王寧 張艷霞 李棟梅 王振平
摘 ? ?要:【目的】揭示賀蘭山東麓不同子產(chǎn)區(qū)霞多麗葡萄果實(shí)發(fā)育過(guò)程中內(nèi)源激素含量差異,了解不同產(chǎn)區(qū)果實(shí)品質(zhì)形成的變化規(guī)律?!痉椒ā恳枣?zhèn)北堡產(chǎn)區(qū)(ZBB,礫石土,志輝源石酒莊)、玉泉營(yíng)產(chǎn)區(qū)(YQY,風(fēng)沙土,玉泉國(guó)際酒莊)、鴿子山產(chǎn)區(qū)(GZS,淡灰鈣土,西鴿酒莊)3個(gè)子產(chǎn)區(qū)霞多麗葡萄為試材,使用超液相色譜-質(zhì)譜聯(lián)用儀(ultra performance liquid chromatography tandem mass spectrometry,UPLC-MS)測(cè)定葡萄果實(shí)發(fā)育過(guò)程中果皮、果肉和種子中脫落酸(abscisic acid,ABA)、生長(zhǎng)素(indole acetic acid,IAA)、赤霉素(gibberellic acid,GA3)、異戊烯腺嘌呤(isopentene adenine,2-IP)和反式玉米素核苷(trans zeatin riboside,tZR)含量,使用高效液相色譜法(high performance liquid chromatography,HPLC)測(cè)定葡萄果實(shí)中葡萄糖、果糖、蘋果酸、酒石酸含量。采用實(shí)時(shí)熒光定量PCR法(quantitative real-time PCR,qRT-PCR)檢測(cè)脫落酸代謝途徑相關(guān)基因表達(dá)量?!窘Y(jié)果】在霞多麗葡萄果實(shí)生長(zhǎng)發(fā)育過(guò)程中,各組織ABA含量在E-L 35時(shí)期達(dá)到峰值,GZS最高;GA3總體呈“M”形變化趨勢(shì);IAA含量總體呈下降趨勢(shì),E-L 35之后種子中IAA在較低水平浮動(dòng);果皮中2-IP含量逐漸上升后在采收期下降。3個(gè)子產(chǎn)區(qū)霞多麗葡萄果實(shí)各組織內(nèi)源激素含量存在差異,在轉(zhuǎn)色期差異顯著。在不同風(fēng)土特征條件下,果實(shí)百粒質(zhì)量和可滴定酸含量均為ZBB最高;果實(shí)單糖(果糖、葡萄糖)含量和固酸比表現(xiàn)為YQY>GZS>ZBB;蘋果酸含量為ZBB>GZS>YQY;酒石酸含量則YQY最高,GZS最低。E-L 35時(shí)期VvNCED在GZS果實(shí)中表達(dá)量顯著高于其他兩個(gè)產(chǎn)區(qū),ZBB霞多麗葡萄果實(shí)中VvHYD2表達(dá)量顯著高于GZS和YQY?!窘Y(jié)論】YQY種植的霞多麗葡萄含糖量和固酸比高于其他產(chǎn)區(qū),表明霞多麗葡萄對(duì)YQY的風(fēng)土有更好的適應(yīng)性。ZBB礫石土含氮量高,有機(jī)質(zhì)豐富,霞多麗葡萄果實(shí)中IAA、tZR含量高于其他產(chǎn)區(qū),ABA含量低于其他產(chǎn)區(qū),果實(shí)含糖量低,酸度高,成熟度較低。
關(guān)鍵詞:霞多麗葡萄;產(chǎn)區(qū);內(nèi)源激素;果實(shí)品質(zhì)
中圖分類號(hào):S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1374-12
Effect of different terroir conditions on endogenous hormones and berry quality of Chardonnay at the East Helan Mountains
WANG Ning1, ZHANG Yanxia2, LI Dongmei1*, WANG Zhenping1*
(1School of Agricultural, Ningxia University, Yinchuan 750021, Ningxia, China; 2School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China)
Abstract: 【Objective】 This study aimed to investigate the changes of endogenous hormone content and fruit quality of Chardonnay grape cultivated in different terroir conditions, and to clarify the relationship between the endogenous hormones and fruit quality in order to provide a theoretical basis for Chardonnay flavor formation in each sub-production region of the Eastern foothills of the Helan Mountain in Ningxia. 【Methods】 We used Chardonnay (Vitis vinifera L.) in three sub-production areas of ZhenBeiBu (Gravelly soil, ZBB, Yuanshi vineyard), YuQuanYing (Aeolian soils, YQY, Chateau yuquan) and GeZiShan (Sierozem, GZS, Xige estate) as experimental materials. The berries were sampled at five periods, E-L 33 (Berries still hard and green), E-L 35 (Berries begin to colour and enlarge), E-L 37 (Berries not quite ripe) and E-L 38 (Berries harvest-ripe), and were frozen with liquid nitrogen. The berry skin, pulp and seed were ground to powder in liquid nitrogen and 10 mL of 80% methanol was added to 1 g of the powder. The solution was extracted overnight in the dark at 4 ℃ in a shaker. The mixture was then centrifuged at 12 000 × g and 4 ℃ for 5 min and the supernatant was collected. The extraction process was repeated three times and the collected supernatant was pooled and the