廖雅萱,程少波,張偉達(dá),董偉河,王宇諾,張家郡,王 海,陳國(guó)剛
駿棗變溫干燥工藝優(yōu)化及品質(zhì)評(píng)價(jià)
廖雅萱1,程少波1,張偉達(dá)1,董偉河1,王宇諾1,張家郡1,王 海2,陳國(guó)剛1※
(1. 石河子大學(xué)食品學(xué)院,石河子 832000;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,北京 100125)
紅棗因具有較高的營(yíng)養(yǎng)價(jià)值而備受消費(fèi)者歡迎。通常新鮮的紅棗采后極易腐爛變質(zhì),為了在延長(zhǎng)其貨架期的同時(shí)也能保持其品質(zhì)特性,該研究采用變溫干燥法,探究了變溫干燥過(guò)程中不同階段溫度和水分轉(zhuǎn)換點(diǎn)對(duì)駿棗糖酸比和褐變度的影響,結(jié)合響應(yīng)面法,建立二次多項(xiàng)式回歸方程模型,對(duì)駿棗變溫干燥工藝進(jìn)行優(yōu)化;將此工藝與恒溫(60 ℃)烘制工藝進(jìn)行對(duì)比,探究其對(duì)駿棗品質(zhì)指標(biāo)的影響。結(jié)果表明,駿棗變溫干燥優(yōu)化工藝為:前期溫度44 ℃,前期水分轉(zhuǎn)換點(diǎn)19.5%,中期溫度65 ℃,中期水分轉(zhuǎn)換點(diǎn)17.0%,后期溫度49 ℃,與60 ℃恒溫烘制相比,其糖酸比增加了7.4%,內(nèi)部褐變度減少了23%,此外,變溫烘制還縮短了駿棗烘制的時(shí)間,減少了表皮色差、咀嚼度和硬度,增加了抗氧化物質(zhì)含量和抗氧化能力。研究結(jié)果將有助于駿棗變溫烘制技術(shù)的推廣與應(yīng)用。
干燥;動(dòng)力學(xué);駿棗;變溫干燥;參數(shù)優(yōu)化
紅棗,又名大棗,富含多種營(yíng)養(yǎng)素和功效成分,屬于藥食同源的佳品,具有降低血脂、潤(rùn)膚養(yǎng)顏、補(bǔ)氣安神等多種藥用功能,有“百果之王”之稱[1]。中國(guó)是世界上紅棗資源最豐富的國(guó)家,產(chǎn)量約占世界總產(chǎn)量的95%,主產(chǎn)于新疆,其次為山東、河北、山西和陜西等地[2]。新疆具有日照時(shí)間長(zhǎng)、晝夜溫差大、雨少干旱等得天獨(dú)厚的環(huán)境特征,出產(chǎn)的紅棗皮薄肉厚、滋甜味美,產(chǎn)品優(yōu)勢(shì)顯著。駿棗作為新疆主栽棗品種之一,在南疆地區(qū)大量栽培,形成了多種優(yōu)質(zhì)的駿棗品牌,獲得了廣大消費(fèi)者的青睞[3]。
新鮮的駿棗含水量較高,果實(shí)在收獲后易失水、軟化、腐爛,不利于貯藏運(yùn)輸[4]。因此,新疆大部分的駿棗成熟后不立即進(jìn)行采收,而是借助光照和風(fēng)吹自然脫水至干熟期,再進(jìn)行采收及清洗,清洗后的駿棗在烘房中進(jìn)行烘制,這種方式能夠減少鮮棗的浪費(fèi),使資源得到充分利用。駿棗的干制一般采用恒溫烘制,溫度越高,干燥速率越快,但過(guò)高的溫度會(huì)造成駿棗營(yíng)養(yǎng)物質(zhì)的損失,表面易形成硬殼;低溫干燥能保持駿棗的品質(zhì),但是干制周期過(guò)長(zhǎng),易造成能源的浪費(fèi)。因此,優(yōu)化干燥工藝既能提高干燥速率,還能減少駿棗營(yíng)養(yǎng)損失。
目前,駿棗的烘制技術(shù)逐漸趨于成熟,然而不同烘制溫度對(duì)駿棗干燥速率及品質(zhì)影響較大。楊喬楠等[5]研究了溫度對(duì)紅棗色澤及質(zhì)構(gòu)特性的影響,結(jié)果表明,紅棗在60 ℃干燥時(shí)質(zhì)構(gòu)特性最佳,且對(duì)紅棗物理特性影響最小。LIU[6]等研究了不同烘制溫度對(duì)紅棗質(zhì)構(gòu)、色澤、內(nèi)部褐變、顯微結(jié)構(gòu)和果膠組成的影響,結(jié)果表明,較高的溫度使紅棗褐變加劇,低溫烘制紅棗質(zhì)構(gòu)特性最佳。持續(xù)的高溫會(huì)使產(chǎn)品質(zhì)量下降和表面損壞,而在變溫干燥中,當(dāng)物料處于降溫或者停止加熱階段,有足夠的時(shí)間讓中心的水分?jǐn)U散到表面。因此,變溫干燥能夠提高產(chǎn)品品質(zhì),減少熱量對(duì)表層的破壞[7]。THEWES等[8]探究了靜態(tài)和動(dòng)態(tài)干燥溫度對(duì)巴頓山核桃仁品質(zhì)的影響,結(jié)果表明,動(dòng)態(tài)變溫干燥對(duì)山核桃仁表皮色澤變化影響較小,同時(shí)山核桃仁的醛和酮含量較低,說(shuō)明該干燥過(guò)程產(chǎn)生的不愉快氣味較少;而60 ℃的靜態(tài)干燥雖然縮短了干燥時(shí)間,但高溫干燥易導(dǎo)致脂質(zhì)發(fā)生二次氧化,使得山核桃仁的醛和酮含量增加,產(chǎn)生酸敗等不良?xì)馕丁侵腥A等[9]探究了階段式變溫干燥對(duì)枸杞品質(zhì)的影響,與恒溫干燥相比,階段式變溫干燥縮短了干燥時(shí)間,減少了色差變化。
本研究采用變溫烘制的方法對(duì)駿棗進(jìn)行烘制,探究各階段烘制溫度和水分轉(zhuǎn)化對(duì)駿棗品質(zhì)的影響,以期提高駿棗干燥速率,減少營(yíng)養(yǎng)物質(zhì)的損失。通過(guò)單因素試驗(yàn),確定各試驗(yàn)因素的閾值;利用響應(yīng)面法優(yōu)化駿棗變溫干燥最佳工藝;最后,以恒溫干燥的駿棗為對(duì)照,測(cè)定糖酸比、內(nèi)部褐變程度、色差、硬度、咀嚼度、可滴定酸、多酚、黃酮、抗壞血酸和抗氧化能力等參數(shù),比較兩種干燥方式干燥駿棗品質(zhì),為駿棗變溫烘制工藝的推廣應(yīng)用提供理論基礎(chǔ)。
駿棗原料產(chǎn)自新疆和田昆玉當(dāng)?shù)貤棃@,干基含水率為21%左右,果實(shí)采摘后立即送往果蔬貯藏保鮮試驗(yàn)中心。挑選無(wú)機(jī)械損傷、無(wú)腐爛、無(wú)霉變、大小均勻的樣品,在溫度(0±1)℃、相對(duì)濕度80%~95%條件下儲(chǔ)藏。
主要儀器設(shè)備:X3R高速冷凍離心機(jī),美國(guó)賽默飛世爾;UV 2600紫外-可見(jiàn)分光光度計(jì),島津中國(guó)有限公司;XB 220A分析天平,Precisa稱質(zhì)量設(shè)備有限公司;TA.GEL質(zhì)構(gòu)儀,蘇州保曼精密儀器有限公司;BGZ-246電熱鼓風(fēng)干燥箱,上海博訊醫(yī)療生物儀器股份有限公司。
1.2.1 單因素試驗(yàn)
選擇顏色、大小、形狀均勻的駿棗(初始含水率為21%,以干基計(jì)),樣品按照50 g/dm2均勻平鋪于干燥箱中,相對(duì)濕度保持在60%±5%,烘箱風(fēng)速為1 m/s,模擬烘房干燥過(guò)程。駿棗在清水中浸泡5 min,烘箱40 ℃預(yù)熱30 min,設(shè)計(jì)前期溫度(40、45、50、55和60 ℃)、前期水分轉(zhuǎn)換點(diǎn)(20.0%、19.5%、19.0%、18.5%和18.0%)、中期溫度(55、60、65、70和75 ℃)、中期水分轉(zhuǎn)換點(diǎn)(18.0%、17.5%、17.0%、16.5%和16.0%)和后期溫度(45、50、55、60和65 ℃)共5個(gè)單因素試驗(yàn),每個(gè)因素取5個(gè)水平,每30 min稱量一次,當(dāng)含水率為15%時(shí)為干燥終點(diǎn)。
