国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

砂糖橘精氨酸脫羧酶CrADC基因的克隆及表達(dá)分析

2023-07-27 13:37:17吳秀蘭任詩(shī)欣李桂花唐文武
果樹(shù)學(xué)報(bào) 2023年7期
關(guān)鍵詞:表達(dá)分析干旱脅迫

吳秀蘭 任詩(shī)欣 李桂花 唐文武

摘 ? ?要:【目的】克隆砂糖橘精氨酸脫羧酶基因(CrADC),分析其在干旱脅迫下的表達(dá)模式,為探究CrADC基因調(diào)控多胺合成的抗旱分子機(jī)制提供理論參考?!痉椒ā坷肦T-PCR技術(shù)克隆砂糖橘CrADC基因,采用生物信息學(xué)進(jìn)行蛋白序列及進(jìn)化分析,利用qPCR檢測(cè)不同組織和干旱脅迫下的基因相對(duì)表達(dá)量,并進(jìn)行植物表達(dá)載體構(gòu)建與煙草遺傳轉(zhuǎn)化驗(yàn)證。【結(jié)果】砂糖橘CrADC基因全長(zhǎng)2262 bp,編碼753個(gè)氨基酸,含有一個(gè)吡哆醛結(jié)合域。序列及進(jìn)化分析顯示果樹(shù)ADC蛋白序列較保守且分為3類,起源于溫帶的蘋果、李、棗、葡萄等8種落葉果樹(shù)為一個(gè)進(jìn)化分支,起源于熱帶或亞熱帶的柑橘、杧果、番木瓜等6種果樹(shù)屬于另一分支。qPCR實(shí)驗(yàn)表明,CrADC基因在砂糖橘葉、花、果肉和果皮組織均能表達(dá),但不同時(shí)期葉片和果實(shí)不同部位的表達(dá)量差異顯著,干旱脅迫24 h內(nèi)的基因表達(dá)量會(huì)逐步上升。轉(zhuǎn)基因?qū)嶒?yàn)表明,CrADC基因在煙草根、莖、葉組織中也能穩(wěn)定表達(dá),轉(zhuǎn)基因系比對(duì)照煙草的電導(dǎo)率和丙二醛含量更低,過(guò)氧化氫酶和超氧化物歧化酶活性更高,表現(xiàn)出更好的抗旱生理特征?!窘Y(jié)論】砂糖橘CrADC序列較保守,起源于亞熱帶或熱帶果樹(shù)的進(jìn)化分支。CrADC基因具有組織表達(dá)特異性,在干旱脅迫后24 h內(nèi)該基因表達(dá)量上升,使轉(zhuǎn)基因系比對(duì)照煙草具有更好的抗旱生理特性。

關(guān)鍵詞:砂糖橘;CrADC基因克??;干旱脅迫;表達(dá)分析

中圖分類號(hào):S666.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1318-12

Cloning and expression analysis of arginine decarboxylase gene (CrADC) from Citrus reticulata ‘Shatangju

WU Xiulan1, REN Shixin1, LI Guihua3, TANG Wenwu2*

(1College of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, Guangdong, China; 2College of Life Sciences, Zhaoqing University, Zhaoqing 526061, Guangdong, China; 3Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China)

Abstract: 【Objective】 Shatangju (Citrus reticulata Blanco) is one of the most widely cultivated citrus in southern China and often encounters drought stress during cultivation. Polyamines can reduce drought damage by regulating stomatal closure and promoting root development. The arginine decarboxylase as a rate-limiting enzyme in polyamine synthesis, catalyzes conversion of arginine to putrescines, which is further converted into other polyamines. Therefore, in this study, arginine decarboxylase gene (CrADC) was cloned from Shatangju and its expression pattern was examined under drought stress, in order to provide understanding of the molecular mechanism regulating polyamines synthesis in drought resistance. 【Methods】 The cDNA sequence of CrADC was obtained by reverse transcription PCR (RT-PCR). The coding sequences of CrADC was amplified from cDNA, then cloned into the vector pMD19-T and transformed into DH5α by heat shock. The DH5α was cultured overnight at 37 ℃, then DNA from the plasmid was extracted and sequenced after PCR identification. Bioinformatics tools were used to analyze the characteristics and evolutionary relationship of the CrADC protein. The quantitative real-time PCR (qPCR) was used to detect the expression level of the CrADC gene in different tissues (young leaves, old leaves, flowers, 30d fruit flesh, and 30d fruit peel) and at different times (0, 3, 6, 9, 12, 24, 36 h) after exposure to 10% PEG-6000 solution. Transgenic tobaccos were obtained by leaf disk transformation using Agrobacterium tumefaciens, and the expression level of the CrADC in the transgenic tobacco plants was detected by qPCR. Related physiological parameters, such as water loss (FL), electrolyte leakage (EL), malondialdehyde (MDA), and activities of catalase (CAT) and superoxide dismutase (SOD) were compared between transgenic lines (TL) and non-transgenic lines (CK) after drought stress. 【Results】 The cDNA sequence of the CrADC had 3076 bp including a 2262 bp open reading frame (ORF) encoding a protein with 753 amino acids. Bioinformatics analysis indicated the relative molecular weight of the CrADC protein was 80.84 ku; the theoretical isoelectric point was 5.13; the instability coefficient was 40.98; and the average hydrophilic coefficient was -0.009. The CrADC protein belongs to an unstable hydrophilic protein. There was no transmembrane domain in CrADC, and there was a pyridoxal binding domain (Orn_Arg_deC_N) between 139th and 414th amino acids. Pairwise sequence alignment of ADC protein sequences from 16 fruit trees species was performed. The results showed that the CrADC protein from Shatangju was highly similar to those of C. sinensis, C. clementina and C. trifoliata, with a sequence identity higher than 96.5%. The sequence identity was the lowest between CrADC and Musa acuminata ADC protein (62%). Phylogenetic analysis showed the amino acid sequences of ADC from the 16 fruit tree species were relatively conservative and could be divided into three clusters. Eight deciduous fruit species, such as M. domestica, Vitis riparia and Ziziphus jujuba, belonged to an evolutionary branch from temperate areas. Six fruit tree species, such as Citrus, Mangifera indica and Carica papaya, belonged to another evolutionary branch from tropical or subtropical areas. The results of qPCR showed the CrADC was expressed in leaves, flowers, fruit flesh and peel. The highest expression level of the CrADC gene was detected in fruit peel at day 30, and the lowest expression was detected in the old leaves. Furthermore, the expression level of CrADC gene in the peel at day 30 was 3.18 folds higher than that in the flesh. The expression level of CrADC in young leaves from spring was 3.41 folds higher than that in old leaves in winter. In total, the CrADC gene has expression specificity at different development stages. The expression level of CrADC gene obviously increased with the extension of drought treatment time, and the highest level was detected at 24 h and 3.82 folds higher than that at 0 h. Transgenic tobacco experiments showed that the CrADC gene was stably expressed in root, stem and leaf of transgenic tobacco. Transgenic physiological experiment showed the EL and MDA in transgenic tobacco were lower than in non-transgenic tobacco (CK), indicating that the cell membrane permeability of transgenic lines was lower than that of CK. The CAT and SOD in transgenic tobacco were higher than in CK, conferring higher ability in scavenging reactive oxidative species (ROS) to the transgenic plants. Therefore, the transgenic tobacco has greater drought resistance than CK. 【Conclusion】The amino acid sequence of CrADC is relatively conservative, and the CrADC protein belongs to the evolutionary branch from the tropical or subtropical area. The CrADC gene has expression specificity at different development stages of Shatangju, and the expression level of the CrADC increases with the extension of drought, and the transgenic tobacco has greater drought resistance than non-transgenic tobacco.