methanol was evaporated off by nitrogen blowing apparatus. The remaining material was extracted by adding 1.5 times of petroleum ether, and the ether phase was discarded. The same volume of methyl for mate was added for extraction and the ester phase was collected. The ester phase obtained was blown dry by nitrogen blowing apparatus, dissolved with chromatographic methanol, passed through a 0.22 μm filter membrane and stored at -20 ℃. The endogenous hormone content of abscisic acid (ABA), indole acetic acid (IAA), gibberellin A3 (GA3), isopentene adenine (2-IP), and trans zeatin riboside (tZR) in fruit skin, flesh and seed during fruit development were determined by UPLC-MS (Ultra Performance Liquid Chromatography Tandem Mass Spectrometry). The contents of glucose, fructose, malic acid and tartaric acid in the fruits were determined by HPLC. The contents of individual sugar, organic acid were determined by HPLC according to a previously described method with minor modifications. The juice was contrifuged at 12 000 ×g for 10 min, The supernatant was extracted and filtered through a 0.22 ?m filter and used for subsequent analysis. The separating column were Hypersil GOLDTM Amino (250 mm×4.6 mm, 5 ?m) and C18 (250 mm×4.6 mm, 5 ?m) column. The acetonitrile-water mixture (75∶25) and methanol-KH2PO4 mixture (3∶97) were the mobile phase at flow rate of 0.5 mL·min-1 and 0.8 mL·min-1. The column temperature of 25 ℃ and injection volume of 10 μL were adopted. The analysis was carried out with three technical replicates and the corresponding sugar and acid content were calculated using a standard curve. The 100-grain weight, titratable acid and total soluble solids content of grape berries were determined. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels genes related to abscisic acid metabolism, total RNA was used as the template for reverse transcription according to the Prime ScriptTM RT Reagent Kit with gDNA Eraser Reverse Transcription Kit instruction. The VvActin was selected as the internal reference, and the primers of the VvNCED2, VvNCED4, VvAAO3 and VvHYD2 genes were designed with Primer 5. 【Results】The fruit quality indexes of the same variety cultivated in the three areas were significantly different. The glucose content of Chardonnay fruit at harvest was 84 mg·g-1 in YQY, 76 mg·g-1 in GZS, and 75 mg·g-1 in ZBB, and the fructose content was 105 mg·g-1 in YQY and 84 mg·g-1 in ZBB. The malic acid continued to decline in Chardonnay fruit development, with 9.6 mg·g-1 in the fruit of ZBB at maturity, 39% higher than that of GZS. The content of the tartaric acid did not change significantly at the later stage of fruit development, with the highest content in YQY and the lowest in GZS at maturity. During the growth of Chardonnay fruit, the ABA content in the fruit tissues of the three areas was highest during the E-L 35 period and gradually decreased as the fruit matured, and the ABA content in the fruit of the GZS was higher than that of the other areas; the GA3 content in the peel had a peak during the E-L 36 period, the GA3 content in the flesh showed an “M” change trend. The IAA content in the peel and