陳會(huì)向,劉漢中,王胤淞,周大慶,徐 輝,闞 闞2,
抽水蓄能機(jī)組低水頭起動(dòng)過(guò)渡過(guò)程壓力脈動(dòng)分析
陳會(huì)向1,2,劉漢中1,王胤淞3,周大慶3,徐 輝1,2,闞 闞2,3※
(1. 河海大學(xué)農(nóng)業(yè)科學(xué)與工程學(xué)院,南京 211100;2. 河海大學(xué)水利水電學(xué)院,南京,210024; 3.河海大學(xué)能源與電氣學(xué)院,南京 211100)
抽蓄機(jī)組在低水頭起動(dòng)時(shí)易進(jìn)入其全特性曲線的反S不穩(wěn)定區(qū),從而導(dǎo)致機(jī)組并網(wǎng)失敗,嚴(yán)重影響機(jī)組的安全穩(wěn)定運(yùn)行。其中機(jī)組內(nèi)部復(fù)雜流動(dòng)演變導(dǎo)致的劇烈壓力脈動(dòng)是影響機(jī)組動(dòng)態(tài)特性的關(guān)鍵。該研究基于計(jì)算流體動(dòng)力學(xué)(computational fluid dynamics,CFD)數(shù)值模擬方法對(duì)水泵水輪機(jī)低水頭起動(dòng)過(guò)程進(jìn)行研究,重點(diǎn)分析了導(dǎo)葉與尾水管區(qū)域的壓力脈動(dòng)特性及產(chǎn)生原因。結(jié)果表明:機(jī)組起動(dòng)過(guò)程中,無(wú)葉區(qū)時(shí)均壓力幅值是固定導(dǎo)葉與活動(dòng)導(dǎo)葉間的6倍,且時(shí)均壓力幅值在無(wú)葉區(qū)沿周向分布不均。動(dòng)靜干涉主導(dǎo)了無(wú)葉區(qū)時(shí)均壓力和脈動(dòng)壓力的變化,而在上游固定導(dǎo)葉與活動(dòng)導(dǎo)葉間的動(dòng)靜干涉作用主要影響的是壓力脈動(dòng)幅值。尾水管直錐段壓力脈動(dòng)在機(jī)組起動(dòng)過(guò)程不同階段表現(xiàn)出不同的波動(dòng)特征,PID(proportion integration differentiation)調(diào)節(jié)階段壓力波動(dòng)較為明顯。通過(guò)內(nèi)部流動(dòng)對(duì)比發(fā)現(xiàn),活動(dòng)導(dǎo)葉開(kāi)啟會(huì)引起無(wú)葉區(qū)水流速度的分布變化和波動(dòng),活動(dòng)導(dǎo)葉小開(kāi)度下轉(zhuǎn)輪進(jìn)口和無(wú)葉區(qū)存在明顯的大尺度旋渦,這些和動(dòng)靜干涉聯(lián)合作用是導(dǎo)致無(wú)葉區(qū)時(shí)均壓力和脈動(dòng)壓力波動(dòng)幅值高的原因。尾水管渦帶在起動(dòng)過(guò)程經(jīng)歷了從邊條狀渦帶轉(zhuǎn)為螺旋狀渦帶,之后又轉(zhuǎn)變?yōu)槟徊紶顪u帶的過(guò)程。渦帶的持續(xù)存在和動(dòng)態(tài)變化不僅誘導(dǎo)了壓力徑向分布不均,也是導(dǎo)致壓力波動(dòng)劇烈的主要原因。研究成果可為提高抽蓄電站機(jī)組低水頭起動(dòng)并網(wǎng)成功率提供參考。
壓力脈動(dòng);數(shù)值模擬;抽水蓄能機(jī)組;過(guò)渡過(guò)程;低水頭起動(dòng)
從全球范圍來(lái)看抽水蓄能技術(shù)成熟,是儲(chǔ)能的主力[1]。抽水蓄能電站較火電站、核電站等具有增減負(fù)荷迅速的優(yōu)點(diǎn),其在電網(wǎng)中也承擔(dān)著調(diào)峰調(diào)頻的作用[2-3],因此部分抽水蓄能電站的起停機(jī)過(guò)程頻繁,這些運(yùn)行工況在全特性曲線上跨度較大,更容易進(jìn)入反S不穩(wěn)定區(qū)[4]。由于不同工況下水泵水輪機(jī)內(nèi)部流態(tài)差異較大,導(dǎo)致轉(zhuǎn)輪所受轉(zhuǎn)矩在大范圍內(nèi)波動(dòng),并產(chǎn)生強(qiáng)烈的壓力脈動(dòng),從而導(dǎo)致其在開(kāi)機(jī)起動(dòng)時(shí)并網(wǎng)困難,嚴(yán)重時(shí)會(huì)導(dǎo)致廠房共振[5-6],引發(fā)安全問(wèn)題。低水頭并網(wǎng)發(fā)電成功率低是抽蓄機(jī)組和水電機(jī)組面臨的普遍性問(wèn)題,因此開(kāi)展抽蓄機(jī)組低水頭發(fā)電過(guò)程水力不穩(wěn)定特性研究,特別是對(duì)起停機(jī)過(guò)渡過(guò)程的壓力脈動(dòng)研究對(duì)指導(dǎo)大型抽蓄機(jī)組運(yùn)行穩(wěn)定性具有重要的現(xiàn)實(shí)意義。
關(guān)于水泵水輪機(jī)過(guò)渡過(guò)程的研究方法中,常規(guī)方法建立的一維過(guò)渡過(guò)程模型難以揭示機(jī)組內(nèi)部復(fù)雜三維流動(dòng)特性,無(wú)法解釋外特性參數(shù)變化規(guī)律,以往三維方法往往指定機(jī)組轉(zhuǎn)速和活動(dòng)導(dǎo)葉開(kāi)度變化規(guī)律,與電站機(jī)組真實(shí)情況差異較大。針對(duì)壓力脈動(dòng)的研究,常采用試驗(yàn)和數(shù)值模擬方法[7-8]。國(guó)內(nèi)有關(guān)學(xué)者針對(duì)水泵水輪機(jī)不同工況的壓力脈動(dòng)開(kāi)展了許多試驗(yàn)研究[9-11]。孫躍昆等[12]對(duì)水泵水輪機(jī)開(kāi)機(jī)過(guò)程的有關(guān)試驗(yàn)數(shù)據(jù)進(jìn)行了分析,發(fā)現(xiàn)機(jī)組在水輪機(jī)工況開(kāi)機(jī)過(guò)程中隨著負(fù)荷的增加,無(wú)葉區(qū)壓力脈動(dòng)越來(lái)越小,在水泵開(kāi)機(jī)過(guò)程中排氣階段的壓力脈動(dòng)最大。吳亞軍等[13]通過(guò)不同導(dǎo)葉開(kāi)度對(duì)泵工況零流量的外特性試驗(yàn)分析得出泵工況在小開(kāi)度下的壓力脈動(dòng)較小,因此泵工況時(shí)應(yīng)在駝峰區(qū)外的小開(kāi)度下起動(dòng)。
