趙溪竹 楊洪 郭冰冰 劉明洋 代龍軍 王立豐
摘??要:源庫(kù)關(guān)系研究在作物產(chǎn)量和品質(zhì)形成中具有重要的理論研究和技術(shù)應(yīng)用價(jià)值。隨著作物遺傳育種、植物生理和分子生物學(xué)等多學(xué)科的交叉融合,源庫(kù)關(guān)系研究近年來(lái)整合運(yùn)用分子生物學(xué)技術(shù)、植物激素信號(hào)轉(zhuǎn)導(dǎo)等眾多新技術(shù)和新方法取得了重要進(jìn)展。本文綜述了源庫(kù)關(guān)系理論和源庫(kù)關(guān)系調(diào)控兩方面研究進(jìn)展,重點(diǎn)闡述了糖代謝、激素調(diào)控源庫(kù)關(guān)系的機(jī)理,分析通過(guò)栽培措施協(xié)調(diào)源庫(kù)關(guān)系提高產(chǎn)量的機(jī)理。同時(shí)結(jié)合熱帶重要經(jīng)濟(jì)作物橡膠樹(shù)的排膠機(jī)理與調(diào)控研究進(jìn)展,論述乙烯利刺激和割膠處理調(diào)節(jié)源庫(kù)分配與橡膠樹(shù)產(chǎn)量形成之間的關(guān)系,以期推動(dòng)天然橡膠源庫(kù)關(guān)系理論研究,為排膠調(diào)控技術(shù)創(chuàng)制提供技術(shù)指導(dǎo)。
關(guān)鍵詞:橡膠樹(shù);源庫(kù)關(guān)系;激素;排膠;機(jī)理中圖分類(lèi)號(hào):S794.1??????文獻(xiàn)標(biāo)識(shí)碼:A
Research?Status?of?Source/Sink?Relationship?and?Prospect?in?the?Study?of?Latex?Flow?Mechanism?of?Hevea?brasiliensis?Muell.?Arg.
ZHAO?Xizhu,?YANG?Hong,?GUO?Bingbing,?LIU?Mingyang,?DAI?Longjun,?WANG?Lifeng*
Key?Laboratory?of?Biology?and?Genetic?Resources?of?Rubber?Tree,?Ministry?of?Agriculture?and?Rural?Affairs?/?State?Key?Laboratory?Incubation?Base?for?Cultivation?&?Physiology?of?Tropical?Crops?/?Danzhou?Investigation?&?Experiment?Station?of?Tropical?Crops,?Ministry?of?Agriculture?and?Rural?Affairs?/?Rubber?Research?Institute,?Chinese?Academy?of?Tropical?Agricultural?Sciences,?Haikou,?Hainan?571101,?China
Abstract:?The?study?of?source/sink?relationship?has?important?theoretical?research?and?technical?application?value?in?crop?yield?and?quality?formation.?With?the?interdisciplinary?integration?of?crop?genetics?and?breeding,?plant?physiology?and?molecular?biology,?the?study?of?source-sink?relationship?has?made?important?progress?in?recent?years?by?integrating?molecular?biology?techniques,?plant?hormone?signal?transduction?and?many?other?new?technologies?and?methods.?In?this?paper,?the?research?progress?is?reviewed?from?two?aspects:?source/sink?relationship?theory?and?regulation.?The?mechanism?of?glucose?metabolism?and?hormone?regulating?source/sink?relationship?was?emphasized,?and?the?mechanism?of?cultivation?measures?improving?yield?by?coordinating?source/sink?relationship?was?analyzed.?Combined?with?the?research?progress?on?the?mechanism?and?regulation?of?rubber?trees,?an?important?tropical?cash?crop.?This?lay?a?foundation?for?the?theory?of?source/sink?relationship?in?natural?rubber?industry?and?provide?technical?guidance?for?the?creation?of?rubber?latex?flow?control?technology.
Keywords:?Hevea?brasiliensis?Muell.?Arg.;?source/sink?relationship;?hormone;?latex?flow;?mechanism
DOI:?10.3969/j.issn.1000-2561.2023.12.016