flesh showed a decreasing trend, the IAA content in the peel in ZBB appellation was the highest and it was lower in the seeds after E-L 35, with insignificant differences among areas; the 2-IP content in the peel gradually increased in GZS and YQY and decreased at harvest; the tZR content in the flesh of Chardonnay showed an increasing trend, with the lowest tZR content in YQY. The endogenous hormone content of Chardonnay fruits in the three sub-appellations differed from each other, and the differences were significant at the E-L 35. The VvNCED expression during E-L 35 was significantly higher in the fruit of GZS than those of the other two production areas, and the VvHYD2 expression in the fruit of ZBB was significantly higher than those of GZS and YQY. 【Conclusion】 The sugar content and the solidity-acid ratio of Chardonnay grown in YQY aeolian soils were higher than that in other regions, indicating that Chardonnay was better adapted to YQYs terroir. The ZBB gravel soil has the highest nitrogen content and rich organic matter, and the fruit of Chardonnay grown there had higher IAA and tZR content, lower ABA content than the fruits in other producing areas, and had lower sugar content, higher acidity content and lower ripeness than the fruits in the other two areas.
Key words: Chardonnay grape; Production regions; Endogenous hormones; Fruit quality
葡萄(Vitis vinifera L.)是世界上種植廣泛的水果作物之一,種植區(qū)域?yàn)槌蠘O洲以外的所有大陸[1]。寧夏賀蘭山東麓釀酒葡萄種植條件得天獨(dú)厚,是生產(chǎn)優(yōu)質(zhì)葡萄酒的絕佳產(chǎn)區(qū)。但由于賀蘭山東麓沖積扇,不同地塊土質(zhì)形成差異較大,不同子產(chǎn)區(qū)之間存在風(fēng)土差異。風(fēng)土條件的差異對(duì)葡萄品質(zhì)的形成以及特色葡萄酒的生產(chǎn)發(fā)揮著重要作用[2-3],風(fēng)土主要包括了氣候[4]、土壤、地形、海拔[5-6]和生物多樣性等因素[7-8]。
氣候作為風(fēng)土系統(tǒng)的組成部分之一,為葡萄生長(zhǎng)發(fā)育提供必不可少的光、熱、水、氣條件。氣候在空間上(區(qū)域氣候)和時(shí)間上(年效應(yīng))均有變化,對(duì)釀酒葡萄品質(zhì)形成至關(guān)重要,尤其與葡萄果實(shí)酸度密切相關(guān)[9]。良好的氣候條件可以讓葡萄樹(shù)體生長(zhǎng)健壯,果實(shí)完全成熟,使得葡萄有較高的含糖量和協(xié)調(diào)的糖酸比,為生產(chǎn)優(yōu)質(zhì)葡萄酒提供保障。土壤為葡萄生命活動(dòng)提供了所必需的水和營(yíng)養(yǎng)元素,從而保證了葡萄生長(zhǎng)發(fā)育的正常進(jìn)行。不同的土壤理化特性直接影響著葡萄根系的生長(zhǎng)和養(yǎng)分吸收。雖然釀酒葡萄在世界各地廣泛種植,有著強(qiáng)的適應(yīng)性,但葡萄和葡萄酒的成分仍會(huì)因土壤類型的不同而影響最終的口感。前人研究表明土壤相對(duì)貧瘠,可以為葡萄根系深扎提供有利的條件,能夠汲取多種類的營(yíng)養(yǎng)成分滿足自身生長(zhǎng)需要,葡萄在脅迫環(huán)境下生長(zhǎng),風(fēng)土特色會(huì)有更好的表達(dá)[10]。研究表明,土壤中微量元素含量與葡萄可滴定酸含量呈正相關(guān),土壤氮素供應(yīng)水平可影響葡萄的代謝物[11],含氮過(guò)高會(huì)對(duì)葡萄的庫(kù)源關(guān)系和冠層微氣候產(chǎn)生負(fù)面影響,降低葡萄產(chǎn)量和品質(zhì)[12]。此外,土壤中水分有效性還會(huì)影響葡萄激素的平衡,進(jìn)而影響果實(shí)品質(zhì)。
長(zhǎng)期以來(lái),植物內(nèi)源激素被認(rèn)為是植物適應(yīng)外界環(huán)境的中樞調(diào)節(jié)因子,復(fù)雜的植物激素信號(hào)通路使植物能夠激活有效的生理反應(yīng)[13]。當(dāng)暴露于不利環(huán)境中時(shí)氣孔關(guān)閉是植物最早作出的反應(yīng),ABA是氣孔關(guān)閉的正向調(diào)節(jié)因子,而IAA和CTK是氣孔關(guān)閉的負(fù)向調(diào)節(jié)因子[14-15]。此外,ABA和CTK等內(nèi)源激素通過(guò)整合環(huán)境刺激和內(nèi)源信號(hào),進(jìn)而調(diào)控植物對(duì)非生物脅迫的防御反應(yīng)[16-17]。與此同時(shí),內(nèi)源激素作為一種必不可少的生長(zhǎng)調(diào)節(jié)劑,引導(dǎo)植物適應(yīng)外界環(huán)境,增強(qiáng)植物對(duì)環(huán)境的耐受性[18]。目前國(guó)內(nèi)外有關(guān)葡萄的風(fēng)土研究眾多,然而,這些研究大多側(cè)重于特定因素對(duì)果實(shí)某單一品質(zhì)的影響,而一般不考慮風(fēng)土綜合的影響,通過(guò)內(nèi)源激素說(shuō)明不同風(fēng)土條件影響葡萄果實(shí)品質(zhì)還鮮有報(bào)道。
