崔慶雪 李霞林 葛磊蛟 李天楚 李 獻(xiàn)
計及時滯的含風(fēng)電配電網(wǎng)節(jié)點電壓安全分析
崔慶雪1李霞林1葛磊蛟1李天楚2李 獻(xiàn)2
(1. 天津大學(xué)智能電網(wǎng)教育部重點實驗室 天津 300072 2. 海南電網(wǎng)有限責(zé)任公司電力科學(xué)研究院 海口 570311)
隨著新型電力系統(tǒng)的發(fā)展,強間歇性、隨機性的風(fēng)電點多面廣地接入配電網(wǎng),導(dǎo)致其潮流分布發(fā)生了巨大變化,給配電網(wǎng)安全可靠運行帶來挑戰(zhàn)。尤其在配電網(wǎng)運行控制過程中,數(shù)據(jù)計算、指令傳輸、指令響應(yīng)等多環(huán)節(jié)均存在的不確定性耗時,可能會造成控制策略失靈乃至局部節(jié)點電壓越限,因此,精準(zhǔn)掌握配電網(wǎng)的最大可調(diào)控時延即時滯穩(wěn)定裕度非常必要。為此,該文首先構(gòu)建了計及時滯的含風(fēng)電配電網(wǎng)節(jié)點電壓安全分析偏導(dǎo)數(shù)微分超越方程的數(shù)學(xué)模型;然后提出一種Lyapunov-Krasovskii泛函構(gòu)造方法,并應(yīng)用Wirtinger不等式技巧處理泛函導(dǎo)數(shù)中的積分項,實現(xiàn)對所構(gòu)建偏導(dǎo)數(shù)微分超越方程的求解,得到穩(wěn)定判據(jù),獲知其時滯穩(wěn)定裕度;最后借助典型案例和IEEE 33算例進行仿真驗證。結(jié)果表明,該文所得穩(wěn)定判據(jù)具有更低的保守性,以期為不確定時滯影響下的配電網(wǎng)運行控制提供理論依據(jù)。
配電網(wǎng) 時滯 電壓安全 Lyapunov-Krasovskii泛函 Wirtinger不等式
隨著“碳達(dá)峰、碳中和”國家能源政策的推進和新型電力系統(tǒng)的發(fā)展,強間歇性、強隨機性的風(fēng)電點多面廣地接入配電網(wǎng)成為常態(tài)[1],導(dǎo)致配電網(wǎng)的潮流分布發(fā)生巨大變化,給配電網(wǎng)運行控制帶來了挑戰(zhàn)[2]。尤其是波動性風(fēng)電功率的注入,會引起配電網(wǎng)局部節(jié)點電壓越限[3],輕則使用戶用能質(zhì)量降低,嚴(yán)重時會造成電氣設(shè)備損壞[4]。在配電網(wǎng)運行控制過程中,測量和調(diào)控數(shù)據(jù)的采集、發(fā)送、傳輸與處理過程常存在通信延遲現(xiàn)象[5];同時,拓?fù)浞治?、潮流計算等科學(xué)計算也存在不確定性延時[6]。以上時滯現(xiàn)象的疊加影響導(dǎo)致配電網(wǎng)電壓安全運行控制的預(yù)設(shè)參數(shù)失效,系統(tǒng)運