Key words: Shatangju; CrADC cloning; Drought stress; Gene expression

砂糖橘(Citrus reticulata Blanco ‘Shatangju)是我國(guó)南方地區(qū)的主栽柑橘品種,僅廣東、廣西種植面積就達(dá)到16.67萬(wàn)hm2,年產(chǎn)量約250萬(wàn)t,是華南地區(qū)山區(qū)農(nóng)民增收的重要樹(shù)種,在鄉(xiāng)村產(chǎn)業(yè)振興方面具有重要的經(jīng)濟(jì)社會(huì)價(jià)值[1]。砂糖橘主要種植于南方山地、丘陵等干旱缺水地帶,干旱脅迫是影響砂糖橘生長(zhǎng)發(fā)育、果實(shí)品質(zhì)、高產(chǎn)穩(wěn)產(chǎn)的重要因素,如何降低干旱對(duì)柑橘的脅迫作用是生產(chǎn)中亟待解決的問(wèn)題[2]。柑橘抗旱品種選育及推廣是防止干旱脅迫最經(jīng)濟(jì)有效的措施,因此揭示柑橘干旱脅迫生理機(jī)制并克隆相關(guān)抗性基因,對(duì)砂糖橘抗旱品種選育具有重要意義[3]。

多胺(polyamines,PAs)是一類具有生物活性的低分子脂肪族含氮堿,參與柑橘植物胚胎發(fā)生、根系形態(tài)建成、芽形成及植株生長(zhǎng)、成花及開(kāi)花調(diào)控、果實(shí)形成及發(fā)育、氣孔閉合及氣體交換、光合作用及葉綠素?zé)晒猬F(xiàn)象等諸多生長(zhǎng)發(fā)育和生理過(guò)程[4]。植物PAs主要以二胺的腐胺(putrescine,Put)、三胺的亞精胺(spermidine,Spd)以及四胺的精胺(spermine,Spm)形式存在。在PAs合成過(guò)程中,首先通過(guò)3種精氨酸代謝途徑來(lái)合成Put,第一種途徑植物會(huì)通過(guò)精氨酸脫羧酶(arginine decarboxylase,ADC)催化的精氨酸脫羧產(chǎn)生胍基丁胺,然后在胍基丁胺脫氨酶和N-氨基甲酰腐胺酰胺水解酶連續(xù)催化下形成Put;第二種途徑是精氨酸能在ADC催化下直接合成Put,或者胍基丁胺在胍基丁胺脲水解酶作用下合成Put;第三種途徑主要存在于動(dòng)物和真菌中,精氨酸被線粒體中的精氨酸酶催化為鳥(niǎo)氨酸,然后在鳥(niǎo)氨酸脫羧酶作用下轉(zhuǎn)變成Put。Spd、Spm合成則需要借助甲硫氨酸代謝途徑,L-甲硫氨酸在S-腺苷甲硫氨酸合成酶以及脫羧酶的催化下生成脫羧S-腺苷甲硫氨酸(decarboxylated S-adenosylmethionime,dcSAM),然后在亞精胺合成酶(spermidine synthase,SPDS)催化作用下,Put接受dcSAM提供的一個(gè)氨丙基生成Spd;最后在精胺合成酶(spermine synthase,SPMS)催化下,Spd接受一個(gè)氨丙基后轉(zhuǎn)變?yōu)樗陌返腟pm[4]。前人研究表明多胺與植物抗旱性狀密切相關(guān),Yang等[5]發(fā)現(xiàn)水稻能通過(guò)增強(qiáng)葉片的PAs生物合成來(lái)維持細(xì)胞滲透壓,從而適應(yīng)干旱脅迫。Shi等[6]研究報(bào)道了PAs能通過(guò)調(diào)控葉片的氣孔閉合,抑制葉片水分和電解質(zhì)流失,從而緩解干旱脅迫。Yao等[7-8]研究發(fā)現(xiàn)外噴PAs能增加黎檬(C. limonia)的根長(zhǎng)、根系表面積、根體積和根尖數(shù),促進(jìn)根系吸水,緩解干旱脅迫。在植物PAs合成過(guò)程中,Spd、Spm是以Put為底物進(jìn)一步合成,而ADC是植物通過(guò)精氨酸代謝途徑合成Put的第一關(guān)鍵限速酶,因此克隆植物ADC基因?qū)ρ芯縋As合成調(diào)控及干旱脅迫生理機(jī)制具有重要意義。