筆者在本研究中以霞多麗葡萄為試驗(yàn)材料,探究霞多麗葡萄對(duì)寧夏賀蘭山東麓3個(gè)重要葡萄酒產(chǎn)區(qū)不同風(fēng)土的適應(yīng)性,分別從果實(shí)品質(zhì)和內(nèi)源激素層面進(jìn)行分析比較,以期為風(fēng)土影響霞多麗葡萄不同品質(zhì)形成提供理論基礎(chǔ)和實(shí)踐依據(jù)。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)地分別位于鎮(zhèn)北堡產(chǎn)區(qū)(ZBB,志輝源石酒莊),玉泉營(yíng)產(chǎn)區(qū)(YQY,玉泉國(guó)際酒莊)和鴿子山產(chǎn)區(qū)(GZS,西鴿酒莊)。葡萄園均為南北行向,常規(guī)管理。各試驗(yàn)地氣候數(shù)據(jù)(從2021年5月25日至9月1日收集),均由試驗(yàn)地小氣象站獲得,如表1所示。
1.2 試驗(yàn)材料
霞多麗葡萄果實(shí)按照E-L系統(tǒng)[19]采自5個(gè)物候期,分別是E-L 33(綠果期)、E-L 35(果實(shí)開(kāi)始轉(zhuǎn)色)、E-L 36(果實(shí)轉(zhuǎn)色完成)、E-L 37(果實(shí)未完全成熟)和E-L 38(果實(shí)成熟期)。采樣兼顧陰陽(yáng)面,果穗上中下部位隨機(jī)剪取霞多麗葡萄果實(shí)300粒。采后立即用液氮速凍,裝入泡沫冰盒運(yùn)回實(shí)驗(yàn)室,保存在-80 ℃冰箱。
1.3 實(shí)驗(yàn)方法
1.3.1 ? ?土壤基本指標(biāo)的測(cè)定 ? ?在轉(zhuǎn)色期對(duì)各葡萄園每個(gè)采樣區(qū),以樹(shù)干為中心,采集距離主干30 cm的行內(nèi)土壤,土層分別為0~30、>30~60、>60~90 cm。將土運(yùn)回實(shí)驗(yàn)室除去石塊和植物殘根等雜物,風(fēng)干后過(guò)2 mm篩子,用于土壤理化性質(zhì)、肥力指標(biāo)的測(cè)定。各土壤類型及其3個(gè)土層深度各有3個(gè)重復(fù)。采用雷磁pH計(jì)測(cè)定pH;采用重鉻酸鉀法測(cè)定土壤有機(jī)質(zhì)含量;采用自動(dòng)凱氏定氮法測(cè)定土壤全氮含量;采用HCLO4-H2SO4消煮鉬銻抗比色法測(cè)定土壤全磷含量,采用醋酸銨浸提-火焰光度法測(cè)定土壤速效鉀含量[20]。
1.3.2 ? ?果實(shí)基本理化指標(biāo)的測(cè)定 ? ?使用電子天平測(cè)定葡萄果實(shí)的百粒質(zhì)量;將葡萄榨汁后取上清液,通過(guò)酸堿中和滴定法測(cè)定可滴定酸(TA)含量;可溶性固形物(TSS)含量采用手持折光儀測(cè)定。
1.3.3 ? ?果實(shí)不同組織內(nèi)源激素的測(cè)定 ? ?采用超高效液相色譜串聯(lián)質(zhì)譜法[21]。提?。河描囎訉⑾级帑惼咸褲{果的果皮、果肉和種子分離,各組織在液氮中研磨。取1 g左右樣品粉末用5 mL預(yù)冷的80%甲醇4 ℃提取12 h。4 ℃,8000 r·min-1離心15 min,分離上清液,4 mL 80%甲醇復(fù)提2次,每次2 h。合并上清液,氮吹至2 mL,用1.5倍體積石油醚萃取3次,棄醚相。水相用1倍體積甲酸甲酯萃取3次,收集酯相,氮吹至干,用1 mL色譜甲醇進(jìn)行溶解,-20 ℃條件下保存?zhèn)溆?,樣品進(jìn)樣前用0.22 μm濾膜過(guò)濾。測(cè)定:采用高效液相色譜-質(zhì)譜聯(lián)用儀(ACQUITY UPLC I class+QDa,美國(guó)Waters)對(duì)葡萄果肉、果皮、種子中的ABA、IAA、GA3、2-IP、tZR進(jìn)行測(cè)定。采用島津C18色譜柱(150×4.6 mm,5 μm)。液質(zhì)條件參照龔明霞等[22]的報(bào)道,色譜條件:以100%甲醇(A)和含0.1%甲酸水溶液(B)為流動(dòng)相,柱溫:40 ℃。梯度洗脫程序:0~2 min,35% A;2~6 min,35%~45% A;6~9 min,45%~50% A;9~15 min,50%~60% A;15~18 min,60%~100% A;18~20 min,100%~35% A;20~22 min,35% A,流速:0.3 mL·min-1,上樣量:5 μL。質(zhì)譜條件:采用電噴霧離子源負(fù)離子模式(ESI-)檢測(cè)ABA和GA3含量,采用正離子模式(ESI+)檢測(cè)IAA、tZR和2-IP含量。離子化電壓(+5500/-4500 V);溫度550 ℃;氣簾氣壓力30 psi(約200 kPa)。
1.3.4 ? ?果實(shí)單糖和有機(jī)酸含量的測(cè)定 ? ?采用高效液相色譜法[23]。在液氮條件下將霞多麗葡萄果實(shí)磨成粉末,稱取0.2 g放入離心管中,然后加入1.8 mL ddH2O稀釋。將稀釋后的果汁過(guò)0.22 μm的針頭式過(guò)濾器,加入進(jìn)樣瓶,利用UltiMate 3000型高效液相色譜儀測(cè)定。糖測(cè)定色譜條件為:示差檢測(cè)器,Hypersil GOLDTM Amino色譜柱(250 mm×4.6 mm,5 ?m),流動(dòng)相為乙腈∶水(體積比75∶25),流速:0.5 mL·min-1,柱溫:25 ℃,進(jìn)樣量:10 μL。有機(jī)酸測(cè)定色譜條件為:紫外檢測(cè)器,C18色譜柱(250 mm×4.6 mm,5 ?m),流動(dòng)相:甲醇、0.01 mol·L-1 KH2PO4體積比3∶97,pH=2.5,流速:0.8 mL·min-1,柱溫:35 ℃,檢測(cè)波長(zhǎng)為210 nm,進(jìn)樣量:10 μL。
1.3.5 ? ?總RNA的提取和實(shí)時(shí)熒光定量PCR ? ?總RNA提取采用RNAprep Pure多糖多酚植物總RNA提取試劑盒;以總RNA為模板,利用參照PrimeScriptTM RT reagent Kit with gDNA Eraser反轉(zhuǎn)錄試劑盒說(shuō)明書進(jìn)行反轉(zhuǎn)錄;選取VvActin為內(nèi)參基因,VvNCED4、VvAAO3、VvNCED2、VvHYD2基因的引物用Primer 5.0設(shè)計(jì),引物由生工生物工程(上海)公司合成(表2)。qRT-PCR反應(yīng)體系為20 μL:cDNA(200 ng·μL-1)1 μL,上游引物和下游引物各0.4 μL,2×Perfecstar 10 μL,ddH2O 8.2 μL;qRT-PCR擴(kuò)增程序?yàn)?4 ℃ 2 min、94 ℃ 10 s、60 ℃ 30 s,第2步至第3步循環(huán)40次。每個(gè)模板設(shè)3次生物學(xué)重復(fù),取其平均值,目的基因的相對(duì)表達(dá)量用2-ΔΔCt計(jì)算[24]。
1.4 數(shù)據(jù)處理
本試驗(yàn)所得數(shù)據(jù)使用SPSS 26.0進(jìn)行方差顯著性分析,顯著水平p<0.05,采用Excel 2010和RStudio對(duì)數(shù)據(jù)進(jìn)行整理和作圖,所有試驗(yàn)數(shù)據(jù)均為3次重復(fù)。