試驗(yàn)方法可以獲得較為精確的數(shù)據(jù),但其成本高且多數(shù)過(guò)渡過(guò)程試驗(yàn)具有危險(xiǎn)性。相較于試驗(yàn)方法,三維數(shù)值模擬可以在水泵水輪機(jī)內(nèi)部設(shè)定更多的監(jiān)測(cè)點(diǎn),得到的壓力脈動(dòng)特性信息更加豐富,因此近年來(lái)很多學(xué)者利用三維數(shù)值模擬方法探究水泵水輪機(jī)壓力脈動(dòng)特性。李劍華等[14]分析了水泵水輪機(jī)特定導(dǎo)葉開(kāi)度下不同工況的壓力脈動(dòng)特征頻率。王小龍等[15]通過(guò)試驗(yàn)和模擬相結(jié)合的方法,分析得出無(wú)葉區(qū)的壓力脈動(dòng)主要與動(dòng)靜干涉和脫流漩渦有關(guān)。李琪飛等[16]研究了水泵水輪機(jī)低水頭運(yùn)行工況下的壓力脈動(dòng)情況,分析得到在低水頭工況下蝸殼進(jìn)口的壓力脈動(dòng)會(huì)受到轉(zhuǎn)輪轉(zhuǎn)動(dòng)的影響。ZHANG等[17]研究發(fā)現(xiàn)水泵水輪機(jī)的壓力脈動(dòng)主要與動(dòng)靜干涉、旋轉(zhuǎn)失速及渦帶有關(guān)。XIA等[18]研究了水泵水輪機(jī)不同開(kāi)度下的壓力脈動(dòng)特性,在大開(kāi)度下無(wú)葉區(qū)的回流渦主要產(chǎn)生在上冠及下環(huán)位置,在小開(kāi)度下回流渦主要產(chǎn)生在中平面位置處。
由于水泵水輪機(jī)在過(guò)渡過(guò)程中流態(tài)轉(zhuǎn)變劇烈,所產(chǎn)生的壓力脈動(dòng)幅值往往更高[19],因而不少學(xué)者對(duì)此進(jìn)行了研究。張藍(lán)國(guó)等[20]對(duì)水泵水輪機(jī)在泵工況下停機(jī)過(guò)渡過(guò)程的壓力脈動(dòng)進(jìn)行了研究,指出蝸殼和尾水管處壓力與導(dǎo)葉的關(guān)閉規(guī)律密切相關(guān),而無(wú)葉區(qū)壓力與轉(zhuǎn)輪轉(zhuǎn)速的變化有關(guān)。周勤等[21]對(duì)水泵水輪機(jī)甩負(fù)荷過(guò)程中的壓力脈動(dòng)進(jìn)行了分析研究,得出無(wú)葉區(qū)壓力脈動(dòng)主要與回流的發(fā)展有關(guān),同時(shí)回流的發(fā)展影響水泵水輪機(jī)葉片的力矩分布及流道內(nèi)湍動(dòng)能的大小。張成華等[22]對(duì)水泵水輪機(jī)斷電飛逸工況的壓力脈動(dòng)進(jìn)行了分析研究,指出在經(jīng)歷馬鞍區(qū)和S區(qū)時(shí),測(cè)點(diǎn)壓力會(huì)有急劇升高。陳秋華等[23]研究了不同的初始工況對(duì)飛逸工況的影響,發(fā)現(xiàn)由于流動(dòng)的遲滯現(xiàn)象,流態(tài)較差的工況在轉(zhuǎn)輪開(kāi)始飛逸后會(huì)保留其初始的流動(dòng)特征,轉(zhuǎn)輪受力及測(cè)點(diǎn)的壓力脈動(dòng)都會(huì)有突增的現(xiàn)象。
綜上所述,目前水泵水輪機(jī)壓力脈動(dòng)的研究重點(diǎn)主要為轉(zhuǎn)輪處于特定工況下穩(wěn)定運(yùn)行的特性分析,對(duì)于過(guò)渡過(guò)程的壓力脈動(dòng)特性分析相對(duì)較少,且主要為對(duì)甩負(fù)荷過(guò)渡過(guò)程的研究,對(duì)水泵水輪機(jī)起動(dòng)過(guò)程的壓力脈動(dòng)研究則更少。因此,本研究擬通過(guò)數(shù)值模擬方法對(duì)某抽水蓄電站全過(guò)流系統(tǒng)的低水頭起動(dòng)過(guò)程進(jìn)行研究,實(shí)現(xiàn)起動(dòng)過(guò)程PID(proportion integration differentiation)調(diào)節(jié),對(duì)起動(dòng)過(guò)程中導(dǎo)葉與尾水管區(qū)域的壓力脈動(dòng)進(jìn)行詳細(xì)的分析,獲得該過(guò)程機(jī)組內(nèi)壓力脈動(dòng)的變化規(guī)律,并通過(guò)對(duì)比不同區(qū)域的流動(dòng)情況找出影響該區(qū)域壓力脈動(dòng)的主要成因,以期為水泵水輪機(jī)低水頭穩(wěn)定起動(dòng)提供參考。
本文的對(duì)象是國(guó)內(nèi)某抽水蓄能電站原型機(jī)組全過(guò)流系統(tǒng),包括上下游管道、蝸殼、導(dǎo)葉、轉(zhuǎn)輪、尾水管,如圖1所示,機(jī)組的具體參數(shù)見(jiàn)表1,其中本文模擬機(jī)組低水頭起動(dòng)過(guò)程,其運(yùn)行水頭為190 m,本研究中水頭的取值方法為蝸殼進(jìn)口與尾水管出口間的壓力差。
采用有限體積方法求解-方程,包括連續(xù)性方程式(1)和動(dòng)量方程式(2)。湍流模型采用剪切應(yīng)力傳輸(Shear-Stress Transport,SST)-模型,該湍流模型模擬水泵水輪機(jī)內(nèi)部渦旋流的效果較優(yōu)[24]。管路進(jìn)出口的邊界條件分別設(shè)置為壓力進(jìn)口和壓力出口,根據(jù)水位高度設(shè)定壓力值。采用SIMPLEC方法對(duì)壓力和速度解耦,采用一階隱式格式離散時(shí)間項(xiàng),采用二階迎風(fēng)格式離散對(duì)流項(xiàng)和擴(kuò)散項(xiàng),不同結(jié)構(gòu)之間的交界面采用interface進(jìn)行數(shù)據(jù)交換,參考?jí)毫υO(shè)置為一個(gè)大氣壓(約105Pa),壁面條件設(shè)置為無(wú)滑移壁面,殘差收斂標(biāo)準(zhǔn)設(shè)定為10-5。
圖1 抽水蓄能電站全過(guò)流系統(tǒng)示意圖
表1 抽水蓄能電站特征參數(shù)
上下游分別設(shè)置為壓力進(jìn)出口,初始工況下轉(zhuǎn)輪的轉(zhuǎn)速為0,整個(gè)流場(chǎng)的壓力分布情況近似為按高度大小的靜壓分布狀態(tài)。因此,初始工況通過(guò)在導(dǎo)葉開(kāi)度為0°,給定轉(zhuǎn)輪靜止下運(yùn)行2.4 s(相當(dāng)于轉(zhuǎn)輪以額定轉(zhuǎn)速旋轉(zhuǎn)10周)后的流場(chǎng)。在起動(dòng)過(guò)程中,轉(zhuǎn)輪轉(zhuǎn)速隨轉(zhuǎn)輪所受的水力矩(式(3))改變而變化。導(dǎo)葉的開(kāi)閉采用動(dòng)網(wǎng)格技術(shù)實(shí)現(xiàn)[25],通過(guò)Fluent軟件的用戶自定義函數(shù)實(shí)現(xiàn)對(duì)導(dǎo)葉的PID控制,PID控制采用增量型PID控制方法,控制方程如式(4)。時(shí)間步長(zhǎng)設(shè)置為0.004 s,模擬起動(dòng)過(guò)程的總時(shí)長(zhǎng)為70 s。
式中表示轉(zhuǎn)輪角速度,rad/s;H表示轉(zhuǎn)輪葉片所受到的水力矩,N·m;f表示轉(zhuǎn)輪葉片所受到的阻力矩,N·m。