為給予消費(fèi)者良好的口感,選取糖酸比作為指標(biāo),糖酸比在果實(shí)感官評(píng)價(jià)中起著重要作用,在先前的恒溫烘制[10]試驗(yàn)中發(fā)現(xiàn),高溫烘制(60、70和80 ℃)的駿棗糖酸比更高,但同時(shí)也會(huì)引起果肉內(nèi)部嚴(yán)重的褐變,而褐變是對(duì)消費(fèi)者視覺(jué)感官最直觀的影響因素[11],在設(shè)計(jì)工藝時(shí),為保證駿棗擁有一個(gè)較好的口感同時(shí),還要減少果肉的褐變,因此,本研究選取糖酸比、褐變度這兩個(gè)指標(biāo)進(jìn)行優(yōu)化。
1.2.2 響應(yīng)面試驗(yàn)
根據(jù)單因素試驗(yàn)結(jié)果,選取前期溫度、中期水分轉(zhuǎn)換點(diǎn)和后期溫度為試驗(yàn)因素,各因子水平設(shè)置及編碼見(jiàn)表1。以糖酸比1和內(nèi)部褐變度2作為響應(yīng)值,進(jìn)行響應(yīng)面試驗(yàn)。
表1 響應(yīng)面試驗(yàn)因素與水平
1.2.3 品質(zhì)指標(biāo)測(cè)定
色差使用手持式智能分光光度計(jì)(CIE LAB,測(cè)量直徑:8 mm;中國(guó)3NH科技有限公司YS3060)測(cè)量樣品的表面顏色參數(shù)。測(cè)定得到、、值,色差值Δ按照式(1)[12]計(jì)算。
Δ=[(L-0)2+(a-0)2+(b-0)2]1/2(1)
式中L、a、b為干制后駿棗表皮的明亮度、紅綠值、藍(lán)黃值;0、0、0為干制前駿棗表皮的明亮度、紅綠值及藍(lán)黃值。
硬度和咀嚼度使用質(zhì)構(gòu)儀進(jìn)行測(cè)定,選用圓柱形探針進(jìn)行試驗(yàn),下壓速度為5 mm/s,向上速度為5 mm/s,壓縮間隔為5 s。結(jié)果表示為N/m。
根據(jù)CHEN等[13]報(bào)道的方法計(jì)算樣品含水率。樣品初始含水率測(cè)定方法參照GB 5009.3-2010直接干燥法進(jìn)行測(cè)定[14]。含水率(moisture content,M)參照式(2)進(jìn)行計(jì)算。
M=[M-0(1-0)]/0(1-0)(2)
式中M為時(shí)刻駿棗質(zhì)量,g;0為駿棗初始質(zhì)量,g;0為駿棗初始濕基含水率,%;M為駿棗時(shí)刻干基含水率,%。
總糖采用苯酚硫酸法[15],在波長(zhǎng)485 nm處測(cè)定反應(yīng)液的吸光值。結(jié)果表示為g/100g,以干質(zhì)量計(jì)。
可滴定酸采用酸堿滴定法,記錄氫氧化鈉滴定液的用量。結(jié)果表示為g/100g,以干質(zhì)量計(jì)。
內(nèi)部褐變采用WANG等[16]的方法。取5 g樣品,使用50%甲醇溶液研磨,超聲提取20 min(超聲功率320 W),在4 ℃下靜置30 min,8 000 r/min離心10 min,取上清液在420 nm下測(cè)吸光值,以420 nm/g干物質(zhì)的吸光度(420)表示褐變程度。
1.2.4 抗氧化物質(zhì)及抗氧化能力測(cè)定
總酚采用福林酚比色法[17]進(jìn)行測(cè)定,在760 nm處測(cè)定反應(yīng)液的吸光值,結(jié)果表示為g/kg,以干質(zhì)量計(jì)。
黃酮含量采用LIU等[18]的方法進(jìn)行測(cè)定。取2 mL提取物于10 mL試管中再加入0.3 mL 5%NaNO2溶液,6 min后依次加入0.3 mL10%AlCl3,4 mL10%NaOH和3.4 mL蒸餾水。將溶液充分混合,并在510 nm處測(cè)其吸光值。試驗(yàn)重復(fù)3次,結(jié)果表示為g/kg,以干質(zhì)量計(jì)。
抗壞血酸的測(cè)定。稱取10 g果肉樣品置于研缽中,加入20 mL 5%三氯乙酸(trichloroacetic acid,TCA),在冰浴條件下研磨成漿狀,轉(zhuǎn)入到100 mL容量瓶中,并用5% TCA溶液定容至刻度,混合、提取10 min后,過(guò)濾,收集濾液備用。取1 mL樣品提取液于試管中,加入1.0 mL 5% TCA溶液,再加入無(wú)水乙醇1 mL,0.4%磷酸-乙醇溶液0.5 mL,0.5% BP-乙醇溶液1 mL,0.03% FeCl3-乙醇0.5 mL,進(jìn)行反應(yīng)、測(cè)定。記錄反應(yīng)體系在波長(zhǎng)534 nm處吸光值。試驗(yàn)重復(fù)3次,結(jié)果表示為g/kg,以干質(zhì)量計(jì)。
抗氧化能力的測(cè)定。稱取0.1 g組織,加入1 mL預(yù)冷的提取液,冰浴勻漿,4 ℃ 10 000 r/min離心5 min,取上清液置于冰上待測(cè)。在離心管中依次加入鐵離子還原能力(ferric ion reducing antioxidant power,F(xiàn)RAP)工作液900 μL,待測(cè)樣本30 μL,蒸餾水90 μL。充分混勻,室溫顯色10 min,測(cè)定593 nm處吸光值。試驗(yàn)重復(fù)3次,結(jié)果表示為μmol/g。
采用SPSS18.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析和相關(guān)分析。使用Design-Expert 8軟件對(duì)Box-Behnken中心組合試驗(yàn)進(jìn)行線性回歸和優(yōu)化。
圖1展示了駿棗變溫干燥的單因素試驗(yàn)結(jié)果。經(jīng)預(yù)處理后,對(duì)每個(gè)單一因素進(jìn)行試驗(yàn),探究前期溫度、前期水分轉(zhuǎn)換點(diǎn)、中期溫度、中期水分轉(zhuǎn)換點(diǎn)和后期溫度對(duì)駿棗糖酸比和褐變度的影響,以選出最佳單因素水平。
糖酸比隨著前期溫度的升高,呈先上升后下降的趨勢(shì)(圖1a)。干燥前期,果實(shí)的水分逐漸散失,使得棗中的可溶性糖和可滴定酸濃度增加,糖酸比存在最大值;李瓊等[19]的結(jié)果表明較高的己糖激酶會(huì)加速果糖和葡萄糖磷酸化,這不利于果實(shí)中糖類的積累,在45 ℃時(shí),糖酸比最高,達(dá)44.08,可能與此溫度下己糖激酶的活性受到抑制有關(guān),果實(shí)中己糖(果糖+葡萄糖)的消耗減少,使得總糖含量較高,從而增加了糖酸比。在先前研究恒溫烘制工藝時(shí)所測(cè)的還原糖和氨基酸結(jié)果發(fā)現(xiàn),豐富的氨基酸和還原糖為美拉德反應(yīng)提供了充足的反應(yīng)底物,這與高鵬等[20]的研究結(jié)果一致,同時(shí)還檢測(cè)出了糠醛、呋喃、5-甲基-2-呋喃甲醛、2-甲基吡嗪等美拉德反應(yīng)揮發(fā)性成分,它們是多條美拉德反應(yīng)途徑的共同中間產(chǎn)物。此外還發(fā)現(xiàn)烘制過(guò)程中駿棗的可滴定酸含量隨著烘制過(guò)程呈現(xiàn)逐漸升高趨勢(shì)。由于長(zhǎng)時(shí)間的高溫使得棗中部分還原糖參與了美拉德反應(yīng),而有機(jī)酸在不斷積累,從而使得糖酸比隨著前期溫度升高而降低。由褐變度的變化可知,隨著干燥溫度的升高,果實(shí)的褐變程度加劇,高溫加速了美拉德反應(yīng)產(chǎn)物類黑素的生成,使得果肉內(nèi)部出現(xiàn)不同程度的褐變,歐陽(yáng)夢(mèng)云[21]在南瓜片的熱風(fēng)干燥過(guò)程中也發(fā)現(xiàn)了類似的結(jié)果。我們的研究發(fā)現(xiàn)前期溫度顯著(<0.05)影響糖酸比和褐變度。因此,綜合糖酸比和褐變度的結(jié)果,選擇適宜的前期溫度為45 ℃。