巴西橡膠樹(shù)(Hevea?brasiliensis?Muell.?Arg.)是天然橡膠(順式-1,4-聚異戊二烯)的主要來(lái)源,其制品可為國(guó)防戰(zhàn)略物資、航空、汽車(chē)等領(lǐng)域提供重要原料。2001年以來(lái),我國(guó)已成為全球最大天然橡膠消費(fèi)國(guó)和進(jìn)口國(guó)[1],且隨著經(jīng)濟(jì)社會(huì)發(fā)展,對(duì)天然橡膠消費(fèi)需求量日益增長(zhǎng),自給需求也持續(xù)增加,其產(chǎn)量的提高可有效解決保障供給問(wèn)題[2]。我國(guó)天然橡膠生產(chǎn)受土地資源和非傳統(tǒng)植膠區(qū)氣候條件等因素制約,因此,膠園高產(chǎn)栽培理論和技術(shù)成為研究熱點(diǎn)[3]。源庫(kù)理論由源流庫(kù)(Source-Flow-Sink)組成,該理論的提出為植物生理學(xué)、作物遺傳育種機(jī)制和栽培技術(shù)研究提供了重要指導(dǎo)[4-5]。對(duì)模式植物擬南芥的研究表明,源庫(kù)調(diào)節(jié)是分析個(gè)體水平上同化物生產(chǎn)制造、分配轉(zhuǎn)運(yùn)和轉(zhuǎn)化積累過(guò)程及器官間相互作用規(guī)律的重要理論框架,對(duì)作物生長(zhǎng)、發(fā)育、抗逆和品質(zhì)形成均具有重要作用[6]。最新的研究也發(fā)現(xiàn),庫(kù)強(qiáng)度性狀調(diào)控小麥產(chǎn)量的各個(gè)進(jìn)程[7]。在水稻中依托GWAS揭示流和庫(kù)相關(guān)性狀的遺傳基礎(chǔ)等[8]。
橡膠烴在巴西橡膠樹(shù)乳管細(xì)胞中經(jīng)類(lèi)異戊二烯途徑合成,是典型的植物次生代謝產(chǎn)物,其前體來(lái)自葉片光合作用產(chǎn)生的蔗糖[9]。目前,關(guān)于橡膠樹(shù)光合誘導(dǎo)、光合作用、排膠生理等方面的研究不斷取得進(jìn)展,為建立和闡釋橡膠樹(shù)天然橡膠生物合成的“源庫(kù)流”機(jī)制奠定堅(jiān)實(shí)的基礎(chǔ)[10-11]。然而,橡膠樹(shù)葉片光合和膠乳生物合成的源庫(kù)關(guān)系理論模型尚未建立,源庫(kù)調(diào)控機(jī)制不清制約了橡膠樹(shù)產(chǎn)膠、排膠機(jī)理研究和采收技術(shù)升級(jí)。鑒于此,本文重點(diǎn)綜述植物源庫(kù)關(guān)系理論及糖代謝、激素調(diào)控源庫(kù)關(guān)系的機(jī)理,分析栽培措施通過(guò)協(xié)調(diào)源庫(kù)關(guān)系提高產(chǎn)量的機(jī)理,結(jié)合橡膠樹(shù)“源流庫(kù)”相關(guān)研究進(jìn)展,提出“葉膠比”源庫(kù)關(guān)系模型,分析不同產(chǎn)量差異品種、乙烯利刺激和割膠處理調(diào)節(jié)源庫(kù)分配與橡膠樹(shù)產(chǎn)量形成之間的關(guān)系,將為解析橡膠樹(shù)乳管細(xì)胞源庫(kù)分配的生理機(jī)制、闡明橡膠樹(shù)排膠機(jī)理和研發(fā)橡膠樹(shù)排膠技術(shù)提供理論指導(dǎo)和技術(shù)支持。
1.1??植物源庫(kù)概念
1928年MASON等[4]首次提出“源庫(kù)理論”(Source-sink?Theory)的概念,認(rèn)為作物產(chǎn)量形成過(guò)程實(shí)質(zhì)上是源庫(kù)互作的過(guò)程。光合作用合成的有機(jī)物質(zhì)是植物生長(zhǎng)發(fā)育的物質(zhì)基礎(chǔ),源庫(kù)理論彌補(bǔ)了光合理論的不足,對(duì)認(rèn)識(shí)農(nóng)作物產(chǎn)量、品質(zhì)的形成機(jī)理具有重要指導(dǎo)意義[12]。廣義的源庫(kù)概念從植物生理代謝的角度定義,作物各器官均可被劃分為源或庫(kù)。作物生產(chǎn)和輸出同化物的器官或組織均可稱(chēng)為“源”,如作物的功能葉和莖(鞘),進(jìn)行礦物質(zhì)吸收和激素、氨基酸等物質(zhì)合成及轉(zhuǎn)運(yùn)的根系,以及綠色果皮或種皮、穗軸等非葉器官,充足的源是產(chǎn)量提高的基礎(chǔ);凡是轉(zhuǎn)化或貯藏同化物的器官或組織均可稱(chēng)為“庫(kù)”,如果實(shí)、種子,也可能是正在生長(zhǎng)或者變態(tài)為貯藏器官的根、莖、葉,這些器官不能產(chǎn)生光合同化物,而是以糖或相關(guān)物質(zhì)的形式輸入碳來(lái)維持代謝及生長(zhǎng)。狹義的源庫(kù)則從產(chǎn)量形成的角度定義,以作物葉片、莖干為主體的全部營(yíng)養(yǎng)器官均可稱(chēng)為“源”,接納或最后儲(chǔ)藏養(yǎng)料的器官即為“庫(kù)”?!傲鳌笔枪夂袭a(chǎn)物在源和庫(kù)之間的運(yùn)輸,包括同化物在源端的裝載、庫(kù)端的卸載和在源庫(kù)間輸導(dǎo)組織內(nèi)的移動(dòng)[6]。源庫(kù)理論及其調(diào)控研究在葡萄等經(jīng)濟(jì)作物[13]、玉米[14]和水稻等[7]主要糧食作物的生長(zhǎng)發(fā)育及其調(diào)控技術(shù)研發(fā)中發(fā)揮了重要作用。協(xié)調(diào)的源庫(kù)關(guān)系能夠有效促進(jìn)黃瓜葉片的光合作用,提高同化物運(yùn)輸效率,從而提高黃瓜產(chǎn)量[15]。調(diào)控甘蔗光合產(chǎn)物蔗糖的積累[16],平衡向日葵碳分配和葉片性狀[17],提高作物抗逆性[18]和調(diào)控土壤微生物組成[19]。光合作用僅是作物調(diào)控的一部分,需要對(duì)作物綜合的匯活動(dòng)和不同代謝過(guò)程的協(xié)調(diào)進(jìn)行系統(tǒng)研究[20]。
1.2??源庫(kù)性狀及衡量指標(biāo)
協(xié)調(diào)的源庫(kù)關(guān)系是作物產(chǎn)量和品質(zhì)提升的前提,源庫(kù)比是源庫(kù)協(xié)調(diào)性的量化。農(nóng)業(yè)生產(chǎn)和科研實(shí)踐中常用作物源和庫(kù)的器官數(shù)目比值表征源庫(kù)關(guān)系,如園藝生產(chǎn)與研究中的“葉果比”、棉花的“葉鈴比”、谷類(lèi)作物的“葉粒比”等[6]。隨著植物生理學(xué)和分子生物學(xué)不斷取得進(jìn)展,源庫(kù)機(jī)理和調(diào)控研究日益精確。精確分析莖葉比、葉片衰老、逆境抗性有助于實(shí)現(xiàn)源庫(kù)調(diào)控。基于源庫(kù)關(guān)系精準(zhǔn)修正模型,對(duì)評(píng)估未來(lái)氣候變化情況下熱脅迫對(duì)作物生產(chǎn)的影響具有重要意義[21]。近年來(lái),分子生物學(xué)和整合生物學(xué)技術(shù)在源庫(kù)研究中得到廣泛應(yīng)用。如采用水稻穗粒數(shù)基因調(diào)控高產(chǎn)生理功能[22];采用翻譯后調(diào)控開(kāi)花基因調(diào)控土豆產(chǎn)量[23];采用過(guò)表達(dá)蛋白質(zhì)磷酸酶2A催化亞基評(píng)估馬鈴薯塊莖的發(fā)芽行為,增加塊莖的源容量和芽的庫(kù)強(qiáng)度,以支持其加速生長(zhǎng)[24];采用光合產(chǎn)物蔗糖和代謝產(chǎn)物運(yùn)輸解析源庫(kù)互作[25]等。