采用ICEM軟件對(duì)計(jì)算域進(jìn)行網(wǎng)格劃分,其中輸水管道、轉(zhuǎn)輪、尾水管區(qū)域均采用六面體網(wǎng)格進(jìn)行劃分,導(dǎo)葉區(qū)域采用楔形網(wǎng)格進(jìn)行劃分,蝸殼區(qū)域采用四面體網(wǎng)格進(jìn)行劃分。全流道網(wǎng)格質(zhì)量均在0.4以上,網(wǎng)格歪斜率在0.5以下,為保證近壁面細(xì)微流態(tài)的捕捉,對(duì)近壁面網(wǎng)格進(jìn)行加密,部分網(wǎng)格見(jiàn)圖2。
圖2 抽蓄機(jī)組網(wǎng)格劃分
對(duì)抽蓄機(jī)組網(wǎng)格方案進(jìn)行無(wú)關(guān)性驗(yàn)證得知,當(dāng)網(wǎng)格數(shù)超過(guò)800萬(wàn)后,網(wǎng)格數(shù)對(duì)結(jié)算結(jié)果的影響可忽略不計(jì)。因此,進(jìn)一步采用理查德森外推法[26]進(jìn)行網(wǎng)格精度進(jìn)行驗(yàn)證,并引入網(wǎng)格收斂指數(shù)(grid convergence index,GCI)對(duì)誤差進(jìn)行分析。網(wǎng)格從疏到密選取3組網(wǎng)格方案:606.79萬(wàn),728.15萬(wàn)和873.79萬(wàn),網(wǎng)格細(xì)化因子為1.06,安全因子選為1.25,取水頭和效率進(jìn)行網(wǎng)格無(wú)關(guān)性驗(yàn)證。對(duì)3種網(wǎng)格方案進(jìn)行數(shù)值模擬,獲得水頭和效率參與網(wǎng)格獨(dú)立性驗(yàn)證的網(wǎng)格收斂指數(shù)GCI分別為1.33%和1.30%,均小于3%,且此時(shí)在轉(zhuǎn)輪與活動(dòng)導(dǎo)葉近壁區(qū)滿足平均值小于20,說(shuō)明網(wǎng)格數(shù)為873.79萬(wàn)滿足計(jì)算的網(wǎng)格精度和收斂標(biāo)準(zhǔn)要求[27]。
選取電站現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)作為驗(yàn)證依據(jù),圖3所示為起動(dòng)過(guò)程中模擬數(shù)據(jù)與試驗(yàn)數(shù)據(jù)的11-11對(duì)比和11-11對(duì)比圖,以驗(yàn)證模擬結(jié)果的可靠性。從圖3中可以看出,模擬與試驗(yàn)結(jié)果吻合度較高,最大誤差不超過(guò)10%。造成模擬與試驗(yàn)結(jié)果的差異可能以下兩個(gè)方面:一是數(shù)值模擬的誤差,數(shù)值模擬中忽略了水體的可壓縮性以及管道的形變;二是模型試驗(yàn)結(jié)果是在穩(wěn)態(tài)工況下測(cè)量的,忽略了過(guò)渡過(guò)程動(dòng)態(tài)變化的影響??傮w來(lái)看,兩種結(jié)果整體變化趨勢(shì)一致。因此,數(shù)值模擬結(jié)果能夠較準(zhǔn)確的描述抽水蓄能電站機(jī)組低水頭起動(dòng)過(guò)渡過(guò)程。
圖3 全特性曲線模擬數(shù)據(jù)與試驗(yàn)數(shù)據(jù)對(duì)比
1.5.1 導(dǎo)葉區(qū)監(jiān)測(cè)點(diǎn)
在小開(kāi)度情況下,水流會(huì)在活動(dòng)導(dǎo)葉與轉(zhuǎn)輪之間的無(wú)葉區(qū)內(nèi)形成高速水環(huán)[28],該區(qū)域的壓力脈動(dòng)情況很大程度上會(huì)影響轉(zhuǎn)輪運(yùn)行的穩(wěn)定性。為了探究無(wú)葉區(qū)的壓力脈動(dòng)向上游的傳遞規(guī)律,在固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間設(shè)置若干監(jiān)測(cè)點(diǎn)。導(dǎo)葉區(qū)域的監(jiān)測(cè)點(diǎn)(共20個(gè))選取如圖4所示,其中SV各監(jiān)測(cè)點(diǎn)可反映固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間壓力變化,GV各監(jiān)測(cè)點(diǎn)可反映無(wú)葉區(qū)壓力變化情況。
為量化分析導(dǎo)葉區(qū)域壓力脈動(dòng)幅值,將壓力數(shù)據(jù)通過(guò)式(5)得到無(wú)量綱壓力脈動(dòng)幅值C。進(jìn)一步分析導(dǎo)葉區(qū)域平均壓力的變化幅值,利用式(6)[29]得到無(wú)量綱常數(shù)C(表示該監(jiān)測(cè)點(diǎn)在整個(gè)起動(dòng)過(guò)程中的無(wú)量綱時(shí)均壓力脈動(dòng)幅值)。
注:SV表示固定導(dǎo)葉與活動(dòng)導(dǎo)葉間監(jiān)測(cè)點(diǎn),GV表示無(wú)葉區(qū)監(jiān)測(cè)點(diǎn),數(shù)字依次(順時(shí)針)為對(duì)應(yīng)位置的監(jiān)測(cè)點(diǎn)序號(hào)。
1.5.2 轉(zhuǎn)輪區(qū)監(jiān)測(cè)點(diǎn)
水流的壓力變化會(huì)影響流速發(fā)生改變,因此在轉(zhuǎn)輪葉片進(jìn)口靠近上冠位置(hs)、中平面(ms)及靠近下環(huán)位置(ss)處設(shè)立3個(gè)監(jiān)測(cè)點(diǎn),每個(gè)測(cè)點(diǎn)的高度差均為0.25 m,如圖5所示。
圖5 轉(zhuǎn)輪進(jìn)口區(qū)監(jiān)測(cè)點(diǎn)
1.5.3 尾水管監(jiān)測(cè)點(diǎn)
為分析尾水管區(qū)域壓力脈動(dòng)的發(fā)展情況,在距轉(zhuǎn)輪出口分別為0.52、2、1.52的位置處建立3個(gè)截面。分別在截面中心及截面半徑3等分點(diǎn)位置處建立監(jiān)測(cè)點(diǎn),即每個(gè)截面有13個(gè)監(jiān)測(cè)點(diǎn)(圖6),以分析壓力脈動(dòng)在周向的變化規(guī)律。
注:Di為測(cè)點(diǎn)所在截面直徑。
與導(dǎo)葉區(qū)域的分析方法類似,利用式(7)和式(8)描述尾水管監(jiān)測(cè)點(diǎn)壓力脈動(dòng)幅值C_dt和無(wú)量綱時(shí)均壓力脈動(dòng)幅值C_dt。
式中為各監(jiān)測(cè)平面到轉(zhuǎn)輪中心的高度,m。
抽蓄機(jī)組起動(dòng)過(guò)程中的外特性變化及活動(dòng)導(dǎo)葉開(kāi)度變化如圖7。圖7a表明當(dāng)電站接到開(kāi)機(jī)命令后,活動(dòng)導(dǎo)葉在接力器的推動(dòng)下首先以指定的開(kāi)環(huán)控制進(jìn)行開(kāi)啟,當(dāng)轉(zhuǎn)速達(dá)到95%左右的額定轉(zhuǎn)速時(shí),導(dǎo)葉動(dòng)作進(jìn)入受UDF控制的PID調(diào)節(jié)控制階段,進(jìn)而進(jìn)入穩(wěn)定開(kāi)機(jī)過(guò)程。由于在PID控制下,導(dǎo)葉開(kāi)度變化較小,由圖7b看出起動(dòng)過(guò)程進(jìn)入PID調(diào)節(jié)后導(dǎo)葉實(shí)際開(kāi)度的在0.2°范圍內(nèi)。