隨著前期水分轉(zhuǎn)換點(diǎn)的升高,糖酸比呈現(xiàn)先上升后下降的趨勢(shì)(圖1b)。變溫干燥是一個(gè)連續(xù)的過(guò)程,所以前期水分轉(zhuǎn)換點(diǎn)越高,前期階段烘制的時(shí)間越短,中期階段烘制的時(shí)間越長(zhǎng)。糖酸比在水分轉(zhuǎn)換點(diǎn)為19.5%時(shí)達(dá)到最大45.69,可能是因?yàn)榈偷乃洲D(zhuǎn)換點(diǎn)使得駿棗在前期階段低溫下烘制的時(shí)間延長(zhǎng),此條件下激酶比較活躍不利于糖分積累,而有機(jī)酸在不斷積累,導(dǎo)致糖酸比下降;而更高的水分轉(zhuǎn)換點(diǎn)使駿棗更早地進(jìn)入中期階段,駿棗在高溫下烘制的時(shí)間延長(zhǎng),美拉德反應(yīng)加劇,糖類物質(zhì)消耗較多,導(dǎo)致糖酸比下降。褐變度隨水分轉(zhuǎn)換點(diǎn)的增加呈上升趨勢(shì),且影響不顯著(>0.05),前期水分轉(zhuǎn)換點(diǎn)與駿棗在中期階段烘制的時(shí)間成正比,轉(zhuǎn)換點(diǎn)越高,中期烘制時(shí)間越長(zhǎng),美拉德反應(yīng)產(chǎn)物積累越多,褐變度越高。因此,選擇前期水分轉(zhuǎn)換點(diǎn)為19.5%。
注:固定因素水平為:前期溫度45 ℃,前期水分轉(zhuǎn)換點(diǎn)19%,中期溫度:65 ℃,中期水分轉(zhuǎn)換點(diǎn):16%,后期溫度:55 ℃。
隨著中期溫度的升高,糖酸比呈現(xiàn)上升趨勢(shì),在75 ℃時(shí)達(dá)到最大(圖1c),可能是高溫使部分果膠開(kāi)始降解,這與丁勝華等[22]的研究結(jié)果一致,此外ZHOU等[23]和LI等[24]的研究結(jié)果表明,長(zhǎng)時(shí)間的熱處理會(huì)導(dǎo)致果膠聚合物鏈的降解,使得總糖含量升高;同時(shí)過(guò)高的溫度使部分酸類物質(zhì)降解,進(jìn)而造成糖酸比增大。褐變度隨中期溫度的升高呈上升趨勢(shì),這與張寶善等[25]的研究一致,隨著干制溫度升高,棗肉的褐變度逐漸增加。高溫加劇了美拉德反應(yīng)、抗壞血酸分解等,這些反應(yīng)均可使駿棗內(nèi)部顏色加深,因此不宜選擇過(guò)高的溫度。此外,較低的中期溫度對(duì)糖酸比和褐變度的影響不顯著(>0.05)。綜合考量糖酸比和褐變度,應(yīng)選擇65 ℃作為中期溫度。
隨著中期水分轉(zhuǎn)換點(diǎn)的增加,糖酸比呈現(xiàn)先上升后下降的趨勢(shì),褐變度呈現(xiàn)下降趨勢(shì)(圖1d),且中期水分轉(zhuǎn)換點(diǎn)顯著(<0.05)影響糖酸比和褐變度。中期水分轉(zhuǎn)換點(diǎn)越低,中期階段烘制的時(shí)間越長(zhǎng),長(zhǎng)時(shí)間高溫烘制雖然一定程度上增加了總糖含量,但也加劇了美拉德反應(yīng),使褐變加劇顏色加深;中期水分轉(zhuǎn)換點(diǎn)越高,中期階段烘制的時(shí)間越短,部分果膠不能充分分解為可溶性糖,導(dǎo)致總糖含量降低,糖酸比下降,美拉德反應(yīng)時(shí)間縮短,褐變度較低。因此選擇中期水分轉(zhuǎn)換點(diǎn)為17.0%。
隨著后期溫度的增加,糖酸比呈先上升后下降的趨勢(shì)(圖1e),可能是因?yàn)樵诟稍锖笃冢鈱铀至魇л^快,造成內(nèi)外部水分含量不均勻,使部分細(xì)胞破壞[26],造成部分酸類物質(zhì)釋放,導(dǎo)致糖酸比下降;此外由于中期高溫環(huán)境,使得一些氧化酶類失活變性,減少了后期階段的氧化。因此,后期階段溫度越低,駿棗內(nèi)部褐變度也越低,既避免了氧化產(chǎn)生的褐變,又避免了美拉德反應(yīng)產(chǎn)生的褐變。后期溫度顯著(<0.05)影響糖酸比和褐變度。因此,選擇適宜的后期溫度為50 ℃。
本試驗(yàn)中前期主要是對(duì)駿棗進(jìn)行預(yù)熱處理以及增強(qiáng)合成酶的活性以增加總糖含量,因此,前期溫度不宜過(guò)高;中期需要較高的溫度使部分果膠降解為可溶性總糖,但過(guò)高的溫度會(huì)使駿棗內(nèi)部褐變嚴(yán)重,因此,中期需要選擇適宜的高溫進(jìn)行干燥;當(dāng)進(jìn)入到烘制后期時(shí),既要將駿棗烘至干燥終點(diǎn),也要防止結(jié)殼現(xiàn)象和美拉德反應(yīng)的發(fā)生,因此,后期溫度不宜過(guò)高。經(jīng)以上單因素試驗(yàn)分析,最終得出不同單因素的最優(yōu)方案如下:前期溫度為45 ℃,前期水分轉(zhuǎn)換點(diǎn)為19.5%,中期溫度為65 ℃,中期水分轉(zhuǎn)換點(diǎn)為17.0%,后期溫度為50 ℃。
2.2.1 響應(yīng)面試驗(yàn)結(jié)果
根據(jù)單因素試驗(yàn)結(jié)果,剔除影響不顯著的因素,固定前期水分轉(zhuǎn)換點(diǎn)為19.5%,中期溫度為65 ℃,最終選擇前期溫度,中期水分轉(zhuǎn)換點(diǎn),后期溫度作為試驗(yàn)因素,以糖酸比、內(nèi)部褐變度作為響應(yīng)值進(jìn)行響應(yīng)面試驗(yàn)。響應(yīng)面試驗(yàn)設(shè)計(jì)方案及結(jié)果見(jiàn)表2。對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行多元回歸擬合后得到變溫干燥糖酸比1和內(nèi)部褐變度2與前期溫度()、中期水分轉(zhuǎn)換點(diǎn)()和后期溫度()的二次多項(xiàng)式回歸方程為
1=-4 605.58+19.425 35+443.383 5+17.647 5+
0.189-0.004 6+0.15-0.252 42-13.4292-
0.201 592(3)
2=210.808 75-1.344 39-16.868 1-1.275 88+
0.002 2+0.001 47+0.008 8+0.013 9492+
0.471 92+0.010 9092(4)
表2 響應(yīng)面試驗(yàn)設(shè)計(jì)與結(jié)果
2.2.2 回歸模型方差分析