目前在葡萄[9]、枳[10]、甜橙[11]、桃樹(shù)[12]、杜梨[13]等果樹(shù)中已分離并克隆了ADC基因,上述果樹(shù)ADC基因不含內(nèi)含子結(jié)構(gòu),其開(kāi)放閱讀框(ORF)介于2178~2262 bp之間,編碼720~753個(gè)氨基酸。但關(guān)于砂糖橘CrADC的基因克隆以及表達(dá)與功能分析等研究尚未見(jiàn)報(bào)道。筆者在本研究中以砂糖橘為材料,成功克隆得到CrADC基因并進(jìn)行生物信息學(xué)分析,通過(guò)實(shí)時(shí)熒光定量PCR檢測(cè)不同組織中和干旱脅迫處理下該基因的表達(dá)量,并通過(guò)穩(wěn)定遺傳轉(zhuǎn)化煙草對(duì)該基因進(jìn)行功能驗(yàn)證,以期為CrADC基因參與 PAs生理調(diào)控的分子機(jī)制提供基礎(chǔ),并為砂糖橘抗旱分子育種提供候選基因。

1 材料和方法

1.1 試驗(yàn)材料

供試材料為廣東地區(qū)種植的砂糖橘品種,由肇慶市四會(huì)果園提供。選擇6年生砂糖橘植株并參照唐文武等[14]的方法獲取春梢期嫩葉、越冬期老葉、花芽期花苞、30 d幼果果肉以及30 d幼果果皮,置于-80 ℃冰箱保存后提取總RNA,用于不同組織的基因表達(dá)分析。選用6年生砂糖橘的新發(fā)秋梢,于10% PEG-6000溶液中模擬干旱脅迫處理,處理時(shí)間分別為0、3、6、9、12、24和36 h,3次重復(fù),每個(gè)處理所采葉片置于液氮速凍后提取總RNA,用于干旱脅迫下的CrADC基因表達(dá)特征分析。

1.2 主要試劑

柱式植物RNAout 2.0試劑盒購(gòu)自北京天恩澤基因科技有限公司,M-MLV反轉(zhuǎn)錄試劑盒購(gòu)自美國(guó)Life technology公司,TaKaRa LA Taq?酶、各種限制性內(nèi)切酶、T4 DNA連接酶、凝膠回收試劑盒Gel DNA Extraction Kit Ver.4.0以及載體構(gòu)建的In-Fusion? HD Cloning Kit等試劑盒均購(gòu)自TaKaRa公司(日本),SYBRTM Green Ⅰ核酸熒光染料購(gòu)自ThermoFisher公司,大腸桿菌DH5α感受態(tài)細(xì)胞、農(nóng)桿菌GV3101感受態(tài)細(xì)胞、克隆載體pMD19-T和植物表達(dá)載體pBI121均由筆者課題實(shí)驗(yàn)室保存提供。主要設(shè)備儀器:ABI 7500熒光定量PCR儀(美國(guó)ThermoFisher公司)、T100 PCR儀(美國(guó)Bio-Rad公司)、GelDoc XR+凝膠成像系統(tǒng)(美國(guó)Bio-Rad公司)。

1.3 砂糖橘CrADC基因克隆

1.3.1 ? ?葉片總RNA提取及cDNA第一鏈的合成 ? ?取6年生砂糖橘果樹(shù)的嫩葉,按照柱式植物RNAout試劑盒說(shuō)明提取葉片總RNA,按照M-MLV反轉(zhuǎn)錄試劑盒操作步驟合成cDNA第一鏈。

1.3.2 ? ?引物序列設(shè)計(jì)及PCR擴(kuò)增 ? ?根據(jù)柑橘泛基因組育種數(shù)據(jù)庫(kù)(http://citrus.hzau.edu.cn)公布的甜橙(C. sinesisi)v3.0版ADC基因序列(Gene ID:Cs_ont_8g020080),設(shè)計(jì)并篩選到1對(duì)PCR引物(CrADC-F/CrADC-R),其引物序列見(jiàn)表1。以反轉(zhuǎn)錄合成的cDNA為模板擴(kuò)增砂糖橘CrADC基因的cDNA序列,PCR反應(yīng)體系50.0 μL,包括0.5 μL LA Taq,5.0 μL 10×PCR buffer,2 μL dNTP (2.5 mmol·L-1),CrADC-F和CrADC-R(10 μmol·L-1)各1.0 μL,2.0 μL cDNA (100 ng),加ddH2O補(bǔ)充至50 μL。PCR反應(yīng)程序:94 ℃預(yù)變性4 min;設(shè)置30個(gè)循環(huán),94 ℃ 30 s,55 ℃ 45 s,72 ℃ 60 s;最后72 ℃延伸10 min。PCR產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳后,用DNA凝膠回收試劑盒回收純化目的片段。

1.3.3 ? ?CrADC基因測(cè)序 ? ?以pMD19-T為克隆載體,將目的基因CrADC與克隆載體連接后,轉(zhuǎn)化到感受態(tài)細(xì)胞DH5α中,經(jīng)涂板、培養(yǎng)、質(zhì)粒DNA提取及PCR鑒定后,送上海生工公司進(jìn)行測(cè)序。

1.4 序列分析及系統(tǒng)進(jìn)化分析

利用Prot Param進(jìn)行目標(biāo)基因編碼的蛋白質(zhì)基本理化性質(zhì)預(yù)測(cè),利用Prot Scale進(jìn)行親疏水性分析,利用SOPMA、Predict Protein預(yù)測(cè)其二級(jí)結(jié)構(gòu),利用SMART對(duì)其功能結(jié)構(gòu)域進(jìn)行分析,利用DNAMAN和MEGA7軟件進(jìn)行蛋白序列多重比較和系統(tǒng)進(jìn)化樹(shù)分析。