從圖7a中可以看出,機(jī)組的運(yùn)行水頭在起動(dòng)過(guò)程初始階段的變化區(qū)間范圍很大,這是由于在初始階段,水流在整個(gè)流道內(nèi)尚未形成穩(wěn)定的流動(dòng)狀態(tài),因此上下游的壓力變化幅度很大。當(dāng)導(dǎo)葉開(kāi)度保持不變(6~25 s)后,水頭慢慢穩(wěn)定,并在水錘的作用下略微升高,此時(shí)流量降低。=25 s時(shí),由于導(dǎo)葉開(kāi)度的增加,在反水錘的作用下水頭開(kāi)始降低,流量開(kāi)始升高。=31 s時(shí),水頭和流量在導(dǎo)葉的PID控制下重新穩(wěn)定。可見(jiàn),若能合理選擇PID調(diào)節(jié)參數(shù),則可有效避免電站低水頭起動(dòng)過(guò)程中水頭和流量的大幅波動(dòng),有利于提升機(jī)組起動(dòng)穩(wěn)定性。
注:M為力矩,n為轉(zhuǎn)速,H為水頭,Q為流量,y為活動(dòng)導(dǎo)葉開(kāi)度,yr為PID控制階段的導(dǎo)葉開(kāi)度。
圖8為導(dǎo)葉區(qū)域壓力沿周向的時(shí)均壓力變化幅值分布圖。從圖中可以看出,在機(jī)組起動(dòng)過(guò)程中,固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間區(qū)域(SV各測(cè)點(diǎn),即圖中紅線)的時(shí)均壓力幅值較小,C=0.04。而無(wú)葉區(qū)(GV各測(cè)點(diǎn),即圖中藍(lán)線)的時(shí)均壓力幅值較大,C=0.24,為固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間時(shí)均壓力幅值的6倍,且時(shí)均壓力幅值沿周向分布不均。這是由于在整個(gè)起動(dòng)過(guò)程中,活動(dòng)導(dǎo)葉開(kāi)度和轉(zhuǎn)速的變化會(huì)引起無(wú)葉區(qū)速度場(chǎng)和壓力場(chǎng)的明顯變化。一方面,活動(dòng)導(dǎo)葉的開(kāi)度較小,水流撞擊轉(zhuǎn)輪進(jìn)口形成的不穩(wěn)定流動(dòng)會(huì)引起壓力場(chǎng)的波動(dòng);其次,受小開(kāi)度的“阻塞”效應(yīng)影響,動(dòng)靜干涉和不穩(wěn)定流動(dòng)引起的時(shí)均壓力變化幅值也會(huì)進(jìn)一步增大。因此,在實(shí)際工程中,應(yīng)盡量減小小導(dǎo)葉開(kāi)度持續(xù)時(shí)間,同時(shí)合理控制導(dǎo)葉開(kāi)啟規(guī)律對(duì)機(jī)組低水頭起動(dòng)穩(wěn)定性有重要影響。
注:每條曲線上20個(gè)點(diǎn)對(duì)應(yīng)于圖4所示的20個(gè)監(jiān)測(cè)點(diǎn)位置,其中0°代表第一個(gè)導(dǎo)葉位置。
導(dǎo)葉區(qū)域的壓力脈動(dòng)時(shí)域圖如圖9所示,可以看出同一區(qū)域、不同位置的監(jiān)測(cè)點(diǎn)在起動(dòng)過(guò)程中的壓力變化趨勢(shì)相同,但是無(wú)葉區(qū)壓力變化范圍更大。起動(dòng)初期測(cè)點(diǎn)壓力均會(huì)發(fā)生明顯短時(shí)波動(dòng)。
進(jìn)一步可以發(fā)現(xiàn),固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間區(qū)域監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)變化趨勢(shì)與機(jī)組水頭(圖7a)的變化趨勢(shì)相同。而無(wú)葉區(qū)壓力脈動(dòng)在起動(dòng)中后期過(guò)程中逐漸上升,與轉(zhuǎn)速(圖7a)變化趨勢(shì)一致,說(shuō)明起動(dòng)過(guò)程中無(wú)葉區(qū)動(dòng)靜干涉不僅會(huì)引起壓力的脈動(dòng),也會(huì)引起時(shí)均壓力的變化,宏觀上可能表現(xiàn)為機(jī)組受力的變化。
為進(jìn)一步分析導(dǎo)葉區(qū)域壓力脈動(dòng)特性,圖10為對(duì)導(dǎo)葉區(qū)域壓力脈動(dòng)進(jìn)行短時(shí)傅里葉變換后的頻域圖??梢钥闯鰺o(wú)葉區(qū)的壓力脈動(dòng)主要與葉頻有關(guān),其中葉頻f為主頻,2f及3f為次頻,這主要與轉(zhuǎn)輪和導(dǎo)葉之間的動(dòng)靜干涉有關(guān)。無(wú)葉區(qū)的壓力脈動(dòng)傳遞至上游,因此在固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間的區(qū)域也出現(xiàn)了f以及2f,但是該區(qū)域脈動(dòng)幅值強(qiáng)度相比無(wú)葉區(qū)有所減弱。
圖9 導(dǎo)葉區(qū)無(wú)量綱壓力脈動(dòng)幅值Cpu變化
注:fn表示葉頻。
圖11展示了距尾水管出口不同位置處壓力脈動(dòng)的變化情況,其中每個(gè)截面處的壓力脈動(dòng)取自該截面4個(gè)測(cè)點(diǎn)的平均值。圖12為尾水管壓力脈動(dòng)的時(shí)域圖。
圖11 尾水管內(nèi)無(wú)量綱時(shí)均壓力脈動(dòng)幅值Cpu_dt
如圖11所示,在距尾水管出口0.52位置處,尾水管時(shí)均壓力幅值隨距截面中心的距離增加而增大。而在距尾水管出口2與1.52位置處,時(shí)均壓力的變化趨勢(shì)相同,都為先下降后上升??赡苁怯捎谡麄€(gè)起動(dòng)過(guò)程受尾水管偏心渦帶的影響,使得靠近轉(zhuǎn)輪出口中心處測(cè)點(diǎn)時(shí)均壓力變化幅值較小,而沿流動(dòng)方向和徑向時(shí)均壓力變化幅值較大。