2 結(jié)果與分析
2.1 不同產(chǎn)區(qū)土壤理化指標(biāo)分析
如表3所示,不同產(chǎn)區(qū)因土壤類型不同,土壤指標(biāo)差異較大。各產(chǎn)區(qū)土壤pH值均在8.2以上,屬于弱堿性土壤,3種土壤的pH值均隨著土層深度加深逐漸升高,不同土壤間并沒(méi)有顯著性差異。不同土壤類型中全氮的變化為:隨著土層的深度增加,>60~90 cm處GZS淡灰鈣土的全氮含量比0~30 cm土層增加了64.6%,而ZBB礫石土、YQY風(fēng)沙土全氮含量隨著土層深度的增加逐漸降低。土壤中各土層的全磷含量表現(xiàn)為:ZBB礫石土>GZS淡灰鈣土>YQY風(fēng)沙土;土壤速效鉀含量:GZS淡灰鈣土>ZBB礫石土>YQY風(fēng)沙土。對(duì)于土壤中的有機(jī)質(zhì)變化,各土層呈現(xiàn)相同趨勢(shì):ZBB礫石土>GZS淡灰鈣土>YQY風(fēng)沙土。
2.2 不同產(chǎn)區(qū)霞多麗葡萄果實(shí)不同組織內(nèi)源激素的比較
如圖1所示,在霞多麗葡萄果實(shí)發(fā)育過(guò)程中,不同組織中ABA含量呈現(xiàn)先升高后降低的趨勢(shì),且均在轉(zhuǎn)色期達(dá)到峰值。E-L 35時(shí)期各產(chǎn)區(qū)霞多麗葡萄ABA含量差異最大:GZS>YQY>ZBB。GZS果皮中ABA含量是YQY的2.3倍和ZBB的15.0倍;GZS果肉中ABA含量分別是YQY和ZBB的4.4倍和39.9倍;GZS種子中ABA含量是YQY的3.7倍和ZBB的18.8倍。由圖1得出果皮中GA3含量在E-L 36時(shí)期有一個(gè)明顯峰值,ZBB霞多麗葡萄果皮GA3含量最高為88 ng·g-1,較GZS和YQY分別高出13%和37.5%。果肉中GA3的含量變化有2個(gè)峰值,第1個(gè)峰值出現(xiàn)在E-L 35時(shí)期(GZS>YQY>ZBB),在E-L 37時(shí)期,霞多麗葡萄在所有產(chǎn)區(qū)中都出現(xiàn)第2個(gè)峰值,其含量為YQY>GZS>ZBB。種子中GA3含量整體呈下降趨勢(shì),并且其含量水平高于果皮和果肉。霞多麗葡萄果皮中IAA含量在整個(gè)果實(shí)發(fā)育期呈逐漸下降趨勢(shì),各產(chǎn)區(qū)之間IAA含量存在差異:ZBB>YQY>GZS。果肉中各產(chǎn)區(qū)IAA含量均在E-L 35時(shí)期開(kāi)始下降;種子中IAA含量從E-L 33時(shí)期開(kāi)始急劇下降;E-L 35之后沒(méi)有較大浮動(dòng);在整個(gè)發(fā)育期中,種子中IAA在E-L 33時(shí)期含量最高。
如圖2所示,霞多麗葡萄果皮中2-IP含量在E-L 37時(shí)期均達(dá)到峰值(ZBB除外)。種子中YQY在E-L 37時(shí)期達(dá)到峰值(16 ng·g-1),ZBB和GZS在E-L 38時(shí)期達(dá)到峰值,分別為10 ng·g-1和18 ng·g-1。在霞多麗葡萄果實(shí)發(fā)育過(guò)程中,不同組織tZR積累模式存在差異,E-L 35時(shí)期,果皮中tZR含量在ZBB最高為110 ng·g-1。tZR含量在果肉中隨果實(shí)發(fā)育期逐漸上升,YQY產(chǎn)區(qū)在各時(shí)期均低于其他2個(gè)產(chǎn)區(qū)。種子中各產(chǎn)區(qū)tZR含量呈下降趨勢(shì),在成熟期趨于平穩(wěn)。
2.3 不同產(chǎn)區(qū)霞多麗葡萄果實(shí)品質(zhì)比較
由表4可知,采收期(E-L 38)ZBB的霞多麗葡萄果實(shí)百粒質(zhì)量為158.2 g,分別高于GZS 13.5%和YQY 32.3%;可溶性固形物含量無(wú)顯著差異;可滴定酸含量:ZBB>GZS>YQY;采收期3個(gè)產(chǎn)區(qū)霞多麗葡萄果實(shí)固酸比之間有顯著差異,YQY果實(shí)成熟度最高,GZS次之,ZBB最低。
由圖3可知,在霞多麗葡萄果實(shí)發(fā)育過(guò)程中,單糖(葡萄糖、果糖)含量變化趨勢(shì)相同,總體呈上升趨勢(shì)。采收期,YQY霞多麗葡萄果實(shí)葡萄糖含量分別高出GZS 10.5%和ZBB 12%。E-L 38時(shí)期果糖含量差異顯著,YQY果糖含量(ρ)最高,為105.7 g·L-1,分別高出GZS 14%、ZBB 26%。霞多麗葡萄果實(shí)蘋果酸呈下降趨勢(shì),采收期蘋果酸含量:ZBB>GZS>YQY。酒石酸與蘋果酸表現(xiàn)不同,逐步下降后在成熟后期基本不變,采收期酒石酸含量在YQY果實(shí)中最高為8.4 g·L-1,在GZS霞多麗葡萄果實(shí)中最低,為6.8 g·L-1。
2.4 霞多麗葡萄果實(shí)品質(zhì)和內(nèi)源激素的相關(guān)性分析
為了更進(jìn)一步說(shuō)明果實(shí)品質(zhì)和內(nèi)源激素的關(guān)系,進(jìn)行了相關(guān)性分析,由圖4可知,可溶性固形物和葡萄糖、果糖含量呈極顯著正相關(guān)(p<0.01),可溶性固形物含量與可滴定酸、蘋果酸、酒石酸含量呈顯著負(fù)相關(guān),百粒質(zhì)量與單糖含量呈顯著正相關(guān)(p<0.05),果皮中2-IP含量與葡萄糖、果糖含量呈顯著正相關(guān)(p<0.05),IAA、tZR含量與單糖含量呈顯著負(fù)相關(guān)(p<0.05)。果肉中2-IP含量與ABA含量呈顯著正相關(guān)(p<0.05)。
2.5 不同產(chǎn)區(qū)對(duì)脫落酸代謝相關(guān)基因表達(dá)的影響
如圖5所示,通過(guò)對(duì)3個(gè)產(chǎn)區(qū)霞多麗葡萄果實(shí)不同組織的內(nèi)源激素含量進(jìn)行分析,發(fā)現(xiàn)在果皮、果肉和種子中,E-L 35時(shí)期3個(gè)產(chǎn)區(qū)霞多麗葡萄果實(shí)中ABA含量較其他激素差異最大。于是對(duì)各產(chǎn)區(qū)霞多麗葡萄ABA生物合成和分解代謝相關(guān)基因進(jìn)行定量,9-順式環(huán)氧類胡蘿卜素雙加氧酶(NCED)是ABA生物合成的關(guān)鍵限速酶,本試驗(yàn)中研究了2個(gè)編碼NCED的基因(VvNCED2和VvNCED4),VvNCED在霞多麗葡萄果實(shí)中表達(dá)量先上升后下降,在E-L 35時(shí)期高表達(dá),GZS果實(shí)中表達(dá)量顯著高于其他2個(gè)產(chǎn)區(qū),VvNCED2表達(dá)量分別是YQY的3.73倍和ZBB的8.16倍,VvNCED4是YQY的36.19倍、ZBB的8.95倍。ABA生物合成的最后一步是AAO3將脫落醛氧化生成ABA,VvAAO3表達(dá)量在果實(shí)發(fā)育過(guò)程中逐漸下降。E-L 33時(shí)期,YQY果實(shí)中VvAAO3表達(dá)量最高,是GZS的2.69倍、ZBB的5.87倍。然而其他時(shí)期,3個(gè)產(chǎn)區(qū)之間差異不大。VvHYD2是負(fù)責(zé)ABA羥基化分解代謝的基因,隨著果實(shí)發(fā)育呈先上升后下降的變化趨勢(shì)。E-L 36時(shí)期之前VvHYD2表達(dá)量在ZBB霞多麗葡萄果實(shí)中的表達(dá)量顯著高于GZS和YQY。