1.5 CrADC基因表達(dá)分析

利用qPCR檢測(cè)CrADC基因在不同組織及干旱脅迫下的轉(zhuǎn)錄表達(dá)量,嫩葉、老葉、花、果皮、果肉等樣品總RNA提取及cDNA合成參照試劑盒的方法。根據(jù)CrADC基因序列,設(shè)計(jì)并篩選了1對(duì)特異性引物(QCrADC-F/QCrADC-R,表1),以柑橘ACTB基因作為內(nèi)參基因[15]。擴(kuò)增反應(yīng)采用SYBR Green Ⅰ染料法在ABI 7500實(shí)時(shí)定量PCR儀上進(jìn)行,設(shè)置3次生物學(xué)重復(fù),數(shù)據(jù)分析采用2-△△CT法計(jì)算[16]。

1.6 植物表達(dá)載體構(gòu)建與煙草遺傳轉(zhuǎn)化

設(shè)計(jì)含有BamHⅠ和SacⅠ酶切位點(diǎn)的引物TranADC-F/TranADC-R(表1),然后PCR擴(kuò)增CrADC基因。利用BamHⅠ和Sac Ⅰ雙酶切pBI121空載體,采用In-Fusion? HD Cloning Kit法,將CrADC基因連接到pBI121載體,轉(zhuǎn)化后經(jīng)PCR及測(cè)序鑒定,獲得重組pBI121-CrADC植物表達(dá)載體。制備根癌農(nóng)桿菌GV3101感受態(tài)細(xì)胞并經(jīng)凍融法轉(zhuǎn)化重組載體,然后采用農(nóng)桿菌介導(dǎo)的葉盤法轉(zhuǎn)化煙草[17],經(jīng)浸染、共培養(yǎng)、抗性芽篩選、生根培養(yǎng)及分子鑒定獲得轉(zhuǎn)CrADC基因煙草植株。以煙草β-actin為內(nèi)參基因[18],利用實(shí)時(shí)熒光qPCR檢測(cè)CrADC基因在轉(zhuǎn)基因植株中的表達(dá)情況。

1.7 轉(zhuǎn)基因煙草抗旱性鑒定

選取轉(zhuǎn)基因煙草后代中CrADC基因表達(dá)量高的T3純合株系,以及對(duì)照普通煙草種子。上述種子播種出苗后,移至植物培養(yǎng)箱在24 ℃、70%濕度、16 h光照下正常澆水種植30 d后,停止?jié)菜?0 d進(jìn)行干旱脅迫處理。取轉(zhuǎn)基因和對(duì)照煙草的葉片,參照李合生[19]方法測(cè)定干旱脅迫后的葉片電導(dǎo)率、丙二醛(MDA)含量,以及過(guò)氧化氫酶(CAT)和超氧化物歧化酶(SOD)等抗氧化酶活性。參照Wu等[20]方法取正常生長(zhǎng)30 d的煙草葉片稱質(zhì)量,然后置于25 ℃恒溫培養(yǎng)箱中自然脫水,分別于15、30、60、90、120 min后稱質(zhì)量,測(cè)定自然脫水后的葉片失水率。上述試驗(yàn)均3次重復(fù),利用SPSS軟件進(jìn)行LSD檢驗(yàn)。

2 結(jié)果與分析

2.1 CrADC基因克隆及序列測(cè)定

以砂糖橘嫩葉總RNA反轉(zhuǎn)錄得到的cDNA為模板,利用CrADC-F/QCrADC-R引物擴(kuò)增后得到一條約3.0 kb特異條帶(圖1)。該擴(kuò)增條帶經(jīng)回收純化后進(jìn)行基因測(cè)序,結(jié)果顯示,砂糖橘CrADC基因cDNA序列全長(zhǎng)為3076 bp,含有1個(gè)2262 bp的開(kāi)放閱讀框(ORF),編碼753個(gè)氨基酸(圖2)。

2.2 CrADC蛋白序列比對(duì)

利用Prot Param分析的結(jié)果表明,CrADC蛋白相對(duì)分子質(zhì)量為80.84 ku,理論等電點(diǎn)為5.13,不穩(wěn)定系數(shù)為40.98。Prot Scale的疏水性分析表明,該蛋白第203位氨基酸疏水性最高,為2.567,第743位疏水性最低,為-2.689,平均親水性系數(shù)為-0.009,屬于不穩(wěn)定親水性蛋白。SOPMA二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示(圖3-A),該蛋白二級(jí)結(jié)構(gòu)以α-螺旋和無(wú)規(guī)則卷曲為主,分別占41.30%和37.45%,β-轉(zhuǎn)角僅6.61%,擴(kuò)展束占14.61%。TMHMM跨膜區(qū)分析表明該蛋白不含跨膜結(jié)構(gòu)域(圖3-B),屬于非跨膜蛋白。SMART預(yù)測(cè)顯示該蛋白的139~414區(qū)域?yàn)檫炼呷┙Y(jié)合域Orn_Arg_deC_N(圖3-C),與精氨酸脫羧酶功能密切相關(guān)[21]。

為分析果樹(shù)ADC基因間進(jìn)化關(guān)系,從NCBI數(shù)據(jù)庫(kù)中選取15種果樹(shù)ADC蛋白與CrADC進(jìn)行序列比對(duì)分析。雙序列比對(duì)表明砂糖橘CrADC與甜橙(C. sinensis,XP_006487299.2)、克里曼丁橘(C. clementina,XP 006423501.1)、枳(C. trifoliata,AEE99192.1)的ADC蛋白序列高度相似,序列一致性超過(guò)96.5%,與香蕉(Musa acuminata,XP_009393201.1)ADC蛋白序列一致性最低(62.0%)。多序列比對(duì)(圖4)顯示,16種果樹(shù)的ADC蛋白序列相似性較高,均包含一個(gè)完整的吡哆醛結(jié)合域Orn_Arg_deC_N,該結(jié)構(gòu)域的氨基酸序列高度保守,表明果樹(shù)進(jìn)化過(guò)程中ADC蛋白作為關(guān)鍵酶促蛋白,氨基酸序列較保守。