為方便后續(xù)分析,將導(dǎo)葉開(kāi)度變化的特征時(shí)間段劃分為T(mén)1~T5,其中T1(0~2 s)為導(dǎo)葉第一段開(kāi)啟過(guò)程;T2(2~6 s)為導(dǎo)葉第二段開(kāi)啟過(guò)程;T3(6~25 s)為導(dǎo)葉不動(dòng)時(shí)間段;T4(25~31 s)為導(dǎo)葉第四段開(kāi)啟過(guò)程;T5(31~70 s)為導(dǎo)葉受PID控制調(diào)節(jié)階段。如圖12所示,尾水管靠近轉(zhuǎn)輪出口0.52處截面中心監(jiān)測(cè)點(diǎn)DT1壓力隨時(shí)間變化平穩(wěn),與徑向外側(cè)監(jiān)測(cè)點(diǎn)變化明顯不同。而在2與1.52截面,所有監(jiān)測(cè)點(diǎn)均表現(xiàn)出了一定的波動(dòng)性。在起動(dòng)前2 s左右,機(jī)組轉(zhuǎn)速、流量逐漸增大,監(jiān)測(cè)點(diǎn)時(shí)均壓力波動(dòng)明顯(此時(shí)圖7a中轉(zhuǎn)輪力矩增加);在T2階段結(jié)束后,監(jiān)測(cè)點(diǎn)壓力出現(xiàn)波動(dòng),同時(shí)轉(zhuǎn)輪力矩先上升后下降;在活動(dòng)導(dǎo)葉開(kāi)度保持恒定的T3時(shí)間段內(nèi)監(jiān)測(cè)點(diǎn)壓力逐漸平穩(wěn),此時(shí)力矩逐漸下降后活動(dòng)導(dǎo)葉進(jìn)入T4階段的開(kāi)啟過(guò)程;在T5階段,機(jī)組受PID閉環(huán)控制,轉(zhuǎn)速調(diào)節(jié)過(guò)程中壓力脈動(dòng)加劇,宏觀上表現(xiàn)為圖7a中水頭的劇烈波動(dòng)。因此,起動(dòng)過(guò)程中導(dǎo)葉開(kāi)度變化對(duì)尾水管內(nèi)壓力變化影響較大,可以通過(guò)合理設(shè)置導(dǎo)葉開(kāi)啟規(guī)律來(lái)避免尾水管劇烈壓力脈動(dòng)引發(fā)的機(jī)組振動(dòng)。
a. 0.5D2b.D2c. 1.5D2
注:T1~T5表示活動(dòng)導(dǎo)葉開(kāi)度變化特征時(shí)間段。
Note: T1~T5 are the characteristic time periods of guide vane opening change.
圖12 尾水管不同監(jiān)測(cè)面上各個(gè)監(jiān)測(cè)點(diǎn)的無(wú)量綱壓力脈動(dòng)幅值
Fig.12 Pressure pulsation dimensionless amplitude of monitoring points in different monitoring plane of draft tube
同時(shí)可以發(fā)現(xiàn),機(jī)組起動(dòng)過(guò)程中,監(jiān)測(cè)點(diǎn)無(wú)量綱壓力脈動(dòng)幅值逐步降低,和圖9b中無(wú)葉區(qū)壓力的逐步上升,在宏觀上可以解釋為機(jī)組起動(dòng)后在轉(zhuǎn)輪進(jìn)出口逐漸形成較高的壓差,水流能量在轉(zhuǎn)輪內(nèi)部轉(zhuǎn)化為機(jī)械能輸出。
通過(guò)分析轉(zhuǎn)輪進(jìn)口區(qū)3個(gè)監(jiān)測(cè)點(diǎn)各方向水流速度在起動(dòng)過(guò)程中的變化規(guī)律,同時(shí)觀察監(jiān)測(cè)點(diǎn)附近流態(tài)變化,以期對(duì)壓力脈動(dòng)的成因做出解釋。圖13為3個(gè)監(jiān)測(cè)點(diǎn)不同方向速度分布圖。
a. hsb. msc. ss
從圖13與14可以看出,在起動(dòng)過(guò)程前期(T1、T2),流量和水流速度迅速增大,無(wú)葉區(qū)的流態(tài)極不穩(wěn)定,監(jiān)測(cè)點(diǎn)三個(gè)方向的速度波動(dòng)劇烈。T3時(shí)間段內(nèi),3個(gè)監(jiān)測(cè)點(diǎn)的各方向速度逐漸穩(wěn)定。在進(jìn)入T4時(shí)間段后,監(jiān)測(cè)點(diǎn)ms的軸向速度在0附近來(lái)回波動(dòng),形成了較為明顯的旋渦。此時(shí)ss及hs的軸向速度分別在指向ms的方向上不同程度的下降。且此時(shí)ms的徑向速度方向反向,水流從轉(zhuǎn)輪流向?qū)~。ss及hs的徑向速度變大,此時(shí)水流從中心平面流入轉(zhuǎn)向從上冠及下環(huán)平面附近流入。T4時(shí)間段內(nèi)旋渦的范圍逐漸變大,hs、ss的軸向速度和徑向速度增至最大。在T5階段,監(jiān)測(cè)點(diǎn)各方向速度重新平穩(wěn)。對(duì)比圖 7b可以發(fā)現(xiàn),在活動(dòng)導(dǎo)葉兩個(gè)開(kāi)度增大階段,監(jiān)測(cè)點(diǎn)速度均發(fā)生了明顯波動(dòng)。
圖14 轉(zhuǎn)輪子午面流線圖
從圖14可以看出,機(jī)組起動(dòng)不同階段速度分布差異較大,轉(zhuǎn)輪進(jìn)口和無(wú)葉區(qū)存在明顯的大尺度旋渦,誘導(dǎo)了速度場(chǎng)的波動(dòng),而固定導(dǎo)葉與活動(dòng)導(dǎo)葉間的區(qū)域水流流態(tài)較好。這也是固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間與無(wú)葉區(qū)壓力脈動(dòng)時(shí)均壓力和脈動(dòng)壓力變化存在差異的部分成因。
圖15為水泵水輪機(jī)起動(dòng)過(guò)程中轉(zhuǎn)輪各葉道徑向速度變化情況。可以看出,在起動(dòng)過(guò)程的初始階段(圖15a),轉(zhuǎn)輪各葉道內(nèi)流量均勻,回流主要產(chǎn)生在葉片前緣位置。這主要是由于該時(shí)刻的導(dǎo)葉開(kāi)度較小,水流在葉片前緣發(fā)生了流動(dòng)分離。隨著導(dǎo)葉開(kāi)度的增加,各葉道內(nèi)水流的流速逐漸加快,流動(dòng)分離程度增強(qiáng)。=16 s時(shí),各葉道內(nèi)無(wú)回流產(chǎn)生。=28 s時(shí),在部分葉道內(nèi)產(chǎn)生回流。=32 s時(shí),回流區(qū)域增大,且各通道內(nèi)回流區(qū)域大小不同。在進(jìn)入PID控制之前,由于回流區(qū)域大小不同,導(dǎo)致各葉道的流態(tài)有所差異,進(jìn)一步導(dǎo)致壓力脈動(dòng)分布不均,這也解釋了無(wú)葉區(qū)的時(shí)均壓力在周向分布不均的現(xiàn)象。=50 s時(shí),各葉道的回流區(qū)域面積大小趨于一致,回流主要發(fā)生在各葉道的中環(huán)面上。轉(zhuǎn)輪內(nèi)大尺度漩渦引起的速度分布明顯不均影響了壓力場(chǎng)的分布,強(qiáng)烈的動(dòng)靜干涉下引起壓力場(chǎng)的明顯波動(dòng),這也與圖9、圖10中壓力測(cè)點(diǎn)和圖7a中水頭的劇烈波動(dòng)相關(guān)聯(lián)。