表3為單指標(biāo)回歸方程方差分析,由表3可知,1、2模型的<0.001,表明兩個(gè)模型極顯著。在1模型中,其決定系數(shù)2=0.986 1,說(shuō)明模型擬合較好,根據(jù)方差分析可得前期溫度()、中期水分轉(zhuǎn)換點(diǎn)()和后期溫度()對(duì)駿棗糖酸比的影響從大到小為、、;在2模型中,線性回歸極顯著(<0.001),且失擬項(xiàng)不顯著(=0.084 3>0.01),其2=0.955 8,說(shuō)明回歸模型與實(shí)際數(shù)據(jù)擬合較好,因此可以用該模型對(duì)2進(jìn)行預(yù)測(cè)。根據(jù)方差分析可得前期溫度()、中期水分轉(zhuǎn)換點(diǎn)()和后期溫度()對(duì)駿棗褐變度的影響從大到小為、、。
2.2.3 多目標(biāo)優(yōu)化與驗(yàn)證
為了使駿棗品質(zhì)最佳,在基于響應(yīng)面法的多目標(biāo)優(yōu)化中,通過(guò)對(duì)多個(gè)響應(yīng)變量的極值點(diǎn)進(jìn)行優(yōu)化,達(dá)到糖酸比最大,褐變度最小。因此,對(duì)響應(yīng)變量進(jìn)行相關(guān)設(shè)置,糖酸比的優(yōu)化目標(biāo)是使其最大,褐變度的優(yōu)化目標(biāo)是使其最小。通過(guò)對(duì)參數(shù)進(jìn)行設(shè)置后,得到了變溫干燥工藝參數(shù)多目標(biāo)優(yōu)化的最佳參數(shù)組合:前期溫度44.36 ℃、中期水分轉(zhuǎn)換點(diǎn)17.16%、后期溫度49.20 ℃。綜合考慮到實(shí)際生產(chǎn),將優(yōu)化條件調(diào)整為:前期溫度44 ℃、中期水分轉(zhuǎn)換點(diǎn)17.0%、后期溫度49 ℃。驗(yàn)證結(jié)果如表4所示,實(shí)際值與模型預(yù)測(cè)值的相對(duì)誤差分別為0.9%和1.3%,均小于5%。
表3 單指標(biāo)回歸方程方差分析
注:<0.001表示差異極顯著。
Note:< 0.001 indicates a highly significant difference.
表4 驗(yàn)證試驗(yàn)結(jié)果
含水率曲線被認(rèn)為是解釋干燥過(guò)程中干燥行為的好方法[27]。不同干燥條件下,駿棗含水率隨時(shí)間變化曲線如圖2所示。隨著干燥時(shí)間的延長(zhǎng),棗果的含水率逐漸降低。由圖2可以看出,在干燥初期,干燥速率較快[28],這是因?yàn)轵E棗在干燥初期含水率較高,水分損失較快;隨著干燥時(shí)間的延長(zhǎng),駿棗外部水分損失較多,從而形成結(jié)殼,使得內(nèi)部水分較難去除,導(dǎo)致干燥速率下降。恒溫烘制和變溫烘制所需時(shí)間分別為14.17和12.30 h,與60 ℃恒溫干燥相比,變溫干燥所需的干燥時(shí)長(zhǎng)縮短了13.2%。變溫干燥前期,由于干燥溫度較低,水分難以從內(nèi)部轉(zhuǎn)移出來(lái),加之駿棗放入烘箱時(shí)間較短,受熱不均勻,導(dǎo)致此階段干燥速率較低;干燥中期,較高的干燥溫度可以迅速去除棗果表面的水分,由于高溫下保持時(shí)間較短,也減少了果實(shí)表皮硬化現(xiàn)象的產(chǎn)生,同時(shí)也加快了水分的蒸發(fā),提高了干燥速率。恒溫干燥在干燥后期,由于長(zhǎng)時(shí)間處于高溫狀態(tài),使駿棗表面形成硬殼,水分更難從內(nèi)部轉(zhuǎn)移到表面;硬殼的形成以及糖分轉(zhuǎn)移并凝結(jié)于表層使得駿棗內(nèi)部溫度高于表面溫度[29],不利于水分的蒸發(fā),還延長(zhǎng)了干燥時(shí)間。因此,在變溫干燥的后期階段,為了避免出現(xiàn)上述現(xiàn)象,設(shè)置了后期溫度低于中期溫度,采取降溫式干燥的方法,使內(nèi)外部溫度均勻且減少硬殼的產(chǎn)生,一方面可以縮短干燥時(shí)間,另一方面減少了后期因高溫引起的營(yíng)養(yǎng)物質(zhì)流失。
圖2 不同干燥方法‘駿棗’干燥特性曲線
2.4.1 不同烘制方式對(duì)駿棗色澤和質(zhì)地的影響
顏色是選擇食物的一個(gè)基本質(zhì)量參數(shù),直接影響消費(fèi)者對(duì)其他感官屬性的感知[30-31],不同烘制方式對(duì)駿棗表皮色澤影響也是不同的。如表5所示,烘制后、、值均有下降,說(shuō)明烘制過(guò)程使駿棗表皮色澤變得灰暗,其中值變化較大,與未烘制駿棗相比,恒溫和變溫烘制分別降低了20.4%和8.1%(<0.05)。值的變化與駿棗葉綠素、類胡蘿卜素、花青素和一些酚類物質(zhì)的變化有關(guān),這些色素很容易受熱氧化、降解[32]。值降低說(shuō)明在烘制的過(guò)程中紅色逐漸褪去,綠色增加,導(dǎo)致駿棗表皮泛黃,這與高溫下的長(zhǎng)時(shí)間烘制密切相關(guān)。用色差值?來(lái)表示產(chǎn)品的整體顏色變化,?越低表示產(chǎn)品顏色變化越小,質(zhì)量越好[6]。與恒溫烘制相比,變溫烘制的?減少了34.4%,這與變溫烘制有效限制高溫時(shí)間有關(guān)。
駿棗長(zhǎng)時(shí)間暴露在高溫下會(huì)引發(fā)美拉德反應(yīng),從而使內(nèi)部發(fā)生褐變。由表5可知,烘制后駿棗的內(nèi)部褐變度均高于未烘制組,且恒溫烘制的駿棗褐變度較高,這與長(zhǎng)時(shí)間高溫加劇了美拉德反應(yīng)有關(guān)[33];與恒溫烘制相比,變溫烘制駿棗的褐變度減少了23%,變溫烘制有較低的褐變度,一方面與中期階段在高溫下暴露的時(shí)間較短有關(guān),另一方面與變溫烘制中期階段較高的溫度(65 ℃)能更快更有效地使引發(fā)褐變的多酚氧化酶和過(guò)氧化物酶失活有關(guān)[34-35]。
WOJDYLO等[36]的研究表明,軟組織結(jié)構(gòu)和低咀嚼性的干棗最受消費(fèi)者歡迎。由表5可以看出,烘制均降低了駿棗的硬度和咀嚼度,與未烘制相比,恒溫和變溫烘制的硬度分別降低了11.3%和24.8%,這是由于在烘制的過(guò)程中,水分的損失導(dǎo)致細(xì)胞之間出現(xiàn)較大的空洞,從而使硬度降低[6];與恒溫烘制相比,變溫烘制駿棗的硬度減少了15.1%,硬度的變化與駿棗表面出現(xiàn)結(jié)殼現(xiàn)象密切相關(guān),與變溫烘制相比,恒溫烘制更易導(dǎo)致駿棗表面出現(xiàn)結(jié)殼,因此恒溫烘制駿棗的硬度高于變溫烘制駿棗。與未烘制相比,恒溫和變溫烘制的咀嚼度分別降低了4.2%和8.9%,由于高溫烘制能夠有效去除駿棗內(nèi)部的水分,出現(xiàn)多孔結(jié)構(gòu)[37],因此恒溫和變溫烘制的棗果咀嚼度均有下降。與恒溫烘制相比,變溫烘制駿棗的咀嚼度減少了4.8%,隨著烘制時(shí)間的增加,恒溫和變溫烘制的果實(shí)細(xì)胞組織結(jié)構(gòu)均會(huì)出現(xiàn)不同程度的塌陷和收縮[38],而變溫烘制中期階段的高溫烘制時(shí)間較短,減少了這種現(xiàn)象的發(fā)生,因此,變溫烘制擁有更低的咀嚼度。
表5 不同烘制方式對(duì)‘駿棗’色澤和質(zhì)地的影響
注:同列不同字母表示差異顯著(<0.05),下同。
Note: Different letters in the same column indicate significant differences(<0.05). The same below.