2.3 CrADC蛋白進(jìn)化分析

系統(tǒng)進(jìn)化分析(圖5)顯示,16種果樹(shù)的ADC蛋白聚為三類。其中蕓香科柑橘屬的甜橙、克里曼丁橘、枳、砂糖橘,以及杧果(Mangifera indica,XP_044488993.1)、番木瓜(Carica papaya,XP_021889268.1)6種果樹(shù)ADC蛋白聚為一類,是主要起源于亞熱帶或熱帶地區(qū)的果樹(shù),處于同一進(jìn)化分支。薔薇科的甜櫻桃(Prunus avium,XP_021806331.1)、桃(Prunus persica,XP_007200307.1)、李(Prunus dulcis,XP_034226752.1)、蘋果(Malus domestica,XP_008358425.2),以及葡萄科的葡萄(Vitis riparia,XP_034681234.1)、鼠李科的棗(Ziziphus jujuba,XP_015892431.2)等果樹(shù)ADC蛋白聚為一類,是主要起源于溫帶地區(qū)的落葉型果樹(shù),處于同一進(jìn)化分支。芭蕉科的香蕉(Musa acuminata,XP_009393201.1)與杜鵑花科的藍(lán)莓(Vaccinium darrowii,KAH7835244.1)與其他ADC蛋白差異較大,被聚為一類。

2.4 砂糖橘CrADC基因表達(dá)分析

對(duì)砂糖橘不同組織CrADC基因的qPCR結(jié)果(圖6)顯示,CrADC基因在砂糖橘春梢期嫩葉、越冬期老葉、花、30 d幼果果皮和30 d幼果果肉等組織中均有表達(dá),且除嫩葉與花外,其他組織間基因表達(dá)差異均達(dá)到顯著水平。以30 d幼果果皮的表達(dá)量最高,其次是嫩葉和花,老葉中基因表達(dá)量最低。進(jìn)一步比較發(fā)現(xiàn),30 d幼果果皮表達(dá)量是果肉的3.18倍,春梢期嫩葉表達(dá)量是越冬期老葉的3.41倍,表明CrADC基因在葉片生長(zhǎng)的不同時(shí)期,以及果實(shí)不同部位的基因表達(dá)量具有顯著差異,表現(xiàn)出基因表達(dá)的時(shí)空特異性,這可能與CrADC基因參與的生理調(diào)控功能或多胺區(qū)域化分布差異有關(guān)。

為研究CrADC基因在干旱脅迫時(shí)的表達(dá)特征,利用10%的PEG-6000溶液來(lái)模擬干旱脅迫環(huán)境。剪取6年生新發(fā)秋梢進(jìn)行干旱脅迫處理,并于3、6、9、12、24、36 h提取葉片總RNA進(jìn)行相對(duì)定量qPCR分析,以0 h為對(duì)照。試驗(yàn)結(jié)果(圖7)顯示,隨著干旱脅迫時(shí)間的延長(zhǎng),CrADC基因表達(dá)量也相應(yīng)上升,并在處理24 h時(shí)達(dá)到最高,其表達(dá)量是0 h對(duì)照的3.82倍。當(dāng)干旱脅迫繼續(xù)延長(zhǎng)后,其基因表達(dá)量開(kāi)始下降,處理36 h時(shí)表達(dá)量?jī)H為最高24 h時(shí)的59.5%。該結(jié)果表明,砂糖橘在干旱脅迫24 h內(nèi),可顯著提高CrADC基因的表達(dá)量,推測(cè)該基因的高表達(dá)將促進(jìn)腐胺等PAs的合成來(lái)適應(yīng)干旱脅迫,上述推測(cè)還有待于進(jìn)一步試驗(yàn)驗(yàn)證。

2.5 CrADC基因轉(zhuǎn)化煙草研究

將含有pBI121-CrADC重組質(zhì)粒的農(nóng)桿菌GV3101,通過(guò)葉盤法轉(zhuǎn)化煙草,經(jīng)Kan抗性篩選后獲得25個(gè)轉(zhuǎn)基因抗性植株。利用擴(kuò)增片段包括載體與目的基因序列的特異性引物TranPCR-F/TranPCR-R進(jìn)行PCR檢測(cè),結(jié)果發(fā)現(xiàn)18株轉(zhuǎn)基因抗性植株中檢測(cè)到特異性條帶(圖8),表明CrADC基因已整合到煙草基因組中。

為了檢測(cè)CrADC基因在轉(zhuǎn)基因煙草中的表達(dá)情況,分別提取轉(zhuǎn)基因煙草和對(duì)照非轉(zhuǎn)基因煙草的根、莖、葉組織總RNA,經(jīng)反轉(zhuǎn)錄cDNA后進(jìn)行qPCR實(shí)驗(yàn),以煙草actin為內(nèi)參基因。結(jié)果顯示(圖9),CrADC基因在轉(zhuǎn)基因煙草的根、莖、葉組織中均能表達(dá),以煙草嫩葉中表達(dá)量最高,其次為根系,莖組織表達(dá)量最低,而非轉(zhuǎn)基因?qū)φ盏慕M織中未檢測(cè)到該基因表達(dá)水平。