流體流動(dòng)過(guò)程中,其能量性能滿足伯努利守恒方程。水泵水輪機(jī)在起動(dòng)過(guò)程中,由于在轉(zhuǎn)輪內(nèi)流體流態(tài)紊亂,流體的動(dòng)能未完全轉(zhuǎn)化為轉(zhuǎn)輪轉(zhuǎn)動(dòng)的動(dòng)能,因此從轉(zhuǎn)輪流出的水流的能量通常較大。在尾水管位置處,表現(xiàn)為渦帶區(qū)域外側(cè)的速度較大。渦帶通過(guò)流體之間的相互作用,中心死水域受周圍高速流體影響流向轉(zhuǎn)輪,進(jìn)而影響了渦帶中心區(qū)域流體壓力的變化[30]。圖16為起動(dòng)過(guò)程中尾水管渦帶的變化情況,采用準(zhǔn)則識(shí)別渦帶。
在起動(dòng)過(guò)程的初始階段(圖16a),轉(zhuǎn)輪的轉(zhuǎn)速較小,尾水管內(nèi)并未形成穩(wěn)定的渦帶結(jié)構(gòu),但在轉(zhuǎn)輪出水邊由于流動(dòng)分離會(huì)形成條狀旋渦。隨著導(dǎo)葉開(kāi)度的增大和流動(dòng)的發(fā)展,流量變大,轉(zhuǎn)輪轉(zhuǎn)速同時(shí)逐漸上升(圖16b),出現(xiàn)明顯的螺旋狀尾水管渦帶,從壓力云圖中可以明顯看出在渦帶內(nèi)部水流的壓力較低,在渦帶外水流壓力較高。這也解釋了在這個(gè)時(shí)間段內(nèi)靠近尾水管監(jiān)測(cè)面中心位置的監(jiān)測(cè)點(diǎn)壓力波動(dòng)程度較大。在=16 s(圖16c)后,轉(zhuǎn)輪轉(zhuǎn)速升高至額定轉(zhuǎn)速的60%,水流的圓周速度分量迅速升高,管壁側(cè)水流絕對(duì)速度增大,螺旋狀渦帶轉(zhuǎn)變?yōu)槟徊紶?。隨著流動(dòng)的進(jìn)一步發(fā)展(圖16d),隨著渦帶在尾水管流動(dòng)方向影響減弱,沿流動(dòng)方向上水流的壓力逐漸增大。在=32 s后(圖16e、圖16f),當(dāng)導(dǎo)葉進(jìn)入PID控制后,渦帶的持續(xù)存在是導(dǎo)致壓力劇烈波動(dòng)的主要原因。
a. t=0 sb. t=7 sc. t=16 sd. t=28 se. t=32 sf. t=50 s
注:數(shù)字1~9表示轉(zhuǎn)輪葉道數(shù)。
Note: The numbers 1-9 indicate the number of runner blade channel.
圖15 轉(zhuǎn)輪區(qū)域徑向速度變化
Fig.15 Radial velocity variation in runner region
在起動(dòng)過(guò)程中,尾水管渦帶形狀變化頻繁,導(dǎo)致尾水管區(qū)域的渦帶外側(cè)高速區(qū)與中心死水域的位置不斷發(fā)生變化,引起尾水管監(jiān)測(cè)點(diǎn)的壓力在徑向上分布不均且波動(dòng)劇烈。
注:3個(gè)截面顯示為壓力信息,流線顯示為速度信息。
本文對(duì)抽水蓄能機(jī)組考慮PID控制的低水頭起動(dòng)過(guò)程進(jìn)行了研究,分析了水泵水輪機(jī)不同位置的瞬態(tài)流態(tài)及壓力分布情況,闡釋了水泵水輪機(jī)內(nèi)部不同位置的壓力脈動(dòng)特性。具體結(jié)論如下:
1)固定導(dǎo)葉與活動(dòng)導(dǎo)葉之間、無(wú)葉區(qū)在頻域上均會(huì)受到動(dòng)靜干涉的影響,但是在時(shí)域上,由機(jī)組轉(zhuǎn)速引起的強(qiáng)烈的動(dòng)靜干涉會(huì)引起無(wú)葉區(qū)時(shí)均壓力跟隨機(jī)組轉(zhuǎn)速明顯變化。
2)機(jī)組起動(dòng)過(guò)程中,尾水管直錐段壓力脈動(dòng)測(cè)點(diǎn)時(shí)均壓力的逐步降低,同時(shí)在不同階段表現(xiàn)出不同的波動(dòng)特征,PID調(diào)節(jié)階段壓力波動(dòng)較為明顯。
3)活動(dòng)導(dǎo)葉開(kāi)啟會(huì)引起無(wú)葉區(qū)速度場(chǎng)的明顯波動(dòng),同時(shí)活動(dòng)導(dǎo)葉小開(kāi)度下轉(zhuǎn)輪進(jìn)口和無(wú)葉區(qū)存在明顯的大尺度旋渦,這些和動(dòng)靜干涉聯(lián)合作用是導(dǎo)致無(wú)葉區(qū)時(shí)均壓力和脈動(dòng)壓力波動(dòng)幅值高的原因。
4)起動(dòng)過(guò)程中尾水管渦帶變化明顯,渦帶逐漸從邊條狀渦帶轉(zhuǎn)變?yōu)槁菪隣睿詈鬄槟徊紶?。渦帶的持續(xù)存在和動(dòng)態(tài)變化不僅誘導(dǎo)了壓力徑向分布不均,也是導(dǎo)致壓力波動(dòng)劇烈的主要原因。
5)機(jī)組低水頭起動(dòng)過(guò)程中水頭和壓力脈動(dòng)變化受導(dǎo)葉開(kāi)啟規(guī)律影響較大,進(jìn)而影響機(jī)組內(nèi)部流動(dòng)演變規(guī)律。為了提升機(jī)組起動(dòng)穩(wěn)定性,需合理選擇PID調(diào)節(jié)參數(shù),來(lái)有效避免抽蓄電站低水頭起動(dòng)過(guò)程中水頭和流量的劇烈波動(dòng),減小機(jī)組振動(dòng)引發(fā)的電站安全問(wèn)題。
[1] HOFFSTAEDT J P, TRUIJEN D P K, FAHLBECK J, et al. Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling[J]. Renewable & Sustainable Energy Reviews, 2022, 158:112119.
[2] GUO W C, WU F L. Hydraulic-mechanical coupling vibration performance of pumped storage power station with two turbine units sharing one tunnel[J]. Journal of Energy Storage, 2022, 53: 105082.
[3] 毛秀麗,孫奧冉,Giorgio Pavesi,等. 水泵水輪機(jī)甩負(fù)荷過(guò)程流動(dòng)誘導(dǎo)噪聲數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):52-58. MAO Xiuli, SUN Aoran, GIORGIO Pavesi, et al. Simulation of flow induced noise in process of pump-turbine load rejection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 52-58. (in Chinese with English abstract)
[4] LI D Y, FU X L, ZUO Z G, et al. Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 26-46.