2.4.2 不同烘制方式對(duì)駿棗營(yíng)養(yǎng)物質(zhì)的影響
糖酸比在果實(shí)感官評(píng)價(jià)中起著重要作用,果實(shí)糖酸比越高,口感越好[39]。駿棗烘制后水分大量損失,使得總糖、可滴定酸濃度增加,進(jìn)而引起糖酸比發(fā)生變化。不同烘制方式對(duì)駿棗總糖、可滴定酸和糖酸比的影響如表6所示,由表6可知,兩種烘制方式均提高了駿棗的總糖含量,這是因?yàn)闊犸L(fēng)干制處理能夠促進(jìn)果實(shí)中己糖向蔗糖轉(zhuǎn)化,有利于可溶性總糖的積累,這與狄建兵等[40]得出的熱風(fēng)處理能夠有效地提高棗果實(shí)糖含量和品質(zhì)的解釋一致。此外,本研究發(fā)現(xiàn)恒溫烘制后的駿棗總糖含量最高,為78.91 g/100g,是未烘制駿棗的1.54倍,變溫烘制后的駿棗總糖含量為未烘制駿棗的1.38倍。與恒溫烘制相比,變溫烘制駿棗的總糖減少了10.3%,這是由于恒溫烘制過(guò)程中較長(zhǎng)時(shí)間的高溫易導(dǎo)致部分果膠發(fā)生降解,使得總糖含量升高。可滴定酸含量的變化與總糖變化趨勢(shì)一致,恒溫烘制的駿棗可滴定酸含量為1.58 g/100g;變溫烘制后的駿棗可滴定酸含量為1.32 g/100g,是未烘制駿棗的1.6倍。與恒溫烘制相比,變溫烘制駿棗的可滴定酸減少了16.5%,恒溫烘制的駿棗可滴定酸含量較高可能是果實(shí)在烘制的過(guò)程中長(zhǎng)時(shí)間暴露于高溫下,加劇了美拉德反應(yīng),產(chǎn)生了甲酸、醋酸等有機(jī)酸,此外氨基酸中的堿性基團(tuán)被消耗,進(jìn)一步使得可滴定酸含量增加[33]??傻味ㄋ岷吭诤艽蟪潭壬嫌绊懱撬岜龋M(jìn)而影響駿棗的口感[39]。從表6中可以看出,未烘制駿棗的糖酸比最高,恒溫烘制駿棗的糖酸比最低,變溫烘制駿棗的糖酸比介于二者之間,與60 ℃恒溫烘制相比,變溫烘制駿棗的糖酸比增加了7.4%。綜上,變溫烘制能夠避免駿棗在高溫下的長(zhǎng)時(shí)間暴露,至烘制終點(diǎn)時(shí),能較好地保持駿棗品質(zhì)。
2.4.3 不同烘制方式對(duì)駿棗抗氧化物質(zhì)的影響
通常樣品干制后的抗壞血酸和酚類物質(zhì)如果能被較好地保留,則可認(rèn)為其他基本營(yíng)養(yǎng)成分損失較少[41]。如表7所示,對(duì)駿棗中的抗氧化物質(zhì)進(jìn)行測(cè)定發(fā)現(xiàn),抗壞血酸含量和總黃酮含量在不同處理組中的由大到小比較結(jié)果為:未烘制、變溫烘制、恒溫烘制;總酚含量最高的是變溫烘制駿棗,其次是未烘制駿棗,恒溫烘制的駿棗總酚含量最低;變溫烘制駿棗的抗氧化能力最高,為89.21 μmol/g,恒溫烘制駿棗抗氧化能力最低,未烘制的駿棗抗氧化能力介于二者之間。與恒溫烘制相比,變溫烘制駿棗的總酚、總黃酮、抗壞血酸含量和抗氧化能力分別增加了1.18 g/kg、0.08 g/kg、0.6 g/kg和2.6 μmol/g,差異顯著(<0.05)。
表6 不同烘制方式‘駿棗’的總糖、可滴定酸和糖酸比
果實(shí)在高溫烘制的過(guò)程中抗氧化物質(zhì)會(huì)發(fā)生一定的熱降解和熱損失。本研究中恒溫烘制駿棗的總酚含量低于未烘制的駿棗,一方面可能是烘制的高溫導(dǎo)致酚類物質(zhì)發(fā)生了熱降解[42-43],另一方面,烘制使植物細(xì)胞結(jié)構(gòu)被破壞,導(dǎo)致酚類物質(zhì)從細(xì)胞基質(zhì)中釋放,加劇了酚類物質(zhì)的流失[44],從而使總酚含量降低。變溫烘制駿棗的總酚含量高于恒溫烘制駿棗和未烘制駿棗,主要是變溫烘制在高溫下持續(xù)的時(shí)間較短,從而減少了酚類物質(zhì)的熱降解;此外,有研究發(fā)現(xiàn),紅棗中除了游離酚,還含有通過(guò)酯鍵與寡糖或多糖相連的結(jié)合酚[45],適當(dāng)?shù)母邷貢?huì)引起酯鍵斷裂,使得結(jié)合酚變成游離酚,這可能是變溫烘制駿棗總酚含量較高的另一個(gè)原因。CONDE等[46]和GONG等[47]的研究也表明適當(dāng)?shù)母芍铺幚砟茉谝欢ǔ潭壬咸岣呖偡拥暮?,這與本文的結(jié)果一致。
表7 不同烘制方式‘駿棗’的抗氧化物質(zhì)的抗氧化能力
抗壞血酸是衡量果蔬營(yíng)養(yǎng)品質(zhì)的重要指標(biāo)[48]。由表7可知,烘制駿棗的抗壞血酸含量均低于未烘制駿棗,這是因?yàn)榭箟难釋?duì)光和熱非常敏感[49],在烘制過(guò)程中易發(fā)生熱降解,導(dǎo)致其含量下降;變溫烘制駿棗的抗壞血酸含量高于恒溫烘制駿棗,這是由于變溫烘制的高溫烘制階段時(shí)間較短(2.33 h),僅為恒溫烘制時(shí)長(zhǎng)的16.4%,減少了駿棗在高溫下暴露的時(shí)間,降低了抗壞血酸的熱降解率。此外,恒溫烘制總時(shí)長(zhǎng)高于變溫烘制,烘制時(shí)間越長(zhǎng),抗壞血酸損失越大,這與MRAD等[50]的研究結(jié)果一致。
黃酮類化合物廣泛存在于植物中,是一類具有多種功效的功能活性物質(zhì)。由表7可以看出,恒溫和變溫烘制后的駿棗總黃酮含量均有下降,這是由于黃酮對(duì)溫度較敏感,高溫處理易導(dǎo)致其含量變化[51],這與王慶衛(wèi)等[52]探究不同熱風(fēng)干燥溫度均降低了紅棗中總黃酮含量的結(jié)果相一致;變溫烘制縮短了駿棗烘制的時(shí)間,從而減少了黃酮類物質(zhì)的熱降解,這是變溫烘制駿棗的總黃酮含量高于恒溫烘制駿棗的主要原因。
為了進(jìn)一步探究干燥過(guò)程中酚類物質(zhì)與抗氧化能力的關(guān)系,本研究進(jìn)一步測(cè)定了鐵離子還原能力(FRAP)來(lái)衡量駿棗抗氧化能力。研究發(fā)現(xiàn)棗果中總酚含量與其FRAP值呈現(xiàn)顯著正相關(guān)[53]。此外,數(shù)據(jù)分析可以看出變溫烘制駿棗的總抗氧化能力高于未烘制駿棗,這是因?yàn)橹衅陔A段較高的溫度破壞了細(xì)胞結(jié)構(gòu),使生物活性物質(zhì)釋放出來(lái),導(dǎo)致駿棗抗氧化能力升高[54];另外這可能還與美拉德反應(yīng)產(chǎn)物的形成有關(guān),這些產(chǎn)物可能會(huì)產(chǎn)生不同的抗氧化性能[55];持續(xù)的高溫會(huì)使生物活性物質(zhì)發(fā)生熱降解,從而降低了抗氧化能力,這也是恒溫烘制抗氧化能力較低的原因,這與GOZTEPE等[56]的研究結(jié)果相一致。
1)通過(guò)響應(yīng)面試驗(yàn)優(yōu)化駿棗變溫烘制工藝,最佳烘制條件為:前期溫度44 ℃、前期水分轉(zhuǎn)換點(diǎn)19.5%,中期溫度65 ℃,中期水分轉(zhuǎn)換點(diǎn)17.0%、后期溫度49 ℃,糖酸比53.65,褐變度4.02。干燥時(shí)間12.30 h,與60 ℃恒溫干燥相比,變溫干燥縮短了13.2%。
2)與恒溫烘制(60 ℃)相比,變溫烘制縮短了駿棗烘制的時(shí)間,在色澤質(zhì)地方面,變溫烘制駿棗的表皮色差、內(nèi)部褐變度、咀嚼度和硬度都較低(<0.05);此外,變溫烘制的駿棗還有較高的糖酸比,抗氧化物質(zhì)也得到了很好的保留。綜上所述,變溫烘制是駿棗干制的更好方法。
目前恒溫?zé)犸L(fēng)干燥工藝存在著品質(zhì)較差、干燥效率低等問(wèn)題,因此,本文所探究的多階段式變溫干燥工藝,在一定程度上提高干燥效率及品質(zhì),解決了傳統(tǒng)烘房干燥的能源和環(huán)境等問(wèn)題及恒溫?zé)犸L(fēng)干燥的品質(zhì)問(wèn)題,順應(yīng)駿棗制干的發(fā)展趨勢(shì),為新疆紅棗產(chǎn)業(yè)化發(fā)展提供新思路。