2.1??糖代謝調(diào)控源庫(kù)關(guān)系
糖為植物生長(zhǎng)發(fā)育提供碳源和能源,其“感知和信號(hào)轉(zhuǎn)導(dǎo)”主要有2種機(jī)制,通過(guò)具有廣泛親和力和特異性的糖結(jié)合傳感器直接傳感和發(fā)送信號(hào),通過(guò)糖源生物能量分子和代謝物調(diào)節(jié)信號(hào)蛋白間接傳遞糖信號(hào)[26]。水稻莖稈和籽粒間的碳分配受蔗糖轉(zhuǎn)運(yùn)和代謝的控制[27]。限制葡萄源庫(kù)導(dǎo)致果實(shí)中積累的代謝產(chǎn)物流失,而糖類(lèi)高達(dá)72%[28]。在非限制條件下,通過(guò)對(duì)146個(gè)重組自交系及其親本和其他商業(yè)化品種進(jìn)行評(píng)價(jià),表明在灌漿過(guò)程中小麥籽粒產(chǎn)量受庫(kù)所限可能是遺傳改良的結(jié)果,而不是作物種類(lèi)固有的[29]。摘葉、去果處理提高了靈武長(zhǎng)棗葉片中的蔗糖和果糖含量,葉片中碳水化合物的不斷積累提高了果實(shí)單果重、可溶性糖、可溶性固形物含量[30]。通過(guò)部分落葉或重度遮蔭降低源庫(kù)比,反式玉米素核苷從根部傳遞到剩余的葉片,蔗糖輸出基因表達(dá)發(fā)生改變,從而提高了光合作用活性[31]。降低源庫(kù)比還可提高溫室番茄果實(shí)中淀粉、蔗糖和己糖含量,促進(jìn)己糖運(yùn)輸[32-33]。
光合作用下的碳同化速率高度依賴(lài)于環(huán)境因素,如光照利用率和代謝限制,如碳匯器官對(duì)碳的需求,樹(shù)木內(nèi)部碳和氮的分配在很大程度上依賴(lài)于碳需求,低碳需求引起光合作用的反饋限制,導(dǎo)致樹(shù)木內(nèi)部低水平變異[34]。對(duì)不同基因型甘薯生長(zhǎng)、生物量分配和源庫(kù)變化研究表明,缺鉀抑制高鉀吸收效率型甘薯和低鉀利用效率型甘薯葉片的凈光合速率,減少了光合產(chǎn)物的轉(zhuǎn)運(yùn),增加了淀粉、己糖和蔗糖的含量,基因型在與光合作用有關(guān)的對(duì)缺鉀的反應(yīng)中存在差異[35]。XU等[36]在2021年確定了對(duì)模式植物擬南芥葉的糖輸出率有潛在直接影響的蔗糖轉(zhuǎn)運(yùn)蛋白和質(zhì)子泵的潛在調(diào)節(jié)單元。海藻糖6-磷酸信號(hào)通路調(diào)節(jié)碳水化合物的分配可能是調(diào)控許多作物性狀的關(guān)鍵[37]。
2.2??激素調(diào)控源庫(kù)關(guān)系
植物外源激素誘導(dǎo)途徑可調(diào)控源庫(kù)積累及分配。植物內(nèi)源激素脫落酸(abscisic?acid,?ABA)在生長(zhǎng)發(fā)育過(guò)程中增加,外源ABA的施用可促進(jìn)干物質(zhì)的積累和分配[38]。噴施乙烯利對(duì)作物源庫(kù)性狀及產(chǎn)量品質(zhì)形成調(diào)控效應(yīng),對(duì)開(kāi)花數(shù)量的抑制作用與噴施時(shí)期有關(guān)[39]。駿棗坐果15?d后噴施0.1?mmol/L亞精胺+0.25?mmol/L水楊酸+30?mg/L?DA-6的復(fù)配劑,能有效調(diào)控源庫(kù)內(nèi)源激素和果實(shí)品質(zhì),每隔10?d連續(xù)噴施2次,顯著提高駿棗果實(shí)第1次快速生長(zhǎng)期源葉和庫(kù)果間的細(xì)胞分裂素(cytokinin,?CTK)含量,增強(qiáng)源葉的供應(yīng)能力,減緩庫(kù)果的生長(zhǎng)速度[40]。在外源ABA誘導(dǎo)下,糖代謝路徑碳亦可流向油脂路徑,進(jìn)而調(diào)控生物量積累[41]。
2.3??栽培措施調(diào)控源庫(kù)關(guān)系
在農(nóng)業(yè)生產(chǎn)中,不同的栽培措施可通過(guò)延緩植物衰老調(diào)控源庫(kù)關(guān)系,進(jìn)而影響產(chǎn)量品質(zhì)。通過(guò)無(wú)膜栽培可延緩生育后期葉片衰老,促進(jìn)光合物質(zhì)生產(chǎn)與同化物向棉鈴分配[42]。整枝留果可通過(guò)改變植株的源庫(kù)關(guān)系調(diào)控甜瓜的衰老進(jìn)程,過(guò)分增庫(kù)會(huì)打破體內(nèi)固有的平衡狀態(tài),喪失保護(hù)性酶清除活性氧及降低活性氧傷害的功能,質(zhì)膜過(guò)氧化程度增高,加劇乙烯釋放量[43]。拔節(jié)期或孕穗期單次灌水可協(xié)調(diào)具有高庫(kù)容和源供應(yīng)能力特征的源庫(kù)關(guān)系,從而提高冬小麥的籽粒產(chǎn)量和水分利用效率[44]。油茶結(jié)果數(shù)多的年份,增庫(kù)會(huì)抑制花芽分化,葉片的生長(zhǎng)類(lèi)激素質(zhì)量分?jǐn)?shù)增加,而花芽和葉芽的生長(zhǎng)類(lèi)激素降低、ABA質(zhì)量分?jǐn)?shù)升高[45]。土壤有效持水量通過(guò)影響碳的運(yùn)輸、分配及利用影響樹(shù)木的莖稈脆弱性[46]。氮肥對(duì)促進(jìn)作物生長(zhǎng)、提高產(chǎn)量具有重要意義,植物源庫(kù)組織的氮轉(zhuǎn)移過(guò)程是決定種子產(chǎn)量的關(guān)鍵因素,可影響源庫(kù)轉(zhuǎn)換過(guò)程中初級(jí)代謝的完全重組[47]。
橡膠樹(shù)可以作為研究源庫(kù)關(guān)系的新型模式植物,主要有以下3個(gè)方面原因:
3.1??橡膠樹(shù)的源及其特征