3 討 論
釀酒葡萄栽培歷史悠久,具有不同性狀(大小、形狀、顏色、味道等)的葡萄品種被選擇性地種植,而風(fēng)土與這些性狀息息相關(guān)[25]。葡萄漿果的酸度不僅影響葡萄酒的風(fēng)味,而且影響葡萄酒的口感。本研究中,果實(shí)可滴定酸含量ZBB最高,可能與成熟季節(jié)不同產(chǎn)區(qū)的環(huán)境因子有關(guān):首先ZBB植被覆蓋率高,氣候涼爽,不同微氣候會(huì)使葡萄果實(shí)產(chǎn)生不同的含酸量[7];其次ZBB礫石土的特點(diǎn)是礦質(zhì)離子豐富,但是土質(zhì)黏重、通透性較差,造成葡萄成熟度低,酸度較之其他產(chǎn)區(qū)要高。固酸比是體現(xiàn)產(chǎn)區(qū)特色的重要評(píng)價(jià)指標(biāo),常用于評(píng)價(jià)果實(shí)的成熟程度和風(fēng)味特色,在一定范圍內(nèi),固酸比越高,越能釀造出具有特色的葡萄酒[26]。ZBB與其他產(chǎn)區(qū)相比固酸比最低,且差異顯著,這與陳仁偉等[26]的研究結(jié)果一致,他們認(rèn)為礫石土葡萄園可以通過(guò)適當(dāng)延后采收來(lái)獲得更有特色的高質(zhì)量葡萄酒。與此同時(shí),本研究中風(fēng)沙土種植的葡萄成熟度較高,果實(shí)糖分含量高;灰鈣土種植的葡萄成熟度適中,品質(zhì)形成較為適宜,與王銳[27]的研究結(jié)果一致。這兩種土壤雖表層貧瘠,但透氣性較好,利于葡萄扎根,種植的葡萄高糖適酸,為釀造優(yōu)質(zhì)葡萄酒提供了保障。
本研究結(jié)果表明,ZBB葡萄果皮中IAA含量最高,這可能與其土壤有機(jī)質(zhì)含量豐富、氮含量高有關(guān)。前人研究發(fā)現(xiàn)土壤施氮量的增加對(duì)植物各器官中IAA含量有顯著影響,并能促進(jìn)松木幼苗的生長(zhǎng)[28]。細(xì)胞分裂素主要在果實(shí)坐果期起著重要作用,一般以活性較高的tZR、2-IP為主。ZBB因土壤高含氮量和豐富的有機(jī)質(zhì)導(dǎo)致霞多麗葡萄果實(shí)中tZR含量高于其他產(chǎn)區(qū),這與前人[29]研究一致,施用氮肥通過(guò)上調(diào)細(xì)胞分裂素合成關(guān)鍵酶基因的表達(dá),會(huì)促進(jìn)反式玉米素型細(xì)胞分裂素的合成。本試驗(yàn)霞多麗葡萄果皮和果肉中,2-IP含量在發(fā)育過(guò)程中增加,與B?ttcher等[30]的研究結(jié)果一致,這表明2-IP可能參與了葡萄成熟過(guò)程。此外,還有研究報(bào)道細(xì)胞分裂素可誘導(dǎo)與細(xì)胞擴(kuò)張、細(xì)胞壁相關(guān)的基因表達(dá),引起細(xì)胞壁特性變化[31]。因此,在一定程度上,轉(zhuǎn)色結(jié)束后2-IP含量的升高影響漿果細(xì)胞的擴(kuò)張。GZS霞多麗葡萄ABA含量高于其他產(chǎn)區(qū),2-IP含量也高于其他產(chǎn)區(qū),并且在果實(shí)果肉中2-IP含量與ABA含量呈顯著正相關(guān)(p<0.05),這兩種激素之間似乎存在某種聯(lián)系,有待進(jìn)一步研究。
脫落酸(ABA)在調(diào)節(jié)植物發(fā)育成熟和對(duì)環(huán)境刺激(如水分虧缺、鹽堿脅迫等)的適應(yīng)中起著至關(guān)重要的作用[32]。本試驗(yàn)中,不同產(chǎn)區(qū)霞多麗葡萄果實(shí)內(nèi)源激素ABA差異最大,表現(xiàn)為GZS>YQY>ZBB。而GZS與ZBB果實(shí)ABA含量差異的根本原因可能是葡萄園土壤含水量的不同。有研究發(fā)現(xiàn),適度水分脅迫誘導(dǎo)了內(nèi)源ABA含量的增加,有利于葡萄品質(zhì)的提升[33]。本研究中,GZS霞多麗葡萄單糖含量高,酒石酸含量低,說(shuō)明GZS葡萄處于適度水分脅迫狀態(tài)。此外,前人研究認(rèn)為氣候和土壤通過(guò)根系水分吸收和葉片水分流失相互作用控制漿果品質(zhì)[34],優(yōu)良的果實(shí)品質(zhì)是對(duì)葡萄植株適度水分條件的反映[35-36]。9-順式環(huán)氧類胡蘿卜素雙加氧酶(NCED)催化9-順式新黃質(zhì)合成黃氧素,被認(rèn)為是ABA生物合成的關(guān)鍵,可被干旱、鹽漬等脅迫迅速誘導(dǎo),并在內(nèi)源ABA積累中發(fā)揮主要作用[37]。本研究表明,GZS霞多麗葡萄果實(shí)合成NCED酶的基因表達(dá)量顯著高于ZBB,同時(shí)GZS霞多麗葡萄果實(shí)各組織內(nèi)源ABA含量也顯著高于ZBB,二者結(jié)果相互印證。Luchi等[38]研究發(fā)現(xiàn)VvNCED的表達(dá)控制內(nèi)源ABA水平,且受干旱脅迫的影響。對(duì)于ZBB霞多麗葡萄果實(shí)ABA含量顯著低于其他兩個(gè)產(chǎn)區(qū)還有一種解釋,即果實(shí)中ABA含量由生物合成和分解代謝共同決定。ZBB霞多麗葡萄果實(shí)中分解ABA的基因VvHYD2的表達(dá)量顯著高于GZS和YQY,也有可能是其ABA含量過(guò)低的原因。然而ZBB霞多麗葡萄果實(shí)中合成ABA基因的表達(dá)量低于其他產(chǎn)區(qū),同時(shí),分解ABA的基因表達(dá)量顯著高于其他產(chǎn)區(qū),具體原因有待進(jìn)一步探究。
4 結(jié) 論
本研究以霞多麗葡萄為試驗(yàn)材料,通過(guò)對(duì)寧夏不同子產(chǎn)區(qū)果實(shí)內(nèi)源激素和果實(shí)品質(zhì)的測(cè)定,發(fā)現(xiàn)YQY葡萄含糖量、固酸比高于其他兩個(gè)產(chǎn)區(qū),表明霞多麗葡萄對(duì)于YQY的風(fēng)土有更好的適應(yīng)性;ZBB土壤含氮量高、有機(jī)質(zhì)豐富,果實(shí)生長(zhǎng)類激素,如IAA、tZR含量高于其他產(chǎn)區(qū),果實(shí)成熟時(shí)的ABA含量低于其他產(chǎn)區(qū),果實(shí)成熟度較低,可適當(dāng)延后采收。
參考文獻(xiàn) References:
[1] MART?NEZ-BRACERO M,ALC?ZAR P,VELASCO-JIM?NEZ M J,CALDER?N-EZQUERRO C,GAL?N C. Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area,Cordoba,southern Spain[J]. The Journal of Agricultural Science,2018,156(6):821-831.