[5] 唐擁軍,樊玉林. 張河灣抽蓄電站運(yùn)行時(shí)過(guò)大廠房振動(dòng)分析與處理[J]. 水電能源科學(xué),2019,37(5):149-151, 158. TANG Yongjun, FAN Yulin. Analysis and treatment of violent vibration of powerhouse for Zhanghewan pumped storage power station[J]. Water Resources and Power, 2019, 37(5): 149-151, 158. (in Chinese with English abstract)
[6] 畢智偉,趙補(bǔ)石,魏加富,等. 某水電站機(jī)組及廠房振動(dòng)問(wèn)題成因與處理[J]. 水電能源科學(xué),2021,39(9):188-191. BI Zhiwei, ZHAO Bushi, WEI Jiafu, et al. Causes and treatment of vibration problems of unit and powerhouse of a hydropower station[J]. Water Resources and Power, 2021, 39(9): 188-191. (in Chinese with English abstract)
[7] 孫龍剛,郭鵬程,鄭小波,等. 混流式水輪機(jī)葉道空化渦誘發(fā)高振幅壓力脈動(dòng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21): 62-70. SUN Longgang, GUO Pengcheng, ZHENG Xiaobo, et al. Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 62-70. (in Chinese with English abstract)
[8] 朱國(guó)俊,李康,馮建軍,等. 空化對(duì)軸流式水輪機(jī)尾水管壓力脈動(dòng)和轉(zhuǎn)輪振動(dòng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(11):40-49. ZHU Guojun, LI Kang, FENG Jianjun, et al. Effects of cavitation on pressure fluctuation of draft tube and runner vibration in a Kaplan turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 40-49. (in Chinese with English abstract)
[9] 張飛,樊玉林,祝寶山,等. 模型可逆式水泵水輪機(jī)S區(qū)壓力脈動(dòng)測(cè)試[J]. 流體機(jī)械,2019,47(6):6-11, 28. ZHANG Fei, FAN Yulin, ZHU Baoshan, et al. S-shape region pressure pulsation measurement of model reversible pump-turbine[J]. Fluid Machinery, 2019, 47(6): 6-11, 28. (in Chinese with English abstract)
[10] 張自超,李延頻,陳德新. 水泵水輪機(jī)壓力脈動(dòng)傳播特性試驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(7):171-178. ZHANG Zichao, LI Yanpin, CHEN Dexin. Experimental investigation on transmission characteristics of pressure fluctuation in pump-turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 171-178. (in Chinese with English abstract)
[11] 張飛,王憲平. 抽水蓄能機(jī)組甩負(fù)荷試驗(yàn)時(shí)尾水錐管壓力[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):93-101. ZHANG Fei, WANG Xianping. Draft cone tube pressure of pumped-storage power unit in load rejection test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 93-101. (in Chinese with English abstract)
[12] 孫躍昆,劉樹(shù)紅,劉錦濤,等. 水泵水輪機(jī)開(kāi)機(jī)過(guò)程壓力脈動(dòng)的試驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2012,33(8):1330-1333. SUN Yuekun, LIU Shuhong, LIU Jintao, et al. Experiment study of pressure fluctuation of a pump-turbine in starting[J]. Journal of Engineering Thermophysics, 2012, 33(8): 1330-1333. (in Chinese with English abstract)
[13] 吳亞軍,楊振彪,田迪陽(yáng). 導(dǎo)葉開(kāi)度對(duì)水泵水輪機(jī)泵工況零流量外特性和穩(wěn)定性的影響[J]. 水電能源科學(xué),2021,39(6):158-160, 157. WU Yajun, YANG Zhenbiao, TIAN Diyang. Study on pressure fluctuation in vaneless space of pump-turbine[J]. Water Resources and Power, 2021, 39(6): 158-160, 157. (in Chinese with English abstract)
[14] 李劍華,張文武,祝寶山,等. 水泵水輪機(jī)無(wú)葉區(qū)壓力脈動(dòng)研究[J]. 工程熱物理學(xué)報(bào),2021,42(5):1213-1223. LI Jianhua, ZHANG Wenwu, ZHU Baoshan, et al. Causes and treatment of vibration problems of unit and powerhouse of a hydropower station[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1213-1223. (in Chinese with English abstract)
[15] 王小龍,劉德民,劉小兵,等. 水泵水輪機(jī)無(wú)葉區(qū)內(nèi)部流場(chǎng)及壓力脈動(dòng)分析[J]. 水力發(fā)電學(xué)報(bào),2021,40(4):59-72. WANG Xiaolong, LIU Demin, LIU Xiaobing, et al. Analysis on flow structures and pressure pulsation in vaneless space of reversible pump turbine[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 59-72. (in Chinese with English abstract)
[16] 李琪飛,譚海燕,李仁年,等. 異常低水頭對(duì)水泵水輪機(jī)壓力脈動(dòng)的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(2):99-104. LI Qifei, TAN Haiyan, LI Rennian, et al. Influence of abnormally low head on pressure fluctuation of pump turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(2): 99-104. (in Chinese with English abstract)
[17] ZHANG W W, CHEN Z M, ZHU B S, et al. Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine[J]. Renewable Energy, 2020, 154: 826-840.
[18] XIA L S, CHENG Y G, YANG J D, et al. Evolution of flow structures and pressure fluctuations in the S-shaped region of a pump turbine[J]. Journal of Hydraulic Research, 2019, 57: 107-121.
[19] 楊建東,胡金弘,曾威,等. 原型混流式水泵水輪機(jī)過(guò)渡過(guò)程中的壓力脈動(dòng)[J]. 水利學(xué)報(bào),2016,47(7):858-864. YANG Jiandong, HU Jinhong, ZENG Wei, et al. Transient pressure pulsations of prototype Francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7): 858-864. (in Chinese with English abstract)
[20] 張藍(lán)國(guó),周大慶,陳會(huì)向. 抽蓄電站全過(guò)流系統(tǒng)水泵工況停機(jī)過(guò)渡過(guò)程CFD模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(8):674-680. ZHANG Languo, ZHOU Daqing, CHEN Huixiang, et al. CFD simulation of shutdown transient process of pumped storage power station under pump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(8): 674-680. (in Chinese with English abstract)
[21] 周勤,夏林生,張春澤,等. 水泵水輪機(jī)甩負(fù)荷過(guò)渡過(guò)程中的壓力脈動(dòng)和轉(zhuǎn)輪受力[J]. 水利學(xué)報(bào),2018,49(11):1429-1438. ZHOU Qin, XIA Linsheng, ZHANG Chunze, et al. Transient pressure fluctuations and runner loadings of a model pump-turbine during a load rejection process[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1429-1438. (in Chinese with English abstract)
[22] 張成華,尤建鋒,泰榮,等. 水泵水輪機(jī)水泵斷電飛逸過(guò)程壓力脈動(dòng)CFD模擬[J]. 水力發(fā)電學(xué)報(bào),2020,39(4):62-72. ZHANG Chenghua, YOU Jianfeng, TAI Rong, et al. CFD simulations of pump-trip runaway process pressure pulsation of a model pump-turbine[J]. Journal of Hydroelectric Engineering, 2020, 39(4): 62-72. (in Chinese with English abstract)
[23] 陳秋華,張曉曦,何思源. 初始運(yùn)行工況對(duì)水泵水輪機(jī)飛逸過(guò)渡過(guò)程水力特性的影響[J]. 水利學(xué)報(bào),2020,51(7):858-868. CHEN Qiuhua, ZHANG Xiaoxi, HE Siyuan, et al. Influence of the initial working condition on the hydraulic performance of the pump-turbine during runaway transient scenario[J]. Journal of Hydraulic Engineering, 2020, 51(7): 858-868. (in Chinese with English abstract)
[24] 許哲,鄭源,闞闞,等. 基于熵產(chǎn)理論的超低揚(yáng)程雙向臥式軸流泵裝置飛逸特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(17):49-57. XU Zhe, ZHENG Yuan, KAN Kan, et al. Runaway characteristics of bidirectional horizontal axial flow pump with super low head based on entropy production theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 49-57. (in Chinese with English abstract)
[25] 郭俊勛,周大慶,陳會(huì)向,等. 導(dǎo)葉波動(dòng)對(duì)抽蓄機(jī)組低水頭空載穩(wěn)定影響分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào):42(15):5587-5595. GUO Junxun, ZHOU Daqing, CHEN Huixiang, et al. Influence analysis of guide vane fluctuation rate on pump storage units under no-load condition of low head[J]. Proceedings of the CSEE: 42(15): 5587-5595. (in Chinese with English abstract)