橡膠樹(shù)的“源”是指進(jìn)行光合作用的功能葉片。橡膠樹(shù)葉片的凈光合速率(net?photosynthetic?rate,?Pn)在不同品種之間存在顯著差異,主要是受到胞內(nèi)CO2擴(kuò)散的氣孔阻力(Rs')變化影響,而非變化程度更大的胞間阻力(Ri)[48-49]。NATARAJA等[50]對(duì)12?個(gè)橡膠樹(shù)品種的葉片PN、氣孔導(dǎo)度(stomatal?conductance,?Gs)和葉肉細(xì)胞固碳能力間的關(guān)系研究表明,不同品種間的葉片Pn在較低光照強(qiáng)度和飽和光照強(qiáng)度下存在顯著差異,低光強(qiáng)下的Pn變化幅度比飽和光強(qiáng)下的Pn變化幅度更大,在低光強(qiáng)下具有較高Pn和較低(intercellular?CO2?concentration,?Ci)的品種耐蔭,而在高輻射光能條件下具有高羧化效率,較低Gs和CO2補(bǔ)償濃度的品種,其光合作用主要依賴(lài)葉肉細(xì)胞,而受氣孔開(kāi)度的影響較小,這樣的品種會(huì)具有較高的生物量和水分利用效率。采用700?mg/cm3?CO2處理橡膠樹(shù)幼苗60?d,可以顯著提升幼苗的生長(zhǎng)發(fā)育和光合活性[51]。這些研究結(jié)果說(shuō)明橡膠樹(shù)中存在潛力巨大且可調(diào)控的“源”。
3.2??橡膠樹(shù)的源庫(kù)流調(diào)節(jié)作用
橡膠樹(shù)中具有高效的“源-庫(kù)-流”轉(zhuǎn)運(yùn)體系。通過(guò)對(duì)橡膠樹(shù)葉片糖含量的研究發(fā)現(xiàn),在4個(gè)發(fā)育階段(Ⅰ~Ⅳ)中主要檢測(cè)到蔗糖、果糖和葡萄糖,淀粉和角豆糖醇為次要糖類(lèi),其中,蔗糖在葉片發(fā)育過(guò)程中持續(xù)增加,果糖和葡萄糖含量在第Ⅲ期前不斷增加,但在第Ⅳ期(成熟葉)顯著下降[9]。在橡膠樹(shù)種子組織分化過(guò)程中,還原糖濃度高,蔗糖濃度低,細(xì)胞分裂次數(shù)明顯增加,此后,蔗糖的濃度增加,淀粉粒的數(shù)量和大小增加,還原糖的濃度減少[52]。在蔗糖轉(zhuǎn)運(yùn)機(jī)制方面,相繼鑒定了橡膠樹(shù)蔗糖轉(zhuǎn)運(yùn)基因HbSUT1、HbSUT3、HbSUT5等。乙烯對(duì)膠乳產(chǎn)量的刺激依賴(lài)于橡膠樹(shù)中蔗糖轉(zhuǎn)運(yùn)蛋白HbSUT1B的表達(dá)[53]。HbSUT3是主要在乳管細(xì)胞中表達(dá)的蔗糖轉(zhuǎn)運(yùn)基因,其表達(dá)受刺激劑乙烯的誘導(dǎo),并與膠乳增產(chǎn)效應(yīng)有關(guān),割膠也能顯著增加HbSUT3基因的表達(dá)[54]。橡膠樹(shù)的液泡蔗糖轉(zhuǎn)運(yùn)蛋白HbSUT5通過(guò)調(diào)節(jié)樹(shù)皮和乳管中的細(xì)胞內(nèi)蔗糖轉(zhuǎn)運(yùn)參與膠乳生產(chǎn)[55]。除蔗糖外,橡膠樹(shù)中還存在草酸轉(zhuǎn)運(yùn)因子HbOT。HbOT1和HbOT2均是穩(wěn)定的疏水蛋白,具有跨膜結(jié)構(gòu)和SNARE_assoc結(jié)構(gòu)域,可能屬于SNARE超家族的SNARE_assoc亞家族蛋白,HbOT1在根、莖、樹(shù)皮和膠乳中呈高表達(dá),HbOT2在膠乳中呈高表達(dá),HbOT1和HbOT2在鋁脅迫下表達(dá)上調(diào),且受銅、錳等金屬誘導(dǎo)[56]。
3.3??橡膠樹(shù)的庫(kù)是合成膠乳的乳管細(xì)胞
橡膠樹(shù)的乳管包括初生乳管和次生乳管,次生乳管是商用天然橡膠生物合成與儲(chǔ)存的主要場(chǎng)所,天然橡膠生產(chǎn)即是通過(guò)切斷樹(shù)皮中的乳管收集膠乳,樹(shù)干和樹(shù)皮中的乳管數(shù)量與天然橡膠產(chǎn)量呈顯著正相關(guān)。位于橡膠樹(shù)樹(shù)干韌皮部的次生乳管即為“庫(kù)”,其數(shù)量和膠乳產(chǎn)量則可作為衡量庫(kù)容的指標(biāo)。目前,越南等國(guó)的高產(chǎn)膠園平均每畝干膠產(chǎn)量可達(dá)100~110?kg。我國(guó)培育的熱研879品種干膠產(chǎn)量可達(dá)160?kg以上。說(shuō)明橡膠樹(shù)的“庫(kù)”容巨大。與其他植物常見(jiàn)的果實(shí)、根莖作為庫(kù)相比,橡膠樹(shù)膠乳是典型的次生代謝產(chǎn)物,更具研究特色。橡膠樹(shù)次生乳管細(xì)胞經(jīng)類(lèi)異戊二烯路徑進(jìn)行合成,其前體是由光合作用產(chǎn)物蔗糖轉(zhuǎn)化而成的異戊烯基二磷酸(IPP),經(jīng)甲羥戊酸(MVA)路徑或甲基赤蘚醇4-磷酸(MEP)路徑合成。橡膠樹(shù)的乳管細(xì)胞是天然橡膠生物合成部位,橡膠粒子是合成天然橡膠的特殊細(xì)胞器,橡膠分子在橡膠粒子表面合成[57]。天然橡膠生物合成關(guān)鍵酶橡膠延伸因子(REF)、小橡膠粒子蛋白(SRPP)和順式異戊烯基轉(zhuǎn)移酶(cPT)就位于橡膠粒子上[58-59]。其中,REF在膠乳中是一種與橡膠粒子緊密結(jié)合的蛋白,是天然橡膠生物合成途徑中異戊二烯基轉(zhuǎn)移酶催化異戊二烯單體添加到橡膠分子中不可缺少的成分。SRPP是橡膠小粒子中含量最為豐富的膜蛋白之一,緊密結(jié)合在小橡膠粒子膜上,起著橡膠聚合的作用或類(lèi)似于REF的作用[60-61]。天然橡膠生物合成還需脂類(lèi)參與,SRPP結(jié)合磷脂(PL)、糖脂(GL)和中性脂(NL)[62-63],而REF只結(jié)合中性脂[58]。
橡膠樹(shù)“庫(kù)”活性受死皮病和割膠影響。與健康樹(shù)相比,死皮病通過(guò)影響橡膠樹(shù)的天然橡膠生物合成活性降低庫(kù)活性,而割膠則通過(guò)增加6-磷酸海藻糖合成酶活性提高庫(kù)活性。通過(guò)轉(zhuǎn)錄組測(cè)序和基于iTraq的蛋白質(zhì)組分析,發(fā)現(xiàn)HbFPS1是橡膠生物合成的關(guān)鍵基因,其表達(dá)產(chǎn)物在受死皮影響的橡膠樹(shù)膠乳中下調(diào),HbSRPP1可通過(guò)蛋白-蛋白相互作用將法尼酯二磷酸合酶HbFPS1招募到小橡膠顆粒中,催化法尼酯二磷酸(FPP)的合成,促進(jìn)橡膠生物合成的啟動(dòng),隨著HbFPS1的下調(diào),受死皮影響的橡膠樹(shù)膠乳中FPP含量顯著降低,最終導(dǎo)致橡膠顆粒發(fā)育異常,橡膠生物合成活性降低[64]。ZHOU等[10]鑒定了橡膠樹(shù)乳管中6-磷酸海藻糖合成酶的14個(gè)TPS基因,其中Ⅱ類(lèi)TPS基因HbTPS5具有乳管特異性功能,割膠使6-磷酸海藻糖合成酶活性和海藻糖含量均增加,且編碼基因HbTPS1的表達(dá)一致,另一方面,SnRK1活性的降低說(shuō)明T6P升高對(duì)SnRK1有抑制作用,從而在轉(zhuǎn)錄水平、酶學(xué)和代謝等方面獲得支持T6P/SnRK1信號(hào)通路參與橡膠合成的證據(jù)。