[1] 郝慧慧,邱雪,張海紅,等. 靈武長(zhǎng)棗貯藏過(guò)程中細(xì)胞壁降解及多糖結(jié)構(gòu)的變化[J]. 中國(guó)食品學(xué)報(bào),2022,22(9):199-207. HAO Huihui, QIU Xue, ZHANG Haihong, et al. Degradation of cell wall and changes of polysaccharide structure of Lingwu long jujube during the storage[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(9): 199-207. (in Chinese with English abstract)
[2] 彭振,王繼煥,鄒雪平. 紅棗干燥技術(shù)的研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械,2013,56(6):85-89. PENG Zhen, WANG Jihuan, ZOU Xueping. Research progress of jujube drying technology[J]. Farm Machinery, 2013, 56(6): 85-89. (in Chinese with English abstract)
[3] 蒲云峰. 駿棗苦味物質(zhì)鑒定及形成機(jī)理研究[D]. 杭州:浙江大學(xué),2019. PU Yunfeng. Identification of Bitter Compounds and Its Formation Mechanism of Jujube Fruit(Z.. cv. Junzao)[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[4] 王娟. 靈武長(zhǎng)棗貯藏期間果實(shí)硬度變化的生物學(xué)解析[D]. 銀川:寧夏大學(xué),2021. WANG Juan. Biological Analysis of Changes in Fruit Hardness of Lingwu Long Jujube During Storage[D]. Yinchuan: Ningxia University, 2021. (in Chinese with English abstract)
[5] 楊喬楠,弋曉康,李潔,等. 干燥風(fēng)溫對(duì)紅棗質(zhì)構(gòu)特性的影響規(guī)律研究[J]. 包裝與食品機(jī)械,2021,39(2):7-11. YANG Qiaonan, YI Xiaokang, LI Jie, et al. Research on the influencing law of drying air temperature on texture characteristics of jujube[J]. Packaging and Food Machinery, 2021, 39(2): 7-11. (in Chinese with English abstract)
[6] LIU Y, ZHANG W, YANG W, et al. The effects of drying temperature on the kinetics, color, structure, and pectin composition ofMill. cv. Junzao[J]. Journal of Food Processing and Preservation, 2021, 45(11): e15942.
[7] 姚斌,張緒坤,溫祥東,等. 國(guó)內(nèi)外農(nóng)產(chǎn)品變溫干燥研究進(jìn)展[J]. 食品科技,2015,40(7):94-98. YAO Bin, ZHANG Xukun, WEN Xiangdong, et al. Developments of variable temperature drying technology for agricultural products at home and abroad[J]. Food Science and Technology, 2015, 40(7): 94-98. (in Chinese with English abstract)
[8] THEWES F R, BOTH V, BRACKMANN A, et al. Dynamic and static drying temperatures for ‘Barton’pecans: Impacts on the volatile compounds profile and kernel color[J]. LWT, 2022, 161: 113393.
[9] 吳中華,李文麗,趙麗娟,等. 枸杞分段式變溫?zé)犸L(fēng)干燥特性及干燥品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):287-293. WU Zhonghua, LI Wenli, ZHAO Lijuan, et al. Drying characteristics and product quality ofunder stages-varying temperatures drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 287-293. (in Chinese with English abstract)
[10] 劉宇星. 烘制溫度對(duì)駿棗品質(zhì)特性及香氣含量影響[D]. 石河子:石河子大學(xué),2022. LIU Yuxing. Effects of Drying Temperature on Quality and Aroma Characteristics of Jujube (Mill. cv. Jun Zao)[D]. Shihezi: Shihezi University, 2022. (in Chinese with English abstract)
[11] 沈雨思,朱丹實(shí),潘越,等. NFC蘋(píng)果濁汁褐變與品質(zhì)相關(guān)性研究[J]. 食品科學(xué)技術(shù)學(xué)報(bào),2021,39(5):156-164. SHEN Siyu, ZHU Danshi, PAN Yue, et al. Study on correlation of browning and quality of NFC cloudy apple juice[J]. Journal of Food Science and Technology, 2021, 39(5): 156-164. (in Chinese with English abstract)
[12] 王吉強(qiáng),鄧?yán)?,裴昱鵬,等. 成熟度對(duì)冬棗真空脈動(dòng)干燥動(dòng)力學(xué)及產(chǎn)品品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(23):273-279. WANG Jiqiang, DENG Lizhen, PEI Yupeng, et al. Effects of maturity on pulsed vacuum drying kinetics and product quality of winter jujube[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 273-279. (in Chinese with English abstract)
[13] CHEN C, VENKITASAMY C, ZHANG W, et al. Effective moisture diffusivity and drying simulation of walnuts under hot air[J]. International Journal of Heat and Mass Transfer, 2020, 150(C): 119283.
[14] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). 食品安全國(guó)家標(biāo)準(zhǔn)食品中水分的測(cè)定:GB5009. 3-2016 [S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016.