[2] 李玉梅,韋霞霞,李彥彪,賀雅娟,馬維峰,馬宗桓,毛娟,陳佰鴻. ‘美樂(lè)和‘蛇龍珠葡萄在甘肅不同產(chǎn)區(qū)的品質(zhì)評(píng)價(jià)[J]. 經(jīng)濟(jì)林研究,2020,38(4):152-160.
LI Yumei,WEI Xiaxia,LI Yanbiao,HE Yajuan,MA Weifeng,MA Zonghuan,MAO Juan,CHEN Baihong. Quality analysis of ‘Merlot and ‘Cabernet Gernischt grapes in different producing areas of Gansu Province[J]. Non-Wood Forest Research,2020,38(4):152-160.
[3] 周鵬輝,李澤福,李進(jìn). 3個(gè)白色釀酒葡萄品種在蓬萊不同產(chǎn)區(qū)的栽培特性及果實(shí)品質(zhì)對(duì)比研究[J]. 山西果樹(shù),2016(2):3-6.
ZHOU Penghui,LI Zefu,LI Jin. Comparative study on cultivation characteristics and fruit quality of three white wine grape varieties in different producing areas of Penglai[J]. Shanxi Fruit,2016(2):3-6.
[4] 喬振羽. 不同坡向微氣候?qū)︶劸破咸严级帑惿L(zhǎng)發(fā)育及果實(shí)品質(zhì)的影響[D]. 銀川:寧夏大學(xué),2022.
QIAO Zhenyu. Effects of microclimates of different slope aspects on the growth,development and fruit quaility of wine grape Chardonnay[D]. Yinchuan:Ningxia University,2022.
[5] 毛如志,張國(guó)濤,杜飛,鄧維萍,邵建輝,趙新節(jié),何霞紅,朱書生. 大香格里拉河谷區(qū)海拔梯度變化與玫瑰蜜葡萄品質(zhì)形成的關(guān)系[J]. 果樹(shù)學(xué)報(bào),2016,33(3):283-297.
MAO Ruzhi,ZHANG Guotao,DU Fei,DENG Weiping,SHAO Jianhui,ZHAO Xinjie,HE Xiahong,ZHU Shusheng. ?Study on the relationship between the berry quality composition and altitude gradient for Rose Honey in the Widely Shangri-La Valley[J]. Journal of Fruit Science,2016,33(3):283-297.
[6] 趙亞蒙,尹春曉,梁攀,樂(lè)小鳳,張振文. 不同海拔對(duì)刺葡萄果實(shí)風(fēng)味物質(zhì)的影響[J]. 果樹(shù)學(xué)報(bào),2018,35(10):1197-1207.
ZHAO Yameng,YIN Chunxiao,LIANG Pan,YUE Xiaofeng,ZHANG Zhenwen. Effects of altitude on berry flavor compounds in spine grapes[J]. Journal of Fruit Science,2018,35(10):1197-1207.
[7] DOBREI A,DOBREI A G,NISTOR E,PO?TA G,M?L?ESCU M,BALINT M. Characterization of grape and wine quality influenced by terroir in different ecosystems from romania cultivated with feteasc? neagr?[J]. Scientific Papers-Series B-Horticulture,2018,62:247-253.
[8] VAN LEEUWEN C,ROBY J P,PERNET D,BOIS B. Methodology of soil-based zoning for viticultural terroirs[J]. Bulletin de l'OIV,2010,83(947):13.
[9] VAN LEEUWEN C,F(xiàn)RIANT P,CHON? X,TREGOAT O,KOUNDOURAS S,DUBOURDIEU D. Influence of climate,soil,and cultivar on terroir[J]. American Journal of Enology and Viticulture,2004,55(3):207-217.
[10] MACKENZIE D E,CHRISTY A G. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards[J]. Water Science and Technology,2005,51(1):27-37.
[11] CHENG X H,LIANG Y Y,ZHANG A,WANG P P,HE S,ZHANG K K,WANG J X,F(xiàn)ANG Y L,SUN X Y. Using foliar nitrogen application during veraison to improve the flavor components of grape and wine[J]. Journal of the Science of Food and Agriculture,2021,101(4):1288-1300.
[12] WHITE R E,BALACHANDRA L,EDIS R,CHEN D L. The soil component of terroir[J]. Journal International Des Sciences De La Vigne et DuVin,2007:41(1):9-18.
[13] BERENS M L,BERRY H M,MINE A,ARGUESO C T,TSUDA K. Evolution of hormone signaling networks in plant defense[J]. Annual Review of Phytopathology,2017,55:401-425.
[14] CRIZEL R L,PERIN E C,SIEBENEICHLER T J,BOROWSKI J M,MESSIAS R S,ROMBALDI C V,GALLI V. Abscisic acid and stress induced by salt:Effect on the phenylpropanoid,L-ascorbic acid and abscisic acid metabolism of strawberry fruits[J]. Plant Physiology and Biochemistry,2020,152:211-220.
[15] KARIMI R,GHABOOLI M,RAHIMI J,AMERIAN M. Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress[J]. Journal of Plant Nutrition,2020,43(14):2226-2242.
[16] LI N,EURING D,CHA J Y,LIN Z,LU M Z,HUANG L J,KIM W Y. Plant hormone-mediated regulation of heat tolerance in response to global climate change[J]. Frontiers in Plant Science,2021,11:627969.
[17] ILYAS M,NISAR M,KHAN N,HAZRAT A,KHAN A H,HAYAT K,F(xiàn)AHAD S,KHAN A,ULLAH A. Drought tolerance strategies in plants:A mechanistic approach[J]. Journal of Plant Growth Regulation,2021,40(3):926-944.
[18] ARNAO M B,HERN?NDEZ-RUIZ J,CANO A,REITER R J. Melatonin and carbohydrate metabolism in plant cells[J]. Plants,2021,10(9):1917.
[19] COOMBE B G. Growth stages of the grapevine:Adoption of a system for identifying grapevine growth stages[J]. Australian Journal of Grape and Wine Research,1995,1(2):104-110.
