LIANG W,MA F W,LI C Y. Exogenous GABA alleviates alkaline stress in Malus hupehensis by regulating the accumulation of organic acids[J]. Scientia Horticulturae,2020,261:108982.

[41] 梁靜宜,郭凡,趙科,王鴻飛,許鳳. 外源γ-氨基丁酸對鮮切南瓜品質(zhì)和γ-氨基丁酸代謝的影響[J]. 食品工業(yè)科技,2022,43(19):385-392.

LIANG Jingyi,GUO Fan,ZHAO Ke,WANG Hongfei,XU Feng. Effect of exogenous γ-aminobutyric acid on the quality and γ-aminobutyric acid metabolism of fresh-cut pumpkins[J]. Science and Technology of Food Industry,2022,43(19):385-392.

[42] WANG Y,YUAN B,JI Y C,LI H. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid[J]. Carbohydrate Polymers,2013,97(2):518-522.

[43] TANASE K,SHIRATAKE K,MORI H,YAMAKI S. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit[J]. Physiologia Plantarum,2002,114(1):21-26.

[44] MORIGUCHI T,ABE K,SANADA T,YAMAKI S. Levels and role of sucrose synthase,sucrose-phosphate synthase,and acid invertase in sucrose accumulation in fruit of Asian pear[J]. Journal of the American Society for Horticultural Science,1992,117(2):274-278.

[45] VERMA A K,UPADHYAY S K,VERMA P C,SOLOMON S,SINGH S B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars[J]. Plant Biology,2011,13(2):325-332.

[46] WIND J,SMEEKENS S,HANSON J. Sucrose:Metabolite and signaling molecule[J]. Phytochemistry,2010,71(14/15):1610-1614.

[47] ABD ELBAR O H,ELKELISH A,NIEDBA?A G,F(xiàn)ARAG R,WOJCIECHOWSKI T,MUKHERJEE S,ABOU-HADID A F,EL-HENNAWY H M,ABOU EL-YAZIED A,ABD EL-GAWAD H G,AZAB E,GOBOURI A A,EL-SAWY A M,BONDOK A,IBRAHIM M F M. Protective effect of γ-aminobutyric acid against chilling stress during reproductive stage in tomato plants through modulation of sugar metabolism,chloroplast integrity,and antioxidative defense systems[J]. Frontiers in Plant Science,2021,12:663750.

[48] 任文奇. 外源γ-氨基丁酸對Ca(NO3)2脅迫下甜瓜幼苗氮代謝和光合作用的調(diào)控[D]. 西北農(nóng)林科技大學(xué), 2016.

REN Wenqi. Regulation of exogenous γ-aminobutyric acid on nitrogen metabolism and photosynthesis of melon seedlings under Ca(NO3)2 stress [D]. Northwest A & F University, 2016.

[49] 燕博文. 低氮脅迫下γ-氨基丁酸對玉米幼苗氮代謝調(diào)控機(jī)制研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2022.

YAN Bowen. Regulation mechanism of γ-aminobutyric acid on nitrogen metabolism in maize seedlings under low nitrogen stress[D]. Zhengzhou:Henan Agricultural University,2022.

[50] 谷海濤,賈琰,張博,孫斌,王卓茜,趙宏偉. 孕穗期干旱脅迫下外源γ-氨基丁酸對寒地粳稻籽粒氮素形成及產(chǎn)量的影響[J]. 華北農(nóng)學(xué)報(bào),2018,33(5):209-217.

GU Haitao,JIA Yan,ZHANG Bo,SUN Bin,WANG Zhuoqian,ZHAO Hongwei. Effects of exogenous γ-aminobutyric acid on grain nitrogen formation and yield in cold-region Japonica rice under drought stress at booting stage[J]. Acta Agriculturae Boreali-Sinica,2018,33(5):209-217.

[51] 田真,李敬蕊,王祥,吳曉蕾,宮彬彬,高洪波. 生菜硝酸還原酶基因的克隆及高氮水平下外源γ-氨基丁酸對其表達(dá)和葉片硝酸鹽含量的影響[J]. 西北植物學(xué)報(bào),2015,35(6):1098-1105.

TIAN Zhen,LI Jingrui,WANG Xiang,WU Xiaolei,GONG Binbin,GAO Hongbo. Cloning of nitrate reductase gene of lettuce and effect of exogenous γ-aminobutyric acid on gene expression and nitrate content in leaves under high nitrogen level[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(6):1098-1105.

[52] CAMARGO E L O,NASCIMENTO L C,SOLER M,SALAZAR M M,LEPIKSON-NETO J,MARQUES W L,ALVES A,TEIXEIRA P J P L,MIECZKOWSKI P,CARAZZOLLE M F,MARTINEZ Y,DECKMANN A C,RODRIGUES J C,GRIMA-PETTENATI J,PEREIRA G A G. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus[J]. BMC Plant Biology,2014,14:256.

[53] 李冰,張照貴,王佳佳,李斯深. 小麥GDH1基因克隆及其功能標(biāo)記開發(fā)[J]. 山東農(nóng)業(yè)科學(xué),2014,46(10):6-11.

LI Bing,ZHANG Zhaogui,WANG Jiajia,LI Sishen. Cloning and functional marker of GDH1 gene in wheat[J]. Shandong Agricultural Sciences,2014,46(10):6-11.

[54] LIANG C G,CHEN L P,WANG Y,LIU J,XU G L,LI T. High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice[J]. Rice Science,2011,18(3):210-216.

[55] 李友軍,熊瑛,陳明燦,駱炳山. 氮、磷、鉀對豫麥50旗葉蔗糖和籽粒淀粉積累的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(7):1196-1200.

LI Youjun,XIONG Ying,CHEN Mingcan,LUO Bingshan. Effects of nitrogen,phosphorus and potassium fertilization on sucrose accumulation in flag leaf and starch accumulation in kernel of weak gluten wheat[J]. Chinese Journal of Applied Ecology,2006,17(7):1196-1200.

[56] ALLAN W L,SHELP B J. Fluctuations of γ-aminobutyrate, γ-hydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light-dark cycle, leaf age, and N stress[J]. Canadian Journal of Botany,2006,84(8):1339-1346.

猜你喜歡
氨基丁酸葡萄
葡萄冬季還能掛樹上
氨基丁酸對畜禽應(yīng)激影響的研究進(jìn)展
葡萄熟了
當(dāng)葡萄成熟時(shí)
女報(bào)(2020年10期)2020-11-23 01:42:42
真空處理對發(fā)芽稻谷中γ-氨基丁酸含量的影響
葡萄
7.0 T MR γ-氨基丁酸化學(xué)交換飽和轉(zhuǎn)移成像的新技術(shù)研究
磁共振成像(2015年5期)2015-12-23 08:52:54
桑葉中γ-氨基丁酸含量及富集方法的研究進(jìn)展
產(chǎn)γ-氨基丁酸乳酸菌的篩選及誘變育種
富平县| 洛隆县| 财经| 长汀县| 滨州市| 济阳县| 石狮市| 道真| 仪陇县| 辽阳县| 德令哈市| 禄丰县| 祁东县| 聂拉木县| 德安县| 金寨县| 滨州市| 郧西县| 宁明县| 义马市| 江津市| 陕西省| 北流市| 石棉县| 黔江区| 治多县| 隆昌县| 石首市| 商南县| 安岳县| 城市| 文昌市| 交城县| 海南省| 格尔木市| 临桂县| 伽师县| 池州市| 东乌珠穆沁旗| 绥阳县| 易门县|