[26] 康順,石磊,戴麗萍,等. CFD模擬的誤差分析及網(wǎng)格收斂性研究[J]. 工程熱物理學(xué)報(bào),2010,31(12):2009-2013. KANG Shun, SHI Lei, DAI Liping, et al. Analyse of CFD simulation error and study of grid convergence[J]. Journal of Engineering Thermophysics, 2010, 31(12): 2009-2013. (in Chinese with English abstract)
[27] 王胤淞,周大慶,陳會(huì)向,等. 水泵水輪機(jī)低水頭起動(dòng)過(guò)程水力特性分析[J/OL]. 中國(guó)電機(jī)工程報(bào),1-10[2022-07-24]. DOI: 10. 13334/j. 0258-8013. pcsee. 220511. WANG Yinsong, ZHOU Daqing, CHEN Huixiang, et al. Study on hydraulic characteristics during low head startup process of pump-turbine[J/OL]. Proceedings of the CSEE, 1-10[2022-07-24]. DOI: 10. 13334/j. 0258-8013. pcsee. 220511. (in Chinese with English abstract)
[28] 李琪飛,趙超本,權(quán)輝,等. 水泵水輪機(jī)飛逸工況下無(wú)葉區(qū)高速水環(huán)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):159-166. LI Qifei, ZHAO Chaoben, QUAN Hui, et al. Research on high-speed water ring in bladeless zone under runaway condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 159-166. (in Chinese with English abstract)
[29] 張飛,陳振木,祝寶山. 水泵水輪機(jī)水環(huán)特性及其控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2022,42(22):8232-8243. ZHANG Fei, CHEN Zhenmu, ZHU Baoshan, et al. Water-ring characteristics and control of pump-turbine[J]. Proceedings of the CSEE, 2022, 42(22): 8232-8243. (in Chinese with English abstract)
[30] 李琪飛,張正杰,權(quán)輝,等. 水泵水輪機(jī)空化流及轉(zhuǎn)輪軸向受力分析[J]. 太陽(yáng)能學(xué)報(bào),2020,41(3):192-198. LI Qifei, ZHANG Zhengjie, QUAN Hui, et al. Analysis on cavitating flow and axial force in pump-turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 192-198. (in Chinese with English abstract)
Pressure pulsation during low head start-up transient in a pumped-storage hydropower unit
CHEN Huixiang1,2, LIU Hanzhong1, WANG Yinsong3, ZHOU Daqing3, XU Hui1,2, KAN Kan2,3※
(1.,,211100,; 2.,,210024,; 3.,,211100,)
Pumped storage hydropower (PSH) can be focused on the transient stability in the field of energy sources in the world. A great challenge can be the hydraulic instability characteristics of PSH units in the anti-S instability zone. The PSH units are prone to enter the anti-S instability zone during low head start, leading to the failure of the grid connection. There was a serious threat to the safe and stable operation of the units. The severe pressure pulsations can be caused by the complex flow evolution in the dynamic characteristics of the unit. In this study, a computational fluid dynamics (CFD) numerical simulation was introduced to explore the start-up process of a pump turbine at low-head in PSH. Experimental verification was also made on the accuracy of the numerical simulation. A dynamic mesh was used to realize the dynamic opening of the guide vanes. A proportional-integral-differentiation (PID) regulation was also introduced. A closed-loop feedback model was established to regulate the opening of the guide vane using rotational speed fluctuations, in order to realize the simulation of the low-head star-up process of a PSH whole flow system. The numerical simulation was focused on the pressure pulsation characteristics in the area of the guide vane and draft tube. The results show that the numerical simulation was in an excellent agreement with the experimental, and the maximum error does not exceed 10%. The PID regulation model was added to simulate the variation pattern of the active guide vane opening. The strong dynamic and static interaction was caused by the speed of the unit. There were the significant mean pressure changes in the vaneless zone, followed by the speed of the unit. The stator-rotor interaction was dominated the variation of the time-averaged pressure dimensionless amplitude and pulsating pressure dimensionless amplitude in the vaneless zone. By contrast, there were the effects of dynamic and static interference on the pulsation amplitude of the pressure in the upstream. The pressure pulsation signal was evenly distributed over the circumference in the area between the stay vane and the guide vane, whereas, there was the uneven distribution along the circumference in the vaneless area. The vortex near the rotor area first appeared in the center of the blade, and then progressed upstream, eventually forming a stable vortex ring structure at the mid-plane position in the vaneless zone. There were the different fluctuation characteristics in the pressure pulsation in the straight cone section of the draft tube in different stages of the start-up process. The pressure fluctuation was more significant in the PID regulation. The comparison of internal flow revealed that the guide vane opening was caused some changes in the distribution and fluctuations of the velocity in the vaneless zone. Significant large-scale vortices were found in the runner inlet and the vaneless zone at the small guide vane opening. The stator-rotor interaction was combined to be responsible for the high amplitude of the time-averaged pressure and pulsation pressure fluctuations in the vaneless zone. The draft tube vortex rope was ever changing from a side strip vortex rope to a spiral vortex rope, and then to a curtain vortex rope during the start-up process. The persistence and dynamics of the vortex rope were induced the uneven pressure radial distribution. The main reasons were attributed to the drastic pressure fluctuations. The findings can provide a strong reference to improve the success rate of the starting pump-turbine at the low head and connecting to the grid.
pressure pulsation; numerical simulation; pumped storage hydropower unit; transient process; low-head start-up process
10.11975/j.issn.1002-6819.202210228
TK734
A
1002-6819(2023)-06-0063-10
陳會(huì)向,劉漢中,王胤淞,等. 抽水蓄能機(jī)組低水頭起動(dòng)過(guò)渡過(guò)程壓力脈動(dòng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(6):63-72.doi:10.11975/j.issn.1002-6819.202210228 http://www.tcsae.org
CHEN Huixiang, LIU Hanzhong, WANG Yinsong, et al. Pressure pulsation during low head start-up transient in a pumped-storage hydropower unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 63-72. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210228 http://www.tcsae.org
2022-10-27
2023-02-24
國(guó)家自然科學(xué)基金資助項(xiàng)目(52006053);江蘇省自然科學(xué)基金資助項(xiàng)目(BK20200508);中央高?;究蒲袠I(yè)務(wù)費(fèi)資助項(xiàng)目(B220202069);中國(guó)博士后科學(xué)基金(2021M690876);江蘇省博士后科研資助計(jì)劃(2021K498C)
陳會(huì)向,博士,副教授,研究方向?yàn)樗C(jī)械過(guò)渡過(guò)程與安全控制。Email:chenhuixiang@hhu.edu.cn
闞闞,博士,副教授,研究方向水力機(jī)械穩(wěn)定性。Email:kankan@hhu.edu.cn