綜上所述,關(guān)于橡膠樹(shù)光合作用、轉(zhuǎn)運(yùn)和天然橡膠生物合成方面的最新研究進(jìn)展,筆者提出了橡膠樹(shù)“葉膠比”源庫(kù)流模型,即橡膠園光照強(qiáng)度等環(huán)境因子調(diào)控橡膠樹(shù)葉片光合作用,其產(chǎn)物蔗糖調(diào)控膠乳中碳源和氮源的比例及內(nèi)源激素含量,進(jìn)而調(diào)控膠乳產(chǎn)量和質(zhì)量,導(dǎo)致橡膠樹(shù)品種間排膠特異性差異。在該模型中,由于分布于葉片和初生生長(zhǎng)莖稈皮組織的初生乳管所產(chǎn)橡膠不能作為標(biāo)準(zhǔn)膠使用,僅可在生產(chǎn)中作普通膠料[65],未將橡膠樹(shù)初生乳管產(chǎn)量納入庫(kù)容。為驗(yàn)證這一科學(xué)理論模型,將對(duì)排膠特性差異品種采用刺激和割膠處理調(diào)節(jié)源庫(kù)分配,進(jìn)而調(diào)控橡膠樹(shù)產(chǎn)量形成,為解析橡膠樹(shù)乳管細(xì)胞源庫(kù)分配的生理機(jī)制和揭示不同品種橡膠樹(shù)排膠特性,闡明橡膠樹(shù)排膠機(jī)理和研發(fā)橡膠樹(shù)排膠技術(shù)提供理論指導(dǎo)和技術(shù)支持。
建立橡膠樹(shù)“葉膠比”模型解析源庫(kù)調(diào)節(jié)橡膠樹(shù)排膠特性的生理機(jī)制,將為篩選產(chǎn)量潛力品種和排膠特性差異品種提供綜合參考。通過(guò)激素刺激和割膠處理等措施調(diào)節(jié)源庫(kù)分配關(guān)系,進(jìn)而調(diào)控橡膠樹(shù)產(chǎn)量形成,為解析橡膠樹(shù)乳管細(xì)胞源庫(kù)分配的生理機(jī)制奠定堅(jiān)實(shí)的基礎(chǔ)。在理論研究方面,將證明割膠后膠乳庫(kù)與葉片源之間的調(diào)節(jié)關(guān)系和調(diào)控閾值;在實(shí)際應(yīng)用方面,闡明橡膠樹(shù)源庫(kù)調(diào)節(jié)排膠特性的生理機(jī)制將為研發(fā)橡膠樹(shù)新型產(chǎn)量刺激劑和割面保護(hù)劑提供重要的理論依據(jù)和技術(shù)指導(dǎo)。
參考文獻(xiàn)
[4]?MASON?T?G,?MASKELL?E?J.?Studies?on?the?transport?of?carbohydrates?in?the?cotton?plant1:?I.?a?study?of?diurnal?variation?in?the?carbohydrates?of?leaf,?bark,?and?wood,?and?of?the?effects?of?ringing[J].?Annals?of?Botany,?1928,?42(1):?189-253.
[5]?MASON?T?G,?MASKELL?E?J.?Studies?on?the?transport?of?carbohydrates?in?the?cotton?plant:?II.?the?factors?determining?the?rate?and?the?direction?of?movement?of?sugars[J].?Annals?of?Botany,?1928,?42(167):?571-636.
[6]?陳年來(lái).?作物庫(kù)源關(guān)系研究進(jìn)展[J].?甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),?2019,?54(1):?1-10.CHEN?N?L.?Research?advances?on?source-sink?interaction?of?the?crops[J].?Journal?of?Gansu?Agricultural?University,?2019,?54(1):?1-10.?(in?Chinese)
[14]?CHEAH?Z?X,?OHARE?T?J,?HARPER?S?M,?BELL?M?J.?Variation?in?zinc?concentration?of?sweetcorn?kernels?reflects?source-sink?dynamics?influenced?by?kernel?number[J].?Journal?of?Experimental?Botany,?2020,?71(16):?4985-4992.
[15]?張惠敏.?多聚腺苷酸化和DNA甲基化調(diào)控黃瓜(Cucumis?sativus?L.)庫(kù)源關(guān)系研究[D].?揚(yáng)州:?揚(yáng)州大學(xué),?2022.ZHANG?H?M.?Polyadenylation?and?DNA?methylation?regulate?the?sink-source?relationship?in?cucumber?(Cucumis?sativus?L.)[D].?Yangzhou:?Yangzhou?University,?2022.?(in?Chinese)
[16]?SAEZ?J?V,?MARIOTTI?J?A,?VEGA?C?R?C.?Source-sink?relationships?during?early?crop?development?influence?earliness?of?sugar?accumulation?in?sugarcane[J].?Journal?of?Experimental?Botany,?2019,?70(19):?5157-5171.
[17]?PINCOVICI?S,?COCHAVI?A,?KAMIELI?A,?EPHRATH?J,?RACHMILEVITCH?S.?Source-sink?relations?of?sunflower?plants?as?affected?by?a?parasite?modifies?carbon?allocations?and?leaf?traits[J].?Plant?Science,?2018,?271:?100-107.
[18]?RODRIGUES?J,?INZE?D,?NELISSEN?H,?SAIBO?N?J?M.?Source-sink?regulation?in?crops?under?water?deficit[J].?Trends?in?Plant?Science,?2019,?24(7):?652-663.