2.6 轉(zhuǎn)基因煙草抗旱性分析

對(duì)上述轉(zhuǎn)基因T0代植株,進(jìn)行續(xù)代、篩選鑒定后獲得一批T3代純合株系。對(duì)T3代純合株系進(jìn)行表達(dá)分析,篩選出1個(gè)CrADC基因表達(dá)量最高的株系11-2a開(kāi)展抗旱性分析。選取該轉(zhuǎn)基因株系和對(duì)照煙草正常生長(zhǎng)30 d后,剪取葉片進(jìn)行自然脫水處理后,并于不同時(shí)間段取樣測(cè)定失水率,結(jié)果見(jiàn)圖10。由圖10可知,在120 min內(nèi)轉(zhuǎn)基因系的失水率在不同時(shí)間段都低于對(duì)照普通煙草。該結(jié)果表明CrADC基因在煙草中超表達(dá)后,表現(xiàn)出明顯的抗脫水性。

進(jìn)一步對(duì)轉(zhuǎn)基因系和對(duì)照煙草進(jìn)行20 d的干旱脅迫處理,并分別測(cè)定衡量細(xì)胞膜通透性的電導(dǎo)率、丙二醛含量指標(biāo),以及清除過(guò)氧化氫、活性氧的抗氧化酶活性,相關(guān)結(jié)果見(jiàn)圖11。由圖11-A~B可知,轉(zhuǎn)基因系的電導(dǎo)率和丙二醛含量均低于對(duì)照普通煙草,兩者間差異分別達(dá)到顯著和極顯著水平,表明超表達(dá)CrADC的轉(zhuǎn)基因系能降低葉片細(xì)胞膜通透性,從而表現(xiàn)出較高的抗旱性。由圖11-C~D可知,轉(zhuǎn)基因系的CAT酶和SOD酶活性均高于對(duì)照煙草,兩者間差異均達(dá)到極顯著水平,表明在干旱脅迫后,轉(zhuǎn)基因系提高了葉片的抗氧化酶活性,更能有效清除體內(nèi)活性氧,避免轉(zhuǎn)基因植株的生理?yè)p傷,從而表現(xiàn)較強(qiáng)的抗旱性。

3 討 論

PAs是生物體普遍存在的一類低分子脂肪族含氮堿,在柑橘屬植物的細(xì)胞分化、根系建成、成花過(guò)程、果實(shí)發(fā)育、氣孔調(diào)節(jié)和氣體交換等生理代謝活動(dòng)中發(fā)揮重要作用[4]。ADC作為PAs生物合成途徑中的第一個(gè)關(guān)鍵限速酶,能通過(guò)調(diào)控PAs合成速率來(lái)調(diào)節(jié)植物代謝活動(dòng),降低逆境脅迫對(duì)植物生長(zhǎng)的不利影響[22]。目前在柑橘屬PAs合成途徑的相關(guān)基因中,僅報(bào)道了甜橙(C. sinensis)CsSAMDC [23]、砂糖橘CsSAMDC [14],以及枳(C. trifoliata)PtADC [10]的基因克隆相關(guān)研究,柑橘屬?gòu)V泛栽培的其他柑、橘、橙、柚等物種的ADC基因克隆及相關(guān)功能研究尚未報(bào)道。本研究克隆了砂糖橘CrADC基因,與Wang等[10]報(bào)道的枳PtADC(AEE99192.1)的氨基酸序列一致性為96.5%,均含有一個(gè)序列高度保守的吡哆醛結(jié)合域Orn_Arg_deC_N(PF02784),與精氨酸脫羧酶功能密切相關(guān)[21]。對(duì)16種果樹(shù)ADC蛋白進(jìn)化分析顯示,起源于溫帶的蘋果、李、棗、葡萄等8種落葉果樹(shù)為一個(gè)進(jìn)化分支,起源于熱帶或亞熱帶的柑橘、杧果、番木瓜等6種果樹(shù)屬于另一分支。表明在果樹(shù)進(jìn)化過(guò)程中ADC蛋白作為關(guān)鍵酶促蛋白,氨基酸序列較為保守。

前人研究發(fā)現(xiàn),果樹(shù)ADC基因在植物根、莖、葉、果實(shí)等多個(gè)組織中均能表達(dá),在杜梨的葉片中表達(dá)量最高,而在枳的果皮中表達(dá)量最高,在一定脫水時(shí)間內(nèi)果樹(shù)ADC基因相對(duì)表達(dá)量會(huì)上升[10,13]。本研究CrADC基因在砂糖橘的葉、花、果等組織中均有表達(dá),以30 d幼果果皮的表達(dá)量最高。在干旱脅迫的24 h內(nèi),CrADC基因表達(dá)量隨時(shí)間延長(zhǎng)也相應(yīng)穩(wěn)步上升,與枳[10]、桃樹(shù)[12]、杜梨[13]等果樹(shù)在脫水環(huán)境下的ADC基因表達(dá)特征基本相似。Miller等[24]報(bào)道干旱脅迫會(huì)誘導(dǎo)植株體內(nèi)活性氧積累,從而造成細(xì)胞膜損傷。PAs作為滲透調(diào)節(jié)劑具有保護(hù)酶活性和降低丙二醛含量,清除體內(nèi)活性氧自由基,增強(qiáng)植物的抗干旱脅迫能力的功能[25]。Shi等[6]和Zhang等[26]研究發(fā)現(xiàn)干旱或脫水會(huì)導(dǎo)致植物葉片氣孔保衛(wèi)細(xì)胞中的PAs濃度上升,而天然PAs會(huì)強(qiáng)烈抑制氣孔開(kāi)放、誘導(dǎo)氣孔關(guān)閉,植物氣孔關(guān)閉能減少水分蒸發(fā)及電解質(zhì)流失,從而保持植株在干旱環(huán)境下正常生長(zhǎng)。在根系建成中,PAs能充當(dāng)細(xì)胞增殖分化等激素的第二信使,通過(guò)控制生長(zhǎng)素/細(xì)胞分裂素的比率,從而誘導(dǎo)根系發(fā)育[27]。Yao等[7-8]發(fā)現(xiàn)外施PAs能增加黎檬(C. limonia)的根長(zhǎng)、根系表面積、根體積和根尖數(shù),增強(qiáng)根系吸水能力,緩解干旱脅迫。本研究中,篩選出的轉(zhuǎn)CrADC基因煙草在自然脫水處理后,其葉片相較于對(duì)照煙草表現(xiàn)出明顯的抗脫水性。在20 d干旱脅迫后,轉(zhuǎn)基因系的電導(dǎo)率、丙二醛含量均低于對(duì)照,表現(xiàn)出更低的細(xì)胞膜通透性;其CAT酶、SOD酶活性均高于對(duì)照,表現(xiàn)強(qiáng)抗氧化酶活性從而避免細(xì)胞膜損傷,表現(xiàn)出更好的植株抗旱性。通過(guò)基因表達(dá)水平和轉(zhuǎn)基因煙草功能分析,筆者推測(cè)柑橘在干旱脅迫的誘導(dǎo)下,CrADC基因高表達(dá)后促進(jìn)腐胺等PAs合成,PAs可調(diào)節(jié)細(xì)胞內(nèi)滲透物質(zhì)含量,增強(qiáng)吸水性,同時(shí)PAs具有保護(hù)抗氧化酶活性,清除活性氧而減輕膜脂過(guò)氧化程度。高濃度PAs能導(dǎo)致葉片保衛(wèi)細(xì)胞控制氣孔關(guān)閉,同時(shí)PAs作為第二信使促進(jìn)根系發(fā)育而增強(qiáng)吸水能力,從而緩解干旱脅迫對(duì)植物生長(zhǎng)的不利影響。上述假設(shè)還有待于SPMS、SPDS等PAs合成途徑基因的克隆及表達(dá)特征分析,并繼續(xù)開(kāi)展干旱脅迫下砂糖橘內(nèi)源PAs濃度和氣孔閉合、根系生長(zhǎng)發(fā)育等表型的關(guān)聯(lián)性分析,從而為探究CrADC等基因通過(guò)調(diào)控PAs合成代謝,抵御干旱等非生物脅迫的生理機(jī)制提供分子生物學(xué)證據(jù)。