[15] YUE F, ZHANG J, XU J, et al. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method[J]. Frontiers in Nutrition, 2022, 9: 963318.
[16] WANG C, CAO J, JIANG W. Effect of the drying method on browning of flesh, antioxidant compounds and antioxidant capacity of Chinese jujube (Mill. ) fruit[J]. Current Topics in Nutraceuticals Research, 2016, 14(2): 161-170.
[17] KUMAR D, LADANIYA M S, GURJAR M, et al. Impact of drying methods on natural antioxidants, phenols and flavanones of immature droppedL. Osbeck fruits[J]. Scientific Reports, 2022, 12(1): 6684.
[18] LIU X, ZHAO M, WANG J, et al. Antioxidant activity of methanolic extract of emblica fruit (L. ) from six regions in China[J]. Journal of food composition and Analysis, 2008, 21(3): 219-228.
[19] 李瓊,陳愷,洪晶陽(yáng),等. 杏干制過(guò)程中己糖激酶和果糖激酶調(diào)控糖代謝的研究[J]. 現(xiàn)代食品科技,2017,33(5):64-70. LI Qiong, CHEN Kai, HONG Jingyang, et al. Regulation of sugar metabolism in apricots by hexokinase and fructokinase during drying process[J]. Modern Food Science and Technology, 2017, 33(5): 64-70. (in Chinese with English abstract)
[20] 高鵬,孫欣,張仁堂. 紅棗揮發(fā)性化合物及其風(fēng)味形成機(jī)制研究進(jìn)展[J]. 食品科技,2022,47(11):93-98. GAO Peng, SUN Xin, ZHANG Rentang. Volatile compounds and formation mechanism of flavor of jujube (Mill. )[J]. Food Science and Technology, 2022, 47(11): 93-98. (in Chinese with English abstract)
[21] 歐陽(yáng)夢(mèng)云. 南瓜片熱風(fēng)干燥過(guò)程中色澤變化及美拉德反應(yīng)機(jī)理研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2021. OUYANG Mengyun. Research on Color Change and Maillard Reaction Mechanism of Pumpkin Slices During Hot Air Drying[D]. Changsha: Hunan Agricultural University, 2021. (in Chinese with English abstract)
[22] 丁勝華,王蓉蓉,李高陽(yáng),等. 不同干制方法對(duì)金絲小棗中糖類物質(zhì)的影響[J]. 食品工業(yè)科技,2016,37(15):129-133. DING Shenghua, WANG Rongrong, LI Gaoyang, et al. Effect of different drying methods on the saccharides of jujube fruits cv jinsixiaozao[J]. Science and Technology of Food Industry, 2016, 37(15): 129-133. (in Chinese with English abstract)
[23] ZHOU M, BI J F, LYU J, et al. Structural conversion of pectin fractions during heat processing in relation to the ability of inhibiting lipid digestion: A case study of hawthorn pectin[J]. Food Hydrocolloids, 2021, 117: 106721.
[24] LI L, WANG B, WANG Y C, et al. Effect of drying methods on the characterisation of pectin extracted from dried hawthorn fruit[J]. Journal of Food Measurement and Characterization, 2022, 16(5): 3670-3681.
[25] 張寶善,陳錦屏,李慧蕓. 熱風(fēng)干制對(duì)紅棗非酶褐變的影響[J]. 食品科學(xué),2006,27(10):139-142. ZHANG Baoshan, CHEN Jinping, LI Huiyun. Effect of hot air drying on nonenzymatic browning of chinese jujube[J]. Food Science, 2006, 27(10): 139-142. (in Chinese with English abstract)
[26] ZHAO C C, AMEER K, EUN J B. Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon[J]. LWT, 2021, 143: 111149.
[27] TUNDE-AKINTUNDE T Y. Mathematical modeling of sun and solar drying of chilli pepper[J]. Renewable Energy, 2011, 36(8): 2139-2145.
[28] 巨浩羽,肖紅偉,鄭霞,等. 干燥介質(zhì)相對(duì)濕度對(duì)胡蘿卜片熱風(fēng)干燥特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):296-304. JU Haoyu, XIAO Hongwei, ZHENG Xia, et al. Effect of hot air relative humidity on drying characteristics of carrot slabs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 296-304. (in Chinese with English abstract)
[29] 趙丹丹,陳冬,彭郁,等. 枸杞熱風(fēng)干燥過(guò)程動(dòng)力學(xué)模型及品質(zhì)分析[J]. 中國(guó)食品學(xué)報(bào),2018,18(3):114-124. ZHAO Dandan, CHEN Dong, PENG Yu, et al. Drying kinetics models and qualities analysis of lycium during hot air drying[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(3): 114-124. (in Chinese with English abstract)
[30] 段續(xù),徐一銘,任廣躍,等. 香菇分段變溫紅外噴動(dòng)床干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):293-302. DUAN Xu, XU Yiming, REN Guangyue, et al. Optimization of the drying process parameters for lentinus edodes in segment variable temperature infrared assisted spouted bed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 293-302. (in Chinese with English abstract)
[31] 巨浩羽,趙士豪,趙海燕,等. 階段降濕對(duì)山藥熱風(fēng)干燥特性和品質(zhì)的影響[J]. 中草藥,2021,52(21):6518-6527. JU Haoyu, ZHAO Shihao, ZHAO Haiyan, et al. Influence of step-down relative humidity on drying characteristic and quality of hot air drying ofslices[J]. Chinese Traditional and Herbal Drugs, 2021, 52(21): 6518-6527. (in Chinese with English abstract).
[32] SHI Q, ZHANG Z, SU J, et al. Comparative analysis of pigments, phenolics, and antioxidant activity of Chinese jujube (Mill. ) during fruit development[J]. Molecules, 2018, 23(8): 1917.
[33] 王桂欣. 棗粉干燥過(guò)程美拉德反應(yīng)程度及相關(guān)品質(zhì)變化與控制[D]. 泰安:山東農(nóng)業(yè)大學(xué),2016. WANG Guixin. Changes and Control of Maillard Reaction Extent and Related Quality in Drying Process of Jujube Powder[D]. Tai'an: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[34] ?,帲惡7?,袁越錦,等. 乙醇對(duì)紅棗片CO2低溫壓差膨化干燥品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):300-307. NIU Yao, CHEN Haifeng, YUAN Yuejin, et al. Effects of ethanol and CO2on the low temperature pressure explosion puffing drying quality of jujube slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 300-307. (in Chinese with English abstract)
[35] 劉德成,鄭霞,肖紅偉,等. 紅棗片冷凍-紅外分段組合干燥工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(17):293-302. LIU Decheng, ZHENG Xia, XIAO Hongwei, et al. Optimization of sequential freeze-infrared drying process of jujube slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 293-302. (in Chinese with English abstract)
[36] WOJDYLO A, FIGIEL A, LEGUA P, et al. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method[J]. Food Chemistry, 2016, 207: 170-179.
[37] 徐英英,文懷興,譚禮斌,等. 蘋(píng)果切片干燥收縮變形的孔道網(wǎng)絡(luò)模擬及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(12):289-298. XU Yingying, WEN Huaixing, TAN Libin, et al. Pore network simulation and experiments of drying shrinkage-deformation for apple slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 289-298. (in Chinese with English abstract)
[38] 牛玉寶,姚雪東,肖紅偉,等. 射頻輔助熱風(fēng)干燥對(duì)紅棗脆片質(zhì)構(gòu)特性和微觀結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(2):296-306. NIU Yubao, YAO Xuedong, XIAO Hongwei, et al. Effects of radio frequency assisted hot air drying on the texture and microstructure of jujube slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 296-306. (in Chinese with English abstract)
[39] 姜璐,包怡紅,賈雨彤,等. 18 個(gè)品種藍(lán)靛果營(yíng)養(yǎng)成分分析及綜合品質(zhì)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):326-335. JIANG Lu, BAO Yihong, JIA Yutong, et al. Nutritional component analysis and comprehensive quality evaluation of 18 different varieties of[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 326-335. (in Chinese with English abstract)
[40] 狄建兵,郝利平,張培宜,等. 不同熱處理對(duì)棗轉(zhuǎn)紅及其干制的影響[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,31(6):541-544. DI Jianbing, HAO Liping, ZHANG Peiyi, et al. The effect of different heat treatment on the jujube red transforming and drying[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2011, 31(6): 541-544. (in Chinese with English abstract)
[41] WANG C, TIAN S, AN X. The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant components of sliced chinese jujube[J]. Heat and Mass Transfer, 2022, 58(9): 1561-1571.