[19]?HALL?J?P,?WOOD?A?J,?HARRISON?E,?BROCKHURST?M?A.?Source-sink?plasmid?transfer?dynamics?maintain?gene?mobility?in?soil?bacterial?communities[J].?Proceedings?of?the?National?Academy?of?Sciences,?2016,?113(29):?8260-8265.
[20]?MURCHIE?E?H,?REYNOLDS?M,?SLAFER?G?A,?FOULKES?M?J,?ACEVEDO-SIACA?L,?MCAUSLAND?L,?SHARWOOD?R,?GRIFFITHS?S,?FLAVELL?R?B,?GWYN?J,?SAWKINS?M,?CARMO-SILVA?E.?A?‘wiring?diagram?for?source?strength?traits?impacting?wheat?yield?potential[J].?Journal?of?Experimental?Botany,?2023,?74(1):?72-90.
[21]?ABDELRAHMAN?M,?BURRITTt?D?J,?GUPTA?A,?TSUJIMOTO?H,?TRAN?L?P.?Heat?stress?effects?on?source-?sink?relationships?and?metabolome?dynamics?in?wheat[J].?Journal?of?Experimental?Botany,?2020,?71(2):?543-554.
[22]?翟來(lái)圓,?王峰,?閆安,?王韻,?徐建龍.?水稻穗粒數(shù)基因GNP1對(duì)庫(kù)、源、流的生理機(jī)制剖析[C]//中國(guó)作物學(xué)會(huì).?第十九屆中國(guó)作物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集,?2022:?199.?ZHAI?L?Y,?WANG?F,?YAN?A,?WANG?Y,?XU?J?L.?Physiological?mechanism?analysis?of?sink,?source?and?flow?induced?by?GNP1?gene?affecting?grain?number?per?panicle?in?rice[C]//Chinese?Crop?Society.?Abstracts?of?the?19th?Annual?Conference?of?Chinese?Crop?Society,?2022:?199.?(in?Chinese)
[23]?LEHRETZ?G?G,?SONNEWALD?S,?HOMYIL?C,?CORRAL?J?M,?SONNEWALD?U.?Post-transcriptional?Regulation?of?flowering?lucus?T?modulates?heat-dependent?source-sink?development?in?potato[J].?Current?Biology,?2019,?29(10):?1614-1624.
[24]?MUNIZIZ?GARCIA?M?N,?CORTELEZZI?J?I,?CAPIATI?D?A.?The?protein?phosphatase?2A?catalytic?subunit?StPP2Ac2b?is?involved?in?the?control?of?potato?tuber?sprouting?and?source-sink?balance?in?tubers?and?sprouts[J].?Journal?of?Experimental?Botany,?2022,?73(19):?6784-6799.
[25]?GRIFFITHS?C?A,?PAUL?M?J,?FOYER?C?H.?Metabolite?transport?and?associated?sugar?signalling?systems?underpinning?source/sink?interactions[J].?Biochimica?et?Biophyssica?Acta,?2016,?1857(10):?1715-1725.
[26]?單建偉,?柳俊,?索海翠,?王麗,?安康,?劉計(jì)濤,?景晟林,?李成晨,?宋波濤,?李小波.?糖信號(hào)調(diào)控馬鈴薯塊莖發(fā)育的研究進(jìn)展[J].?華中農(nóng)業(yè)大學(xué)學(xué)報(bào),?2021,?40(4):?27-35.SHAN?J?W,?LIU?J,?SUO?H?C,?WANG?L,?AN?K,?LIU?J?T,?JING?S?L,?LI?C?C,?SONG?B?T,?LI?X?B.?Progress?on?sugar?signal?regulating?potato?tuber?development[J].?Journal?of?Huazhong?Agricultural?University,?2021,?40(4):?27-35.?(in?Chinese)
[27]?MATHAN?J,?SINGH?A,?RANJAN?A.?Sucrose?transport?and?metabolism?control?carbon?partitioning?between?stem?and?grain?in?rice[J].?Journal?of?Experimental?Botany,?2021,?72(12):?4355-4372.
[28]?ALEM?H,?OJEDA?H,?RIGOU?P,?SCHNEEDER?R,?TORREGROSA?L.?The?reduction?of?plant?sink/source?does?not?systematically?improve?the?metabolic?composition?of?Vitis?vinifera?white?fruit[J].?Food?Chemistry,?2020,?345:?128825.
[29]?ALONSO?M?P,?ABBATE?P?E,?MIRABELLA?N?E,?MERLOS?F?A,?PANELO?J?S,?PONTAROLI?A?C.?Analysis?of?sink/source?relations?in?bread?wheat?recombinant?inbred?lines?and?commercial?cultivars?under?a?high?yield?potential?environment[J].?European?Journal?of?Agronomy,?2018,?93:?82-87.
[30]?趙思明.?源庫(kù)調(diào)節(jié)對(duì)靈武長(zhǎng)棗光合作用及果實(shí)品質(zhì)的影響[D].?銀川:?寧夏大學(xué),?2021.ZHAO?S?M.?Effects?of?source?and?sink?regulation?on?photosynthesis?and?fruit?quality?of?Ziziphus?jujuba?Mill.?cv.?‘Lingwuchangzao[D].?Yinchuan:?Ningxia?University,?2021.?(in?Chinese)
[31]?GLANZ-IDAN?N,?TARKOWSKI?P,?TURECKOVA?V,?WOLF?S.?Root-shoot?communication?in?tomato?plants:?cytokinin?as?a?signal?molecule?modulating?leaf?photosynthetic?activity[J].?Journal?of?Experimental?Botany,?2020,?71(1):?247-257.
[32]?ASLANI?L,?GHOLAMI?M,?MOBLI?M,?EHSANZADEH?P,?BERTIN?N.?Decreased?sink/source?ratio?enhances?hexose?transport?in?the?fruits?of?greenhouse?tomatoes:?integration?of?gene?expression?and?biochemical?analyses[J].?Physiology?Plant,?2020,?170(1):?120-131.
[33]?ASLANI?L,?GHOLAMI?M,?MOBLI?M,?SABZALIAN?M?R.?The?influence?of?altered?sink-source?balance?on?the?plant?growth?and?yield?of?greenhouse?tomato[J].?Physiology?and?Molecular?Biology?of?Plants,?2020,?26(11):?2109-2123.
[34]?NGAO?J,?MARTINEZ?S,?MARQUIER?A,?BLUY?S,?SAINT-JOANIS?B,?COSTES?E,?PALLAS?B.?Spatial?variability?in?carbon-?and?nitrogen-related?traits?in?apple?trees:?the?effects?of?the?light?environment?and?crop?load[J].?Journal?of?Experimental?Botany,?2021,?72(5):?1933-1945.