[20] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000:12.
LU Rukun. Methods of soil agrochemical analysis[M]. Beijing:China Agriculture Scientech Press,2000:12.
[21] 高江曼,孟瑩,劉慶,王童孟,劉美迎,李汶冰,惠竹梅,張振文. 赤霞珠葡萄生長(zhǎng)發(fā)育過(guò)程中內(nèi)源激素的變化及其與果實(shí)成熟的關(guān)系[J]. 食品科學(xué),2017,38(7):167-175.
GAO Jiangman,MENG Ying,LIU Qing,WANG Tongmeng,LIU Meiying,LI Wenbing,XI Zhumei,ZHANG Zhenwen. Changes in endogenous hormones during the development of Vitis vinifera L. cv. Cabernet Sauvignon and their relationship with berry ripening[J]. Food Science,2017,38(7):167-175.
[22] 龔明霞,王日升,何龍飛,王萌,趙虎,吳星,何志. 超高效液相色譜-三重四級(jí)桿串聯(lián)質(zhì)譜法同時(shí)測(cè)定植物組織中多種激素[J]. 分析科學(xué)學(xué)報(bào),2016,32(6):789-794.
GONG Mingxia,WANG Risheng,HE Longfei,WANG Meng,ZHAO Hu,WU Xing,HE Zhi. Simultaneous determination of multiple phytohormones in plant tissues by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. Journal of Analytical Science,2016,32(6):789-794.
[23] 李棟梅,王振平,李相怡,孫思捷,劉博洋,李嘉佳,王磊,王世平. 根域限制對(duì)玫瑰香葡萄果實(shí)糖酸及酚類物質(zhì)和內(nèi)源激素的影響[J]. 果樹(shù)學(xué)報(bào),2022,39(3):376-387.
LI Dongmei,WANG Zhenping,LI Xiangyi,SUN Sijie,LIU Boyang,LI Jiajia,WANG Lei,WANG Shiping. Effect of root restriction on the quality and endogenic hormone of grape berry(Vitis vinifera L. ‘Muscat Hamburg)[J]. Journal of Fruit Science,2022,39(3):376-387.
[24] LI D M,PANG Y J,LI H,GUO D H,WANG R Q,MA C,XU W P,WANG L,WANG S P. Comparative analysis of the gene expression profile under two cultivation methods reveals the critical role of ABA in grape quality promotion[J]. Scientia Horticulturae,2021,281:109924.
[25] BARTHA I,JURJ B,BUTA M,NEGRU?IER C,PAULETTE L. Analysis of terroir components in the vineyard of Silvania[J]. ProEnvironment,2021,14(45):7-19.
[26] 陳仁偉,張曉煜,楊豫,王靜,張亞紅,胡宏遠(yuǎn),丁永平. 賀蘭山東麓礫石葡萄園赤霞珠最佳采收期的確定[J]. 中國(guó)農(nóng)業(yè)氣象,2020,41(9):564-574.
CHEN Renwei,ZHANG Xiaoyu,YANG Yu,WANG Jing,ZHANG Yahong,HU Hongyuan,DING Yongping. Determination of the optimal harvest period for the grape variety Cabernet Sauvignon in gravel vineyard at the eastern foothills of Helan Mountain[J]. Chinese Journal of Agrometeorology,2020,41(9):564-574.
[27] 王銳. 賀蘭山東麓土壤特征及其與釀酒葡萄生長(zhǎng)品質(zhì)關(guān)系研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
WANG Rui. Relationship between soil quality with grape growth and composition at the eastern foot of Helan Mountain wine production regions[D]. Yangling:Northwest A&F University,2016.
[28] PENG Y H,CHEN K L,WANG G L,WEI F R,MA Y P. Nitrogen addition regulates allometric growth by changing the distribution patterns of endogenous hormones in different organs of Pinus tabuliformis[J]. Research Square,2021. DOI:10.21203/rs.3.rs-339221/v1.
[29] KAMADA-NOBUSADA T,MAKITA N,KOJIMA M,SAKAKIBARA H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice:The role of glutamine metabolism as an additional signal[J]. Plant and Cell Physiology,2013,54(11):1881-1893.
[30] B?TTCHER C,BURBIDGE C A,BOSS P K,DAVIES C. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine[J]. BMC Plant Biology,2015,15:223.
[31] BRENNER W G,RAMIREDDY E,HEYL A,SCHM?LLING T. Gene regulation by cytokinin in Arabidopsis[J]. Frontiers in Plant Science,2012,3:8.
[32] SUN L,ZHANG M,REN J,QI J X,ZHANG G J,LENG P. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest[J]. BMC Plant Biology,2010,10:257.
[33] 陳祖民. 水分脅迫對(duì)‘美樂(lè)葡萄不同組織內(nèi)源激素和多胺的影響[D]. 銀川:寧夏大學(xué),2021.
CHEN Zumin. Effects of water stress on endogenous hormones and polyamines in different tissues of ‘Merlot grape[D]. Yinchuan:Ningxia University,2021.
[34] TRAMONTINI S,VAN LEEUWEN C,DOMEC J C,DESTRAC-IRVINE A,BASTEAU C,VITALI M,MOSBACH-SCHULZ O,LOVISOLO C. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development[J]. Plant and Soil,2013,368(1):215-230.
[35] JU Y L,YANG B H,HE S,TU T Y,MIN Z,F(xiàn)ANG Y L,SUN X Y. Anthocyanin accumulation and biosynthesis are modulated by regulated deficit irrigation in Cabernet Sauvignon (Vitis vinifera L.) grapes and wines[J]. Plant Physiology and Biochemistry,2019,135:469-479.
[36] VAN LEEUWEN C,TR?GOAT O,CHON? X,BOIS B,PERNET D,GAUDILL?RE J P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes[J]. Journal International Des Sciences De La Vigne et DuVin,2009,43(3):121-134.
[37] PASHKOVSKIY P P,VANKOVA R,ZLOBIN I E,DOBREV P,IVANOV Y V,KARTASHOV A V,KUZNETSOV V V. Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit[J]. Plant Physiology and Biochemistry,2019,140:105-112.
[38] LUCHI S,KOBAYASHI M,TAJI T,NARAMOTO M,SEKI M,KATO T,TABATA S,KAKUBARI Y,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal,2001,27(4):325-333.