[42] SAVAS E. The modelling of convective drying variables’ effects on the functional properties of sliced sweet potatoes[J]. Foods, 2022, 11(5): 741.
[43] LIU Z, XIE L, ZIELINSKA M, et al. Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution[J]. LWT, 2021, 142: 111013.
[44] TERIBIA N, BUVE C, BONERZ D, et al. Impact of processing and storage conditions on color stability of strawberry puree: The role of PPO reactions revisited[J]. Journal of Food Engineering, 2021, 294: 110402.
[45] ZIA M P, ALIBAS I. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits[J]. Food Bioscience, 2021, 42: 101179.
[46] CONDE E, CARA C, MOURE A, et al. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning[J]. Food Chemistry, 2009, 114(3): 806-812.
[47] GONG L, HUANG L, ZHANG Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7177-7184.
[48] YAO L, FAN L, DUAN Z. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry, 2020, 305: 125477.
[49] KIM A N, LEE K Y, RAHMAN M S, et al. Thermal treatment of apple puree under oxygen-free condition: Effect on phenolic compounds, ascorbic acid, antioxidant activities, color, and enzyme activities[J]. Food Bioscience, 2021, 39: 100802.
[50] MRAD N D, BOUDHRIOUA N, KECHAOU N, et al. Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears[J]. Food and Bioproducts Processing, 2012, 90(3): 433-441.
[51] 忻曉庭,劉大群,鄭美瑜,等. 熱風(fēng)干燥溫度對(duì)冰菜干燥動(dòng)力學(xué)、多酚含量及抗氧化活性的影響[J]. 中國(guó)食品學(xué)報(bào),2020,20(11):148-156. XIN Xiaoting, LIU Daqun, ZHENG Meiyu, et al. Effect of hot air drying temperature on drying kinetics, polyphenol content and antioxidant activity of ice plant[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(11): 148-156. (in Chinese with English abstract)
[52] 王慶衛(wèi),劉啟玲,崔勝文. 不同干燥方式對(duì)紅棗營(yíng)養(yǎng)品質(zhì)及抗氧化活性的影響[J]. 食品工業(yè),2020,41(12):218-222. WANG Qingwei, LIU Qiling, CUI Shengwen. The effect of different drying methods on the nutritional quality and antioxidant activity of jujube[J]. The Food Industry, 2020, 41(12): 218-222. (in Chinese with English abstract)
[53] XUE Z, FENG W, CAO J, et al. Antioxidant activity and total phenolic contents in peel and pulp of Chinese jujube (Mill) fruits[J]. Journal of Food Biochemistry, 2009, 33(5): 613-629.
[54] LIU Y, LIAO Y, GUO M, et al. Comparative elucidation of bioactive and volatile components in dry mature jujube fruit (Mill. ) subjected to different drying methods[J]. Food Chemistry: X, 2022, 14: 100311.
[55] FAN R, GAO Y. Maillard and hydrolytic reactions in subcritical water extraction of bioactive compounds from licorice[J]. Molecules, 2022, 27(20): 6851.
[56] GOZTEPE B, KAYACAN S, BOZKURT F. Drying kinetics, total bioactive compounds, antioxidant activity, phenolic profile, lycopene and beta-carotene content and color quality of Rosehip dehydrated by different methods[J]. LWT, 2021, 153: 112476.
Optimization of the variable temperature drying process and quality evaluation of Junzao
LIAO Yaxuan1, CHENG Shaobo1, ZHANG Weida1, DONG Weihe1, WANG Yunuo1, ZHANG Jiajun1, WANG Hai2, CHEN Guogang1※
(1.,,832000,;2.,,100125,)
Junzao is one of the plant varieties in the Rhamnaceae family rich in nutrients with a variety of medicinal uses. However, the fresh dates are prone to water loss, softening, and rot during storage and transportation from the primary production area of jujube in Xinjiang in western China. More than 95% of dates are used for drying, due to the fresh loss. However, it is still lacking in the strict technical protocol of the traditional baking house under the uneven production standard, leading to the hardening and browning of Junzao in the drying process. In this study, the multi-stage variable temperature drying was optimized to evaluate the quality of Junzao fruits. Firstly, five models of drying kinetics were selected to fit the drying curve. The statistical parameters (such as coefficient of determination (2) and root mean square error (RMSE)) were selected to determine the applicability of the model. It was found that the Page model was better fitted. The moisture content of Junzao fruit gradually decreased with the extension of drying time. Secondly, the single-factor experiments were conducted with the pre-temperature, pre-term moisture conversion point, mid-temperature, mid-term moisture conversion point, and post-temperature as the single factors. Good taste and visual sensation, the sugar-acid ratio, and the internal browning were selected as indicators for the single-factor experiment. An excellent taste of jujube was achieved to reduce the browning of the flesh. The test factors were then determined as the pre-temperature (40, 45, and 50 ℃), mid-term moisture conversion point (16.5%, 17.0%, and 17.5%), and post-temperature (45, 50, and 55 ℃). As such, the response surface test was conducted with the sugar-acid ratio and internal browning as the response values. The results showed that the optimal process parameters were: 45 ℃ for the pre-temperature, 17.0% for the mid-term moisture conversion point, and 49 ℃ for the post-temperature. A comparison was made with the constant temperature (60 ℃) drying, in order to investigate the effects on the surface color, internal browning, chewiness, hardness, total sugar, titratable acid, sugar-acid ratio, antioxidant substances, and antioxidant properties of Junzao. The drying time was reduced by 13.2% during variable temperature drying, compared with constant one. The total sugar, titratable acid, surface color, internal browning, chewiness, and hardness were reduced by 10.3%, 16.5%, 34.4%, 23%, 4.8%, and 15.1%, respectively, while the sugar-acid ratio, total phenolic, total flavonoids, ascorbic acid content, and antioxidant capacity increased by 7.4%, 1.18 g/kg, 0.08 g/kg, 0.6 g/kg, and 2.6 μmol/g, respectively. The multi-stage variable temperature drying was adopted to make the internal and external temperature uniform, and then greatly reduce the crusting on the surface of Junzao, compared with the constant temperature drying. The drying time was shortened to reduce the nutrient loss caused by high temperature. Therefore, the multi-stage variable temperature drying with low carbon and environmental protection can be expected to greatly improve the drying efficiency and quality. The finding can greatly contribute to promoting the application of variable temperature drying technology for Junzao.
drying; kinetics; Junzao; variable temperature drying; parameter optimization
10.11975/j.issn.1002-6819.202212108
S375;S567.1
A
1002-6819(2023)-06-0237-10
廖雅萱,程少波,張偉達(dá),等. 駿棗變溫干燥工藝優(yōu)化及品質(zhì)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(6):237-246.doi:10.11975/j.issn.1002-6819.202212108 http://www.tcsae.org
LIAO Yaxuan, CHENG Shaobo, ZHANG Weida, et al. Optimization of the variable temperature drying process and quality evaluation of Junzao[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 237-246. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212108 http://www.tcsae.org
2022-12-15
2023-02-12
兵團(tuán)南疆重點(diǎn)產(chǎn)業(yè)創(chuàng)新發(fā)展支撐計(jì)劃項(xiàng)目(2021DB007;2018DB002);八師科技計(jì)劃項(xiàng)目(2022BX01)
廖雅萱,研究方向?yàn)楣哔A藏與加工。Email:2281114797@qq.com
陳國(guó)剛,博士,教授,研究方向?yàn)楣哔A藏與加工。Email:cgg611@163.com