[35]?WANG?J?D,?ZHU?G?P,?DONG?Y,?ZHANG?H,?RENGEL?Z,?AI?Y?C,?ZHANG?Y?C.?Potassium?starvation?affects?biomass?partitioning?and?sink–source?responses?in?three?sweet?potato?genotypes?with?contrasting?potassium-use?efficiency[J].?Crop?and?Pasture?Science,?2018,?69(5):?506-514.
[36]?XU?Q,?LIESCHE?J.?Sugar?export?from?Arabidopsis?leaves:?actors?and?regulatory?strategies[J].?Journal?of?Experimental?Botany,?2021,?72(15):?5275-5284.
[37]?PAUL?M?J,?WATSON?A,?GRIFFITHS?C?A.?Trehalose?6-phosphate?signalling?and?impact?on?crop?yield[J].?Biochemical?Society?Transactions,?2020,?48(5):?2127-2137.
[38]?JIA?L?G,?WU?L,?SUYALA?Q,?SHI?X?H,?QIN?Y?L,?FAN?M?S.?Promotion?of?potato?yield?under?moderate?water?deficiency?at?the?seedling?stage?by?modifying?sink-source?relationship[J].?Plant?Production?Science,?2022,?25(1):?95-104.
[39]?高芳.?不同源庫(kù)類(lèi)型花生品種產(chǎn)量品質(zhì)形成機(jī)理及調(diào)控[D].?泰安:?山東農(nóng)業(yè)大學(xué),?2021.????GAO?F.?Mechanism?of?yield?and?quality?formation?and?regulation?in?different?source-sink?types?of?peanut[D].?Taian:?Shandong?Agricultural?University,?2021.?(in?Chinese)
[40]?鄭強(qiáng)卿,?陳奇凌,?王晶晶,?支金虎.?基于棗品質(zhì)提升的庫(kù)源激素調(diào)控[J].?貴州農(nóng)業(yè)科學(xué),?2019,?47(7):?105-109.ZHENG?Q?Q,?CHEN?Q?L,?WANG?J?J,?ZHI?J?H.?Sink-source?hormone?regulation?for?improvement?of?jujube?quality[J].?Guizhou?Agricultural?Sciences,?2019,?47(7):?105-109.?(in?Chinese)
[41]?郝麗陽(yáng).?外源植物激素調(diào)控食源性膠球藻油脂積累機(jī)制[D].?湘潭:?湘潭大學(xué),?2021.HAO?L?Y.?Regulatory?mechanisms?of?exogenous?phytohormone?on?lipid?accumulation?in?foodborne?Coccomyxa?subellipsoidea[D].?Xiangtan:?Xiangtan?University,?2021?(in?Chinese).
[42]?祁杰.?無(wú)膜栽培短季棉葉片衰老和產(chǎn)量形成的研究[D].?泰安:?山東農(nóng)業(yè)大學(xué),?2022.QI?J.?Leaf?senescence?and?yield?formation?of?field-grown?short-season?cotton?without?plastic?mulching[D].?Taian:?Shandong?Agricultural?University,?2022.?(in?Chinese)
[43]?趙衛(wèi)星,?康利允,?高寧寧,?常高正,?梁慎,?李海倫,?王慧穎,?徐小利,?李曉慧.?整枝留果對(duì)甜瓜植株衰老的調(diào)控效應(yīng)及生理機(jī)制[J].?江蘇農(nóng)業(yè)科學(xué),?2022,?50(9):?154-159.ZHAO?W?X,?KANG?L?Y,?GAO?N?N,?CHANG?G?Z,?LIANG?S,?LI?H?L,?WANG?H?Y,?XU?X?L,?LI?X?H.?Regulation?effects?and?physiological?mechanism?of?pruning?and?fruit?retention?on?plant?senescence?of?muskmelon[J].?Jiangsu?Agricultural?Sciences,?2022,?50(9):?154-159.?(in?Chinese)
[44]?XU?X?X,?ZHANG?Y?H,?LI?J?P,?ZHANG?M,?ZHOU?X?N,?ZHOU?S?L,?WANG?Z?M.?Optimizing?single?irrigation?scheme?to?improve?water?use?efficiency?by?manipulating?winter?wheat?sink-source?relationships?in?northern?China?plain[J].?PloS?One,?2018,?13(3):?e0193895.
[45]?賈婷婷,?蘇淑釵,?馬履一,?蘇倩葳.?不同庫(kù)源關(guān)系對(duì)油茶花芽分化的影響[J].?東北林業(yè)大學(xué)學(xué)報(bào),?2018,?46(9):?50-53.JIA?T?T,?SU?S?C,?MA?L?Y,?SU?Q?W.?Response?of?flower?bud?differentiation?to?different?sink-source?relationships?in?Camellia?oleifera[J].?Journal?of?Northeast?Forestry?University,?2018,?46(9):?50-53.?(in?Chinese)
[46]?HUSSAIN?A,?CLASSENS?G,?SYDNE?G?R,?JONATHAN?A?C,?RAHMATOLLAN?R,?BROSNON?R?P,?NADIR?E.?Spatial?variation?in?soil?available?water?holding?capacity?alters?carbon?mobilization?and?allocation?to?chemical?defenses?along?jack?pine?stems[J].?Environmental?and?Experimental?Botany,?2020,?171(C):?103902-103902.
[47]?YOUN?S?D,?MAUD?H,?NATHALIE?M,?FLORIANT?B,?PIERRE?M,?ALAIN?B.?Sink/source?balance?of?leaves?influences?amino?acid?pools?and?their?associated?metabolic?fluxes?in?winter?oilseed?rape?(Brassica?napus?L.)[J].?Metabolites,?2020,?10(4):?150.
[48]?SAMSUDDIN?Z,?IMPENS?I.?Water?vapour?and?carbon?dioxide?diffusion?resistances?of?four?Hevea?brasiliensis?clonal?seedlings[J].?Experimental?Agriculture,?1978,?14(2):?173-177.
[49]?SAMSUDDIN?Z,?IMPENS?I.?Photosynthetic?rates?and?diffusion?resistances?of?seven?Hevea?brasiliensis?Muell.?Arg.?clones[J].?Biologia?Plantarum,?1979,?21(2):?154-156.
[50]?NATARAJA?K?N,?JACOB?J.?Clonal?differences?in?photosynthesis?in?Hevea?Brasiliensis?Müll.?Arg.[J].?Photosynthetica,?1999,?36(1/2):?89-98.
[51]?DEVAKUMAR?A?S,?SHAYEE?M?S?S,?UDAYAKUMAR?M,?PRASAD?T?G.?Effect?of?elevated?CO2?concentration?on?seedling?growth?rate?and?photosynthesis?in?Hevea?brasiliensis[J].?Journal?of?Biosciences,?1998,?23(1):?33-36.