4 結(jié) 論

克隆了砂糖橘CrADC基因,其全長(zhǎng)2262 bp,編碼753個(gè)氨基酸,屬起源于亞熱帶或熱帶果樹(shù)的進(jìn)化分支。CrADC基因在砂糖橘葉、花、果等組織中均能表達(dá),但不同時(shí)期葉片和果實(shí)不同部位的表達(dá)量均有顯著差異,在干旱脅迫24 h內(nèi)基因表達(dá)量隨時(shí)間延長(zhǎng)而逐步上升,轉(zhuǎn)基因系比對(duì)照煙草有更好的抗旱生理特性。

參考文獻(xiàn) References:

[1] 區(qū)善漢,莫健生,張社南. 廣西沙糖橘產(chǎn)業(yè)發(fā)展存在的問(wèn)題與對(duì)策[J]. 南方園藝,2014,25(5):28-30.

OU Shanhan,MO Jiansheng,ZHANG Shenan. Problems and countermeasures in the development of Guangxi sugar orange industry[J]. Southern Horticulture,2014,25(5):28-30.

[2] 李果果,陳香玲,秦榮耀,劉要鑫,趙小龍,孫寧?kù)o,歐智濤,唐志鵬,張廣珍. 大果沙糖橘的遺傳鑒定及引種栽培表現(xiàn)[J]. 南方農(nóng)業(yè)學(xué)報(bào),2018,49(6):1171-1176.

LI Guoguo,CHEN Xiangling,QIN Rongyao,LIU Yaoxin,ZHAO Xiaolong,SUN Ningjing,OU Zhitao,TANG Zhipeng,ZHANG Guangzhen. Genetic identification and cultivation performance of introduced Daguo shatangju[J]. Journal of Southern Agriculture,2018,49(6):1171-1176.

[3] 龔成宇,王毅,宋海巖,楊科,陶海青,劉俊宏,龔榮高. 干旱脅迫對(duì)黃果柑果實(shí)品質(zhì)及糖酸代謝酶活性的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2021,34(2):272-278.

GONG Chengyu,WANG Yi,SONG Haiyan,YANG Ke,TAO Haiqing,LIU Junhong,GONG Ronggao. Effects of drought stress on fruit quality and enzyme activity of glycolic acid metabolism in Huangguogan fruit[J]. Southwest China Journal of Agricultural Sciences,2021,34(2):272-278.

[4] KILLINY N,NEHELA Y. Citruspolyamines:structure,biosynthesis,and physiological functions[J]. Plants,2020,9(4):426.

[5] YANG J C,ZHANG J H,LIU K,WANG Z Q,LIU L J. Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany,2007,58(6):1545-1555.

[6] SHI J,F(xiàn)U X Z,PENG T,HUANG X S,F(xiàn)AN Q J,LIU J H. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response[J]. Tree Physiology,2010,30(7):914-922.

[7] YAO Q,WANG L R,CHEN J Z,ZHU H H. The effects of polyamines on root morphology and arbuscular mycorrhiza of citrus seedlings[J]. Acta Horticulturae,2008,774:151-158.

[8] YAO Q,WANG L R,XING Q X,CHEN J Z,ZHU H H. Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings[J]. Plant Growth Regulation,2010,60(1):27-33.

[9] PRIMIKIRIOS N I,ROUBELAKIS-ANGELAKIS K A. Cloning and expression of an arginine decarboxylase cDNA from Vitis vinifera L. cell-suspension cultures[J]. Planta,1999,208(4):574-582.

[10] WANG J,SUN P P,CHEN C L,WANG Y,F(xiàn)U X Z,LIU J H. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis[J]. Journal of Experimental Botany,2011,62(8):2899-2914.

[11] 吳昊. 柑橘轉(zhuǎn)錄因子CsCBF1和PtrNAC72在調(diào)控精氨酸脫羧酶基因表達(dá)及抗逆中的功能鑒定[D]. 武漢:華中農(nóng)業(yè)大學(xué),2017.

WU Hao. Functional characterization of Citrus sinensis CBF1 and Poncirus trifoliata NAC72 in regulation ofarginine decarboxylase gene expression and stress tolerance[D]. Wuhan:Huazhong Agricultural University,2017.

[12] 王保全,張曉娜,劉繼紅,李國(guó)懷. 桃樹(shù)PpADC基因克隆及逆境脅迫表達(dá)分析[J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,45(7):34-41.

WANG Baoquan,ZHANGXiaona,LIU Jihong,LI Guohuai. Cloning and abiotic stress-induced expression of the arginine decarboxylase gene from Prunus persica[J]. Journal of Southwest China Normal University (Natural Science Edition),2020,45(7):34-41.

[13] 靳叢,郭巧會(huì),陳國(guó)棟,孫小川,孫敏,周瑾,王紀(jì)忠,黃小三. 杜梨精氨酸脫羧酶基因PbADC的克隆與表達(dá)分析[J]. 核農(nóng)學(xué)報(bào),2021,35(2):306-313.

JIN Cong,GUO Qiaohui,CHEN Guodong,SUN Xiaochuan,SUN Min,ZHOU Jin,WANG Jizhong,HUANG Xiaosan. Cloning and expression analysis of PbADC in Pyrus betulifolia[J]. Journal of Nuclear Agricultural Sciences,2021,35(2):306-313.

[14] 唐文武,吳秀蘭. 沙糖橘S-腺苷甲硫氨酸脫羧酶基因克隆及表達(dá)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),2020,51(6):1369-1376.

TANG Wenwu,WU Xiulan. Cloning and expression analysis of S-adenosylmethionine decarboxylase gene (CrSAMDC) in Shatangju[J]. Journal of Southern Agriculture,2020,51(6):1369-1376.

[15] WU X, QIN Y H, HU G B.Cloning and expression analysis of self-incompatibility S1 family protein gene in Citrus reticulata Blanco cv. Wuzishatangju[J]. Research Journal of Biotechnology, 2015, 10(7): 19-25.

[16] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.

[17] HORSCH R B,F(xiàn)RY J E,HOFFMANN N L,EICHHOLTZ D,ROGERS S G,F(xiàn)RALEY R T. A simple and general method for transferring genes into plants[J]. Science,1985,227(4691):1229-1231.

[18] FAIZE M,F(xiàn)AIZE L,BURGOS L. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation[J]. BMC Biotechnology,2010,10:53.

[19] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000.

LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.

[20] WU H,F(xiàn)U B,SUN P P,XIAO C,LIU J H. A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance[J]. Plant Physiology,2016,172(3):1532-1547.

[21] MEHTA P K,CHRISTEN P. The molecular evolution of pyridoxal-5-phosphate-dependent enzymes[J]. Advances in Enzymology and Related Areas of Molecular Biology,2000,74:129-184.

[22] WI S J,KIM S J,KIM W T,PARK K Y. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis[J]. Planta,2014,239(5):979-988.

[23] WANG J,LIU J H,KUROSAWA T,NADA K,BAN Y,MORIGUCHI T. Cloning,biochemical identification,and expression analysis of a gene encoding S-adenosylmethionine decarboxylase in navel orange (Citrus sinensis Osbeck)[J]. The Journal of Horticultural Science and Biotechnology,2010,85(3):219-226.

[24] MILLER G,SUZUKI N,CIFTCI-YILMAZ S,MITTLER R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant,Cell & Environment,2010,33(4):453-467.

[25] 李霞,程運(yùn)河,馬曉東,韓蕾,孫振元. 多胺在植物抗逆中的生理機(jī)制[J]. 世界林業(yè)研究,2018,31(4):23-28.

LI Xia,CHENG Yunhe,MA Xiaodong,HAN Lei,SUN Zhenyuan. Physiological mechanism of polyamines in plant resistance[J]. World Forestry Research,2018,31(4):23-28.

[26] ZHANG Q H,WANG M,HU J B,WANG W,F(xiàn)U X Z,LIU J H. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis[J]. Journal of Experimental Botany,2015,66(19):5911-5927.

[27] CUI X,GE C M,WANG R X,WANG H Z,CHEN W Q,F(xiàn)U Z M,JIANG X N,LI J Y,WANG Y H. The BUD2 mutation affects plant architecture through altering cytokinin and auxin responses in Arabidopsis[J]. Cell Research,2010,20(5):576-586.

猜你喜歡
表達(dá)分析干旱脅迫
雷公藤貝殼杉烯酸氧化酶基因的全長(zhǎng)cDNA克隆與表達(dá)分析
硝普鈉浸種對(duì)干旱脅迫下玉米種子萌發(fā)及幼苗生長(zhǎng)的影響
一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
干旱脅迫對(duì)扁豆生長(zhǎng)與生理特性的影響
不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
紅花生育酚環(huán)化酶基因的克隆及表達(dá)分析
干旱脅迫對(duì)金花茶幼苗光合生理特性的影響
膠孢炭疽菌漆酶基因Lac2的序列特征與表達(dá)分析
玉米紋枯病病菌y—谷氨酰轉(zhuǎn)肽酶基因克隆與表達(dá)分析
阜南县| 自治县| 时尚| 子洲县| 明星| 平乡县| 郧西县| 四子王旗| 托里县| 东城区| 湖北省| 武功县| 河间市| 福安市| 肇庆市| 同德县| 鄂伦春自治旗| 堆龙德庆县| 山东| 伊宁县| 兴海县| 托克逊县| 江口县| 桂阳县| 海门市| 锡林浩特市| 密云县| 连州市| 萍乡市| 彰化县| 增城市| 靖江市| 桑日县| 文登市| 青海省| 宁阳县| 色达县| 墨脱县| 铜川市| 庆阳市| 察哈|