[52]?SOUZA?G?A?D,?DIAS?D?C?F?D?S,?PIMENTA?T?M,?ALMEIDA?A?L,?PICOLI?E?A?D?T,?ALVARENGA?D?P?A,?SILVA?J?C?F?D.?Sugar?metabolism?and?developmental?stages?of?rubber?tree?(Hevea?brasiliensis?L.)?seeds[J].?Physiology?Plant,?2018,?162(4):?495-505.
[53]?DUSOTOIT-COUCAUD?A,?KONGSAWADWORAKUL?P,?MAUROUSSET?L,?VIBOONJUN?U,?BRUNEL?N,?PUJADE-RENAUD?V,?CHRESTIN?H,?SAKR?S.?Ethylene?stimulation?of?latex?yield?depends?on?the?expression?of?a?sucrose?transporter?(HbSUT1B)?in?rubber?tree?(Hevea?brasiliensis)[J].?Tree?Physiology,?2010,?30(12):?1586-1598.
[54]?TANG?C,?HUANG?D,?YANG?J,?LIU?S,?SAKR?S,?LI?H,?ZHOU?Y,?QIN?Y.?The?sucrose?transporter?HbSUT3?plays?an?active?role?in?sucrose?loading?to?laticifer?and?rubber?productivity?in?exploited?trees?of?Hevea?brasiliensis?(para?rubber?tree)[J].?Plant?Cell?and?Environment,?2010,?33(10):?1708-?1720.
[55]?LONG?X?Y,?LI?H?P,?YANG?J?H,?XIN?L?S,?FANG?Y?J,?HE?B,?HUANG?D?B,?TANG?C?R.?Correction?to:?characterization?of?a?vacuolar?sucrose?transporter,?HbSUT5,?from?Hevea?brasiliensis:?involvement?in?latex?production?through?regulation?of?intracellular?sucrose?transport?in?the?bark?and?laticifers[J].?BMC?Plant?Biology,?2021,?21:?46.
[56]?YANG?Z,?ZHAO?P,?PENG?W,?LIU?Z,?XIE?G,?MA?X,?AN?Z,?AN?F.?Cloning,?expression?analysis,?and?functional?characterization?of?candidate?oxalate?transporter?genes?of?HbOT1?and?HbOT2?from?rubber?tree?(Hevea?brasiliensis)[J].?Cells,?2022,?11(23):?3793.
[57]?DENG?X,?GUO?D,?YANG?S,?SHI?M,?CHAO?J,?LI?H,?PENG?S,?TIAN?W.?Jasmonate?signalling?in?the?regulation?of?rubber?biosynthesis?in?laticifer?cells?of?rubber?tree,?Hevea?brasiliensis[J].?Journal?of?Experimental?Botany,?2018,?69(15):?3559-3571.
[58]?WADEESIRISAK?K,?CASTANO?S,?BERTHELOT?K,?VAYSSE?L,?BONFILS?F,?PERUCH?F,?RATTANAPOM?K,?LIENGPRAYOON?S,?LECOMTE?S,?BOTTIER?C.?Rubber?particle?proteins?REF1?and?SRPP1?interact?differently?with?native?lipids?extracted?from?Hevea?brasiliensis?latex[J].?Biochimica?et?Biophysica?Acta,?Biomembranes,?2017,?1859(2):?201-210.
[59]?NIEPHAUS?E,?M?LLER?B,?DEENEN?N?V,?LASSOWSKAT?I,?BONIN?M,?FINKEMEIER?I,?PR?FER?D,?GRONOVER?C?S.?Uncovering?mechanisms?of?rubber?biosynthesis?in?Taraxacum?koksaghyz?role?of?cis-prenyltransferase-like?1?protein[J].?Plant?Journal,?2019,?100(3):?591-609.
[60]?SANDO?T,?TAKAOKA?C,?MUKAI?Y,?YAMASHITA?A,?HATTORI?M,?OGASAWARA?N,?FUKUSAKI?E,?KOBAYASHI?A.?Cloning?and?characterization?of?mevalonate?pathway?genes?in?a?natural?rubber?producing?plant,?Hevea?brasiliensis[J].?Bioscience,?Biotechnology?and?Biochemistry,?2008,?72(8):?2049-2060.
[61]?SANDO?T,?TAKENO?S,?WATANABE?N,?OKUMOTO?H,?KUZUYAMA?T,?YAMASHITA?A,?HATTORI?M,?OGASAWARA?N,?FUKUSAKI?E,?KOBAYASHI?A.?Cloning?and?characterization?of?the?2-C-methyl-D-erythritol?4-phosphate?(MEP)?pathway?genes?of?a?natural-rubber?producing?plant,?Hevea?brasiliensis[J].?Bioscience,?Biotechnology?and?Biochemistry,?2008,?72(11):?2903-2917.
[62]?LAIBACH?N,?HILLEBRAND?A,?TWYMAN?R?M,?PR?FER?D,?GRONOVER?C?S.?Identification?of?a?Taraxacum?brevicorniculatum?rubber?elongation?factor?protein?that?is?localized?on?rubber?particles?and?promotes?rubber?biosynthesis[J].?Plant?Journal,?2015,?82(4):?609-620.
[63]?LAIBACH?N,?SCHMIDL?S,?M?LLER?B,?BERGMANN?M,?PR?FER?D,?GRONOVER?C?S.?Small?rubber?particle?proteins?from?Taraxacum?brevicorniculatum?promote?stress?tolerance?and?influence?the?size?and?distribution?of?lipid?droplets?and?artificial?poly?(cis-1,4-isoprene)?bodies[J].?Plant?Journal,?2018,?93(6):?1045-1061.
[64]?NIE?Z?Y,?KANG?G?J,?YAN?D,?QIN?H?D,?YANG?L?F,?ZENG?R?Z.?Downregulation?of?HbFPS1?affects?rubber?biosynthesis?of?Hevea?brasiliensis?suffering?from?tapping?panel?dryness[J].?Plant?Journal,?2022:?16063.
[65]?姚行成,?涂寒奇,?周珺,?陳先紅,?陳青,?林位夫,?王軍.?橡膠樹(shù)初生乳管橡膠的產(chǎn)量性狀與橡膠特性研究[J].?熱帶作物學(xué)報(bào),?2022,?43(11):?2207-2214.YAO?X?C,?TU?H?Q,?ZHOU?J,?CHEN?X?H,?CHEN?Q,?LIN?W?F,?WANG?J.?Quantification?and?characterization?of?rubber?from?primary?laticifers?of?Hevea?brasiliensis[J].?Chinese?Journal?of?Tropical?Crops,?2022,?43(11):?2207-2214.?(in?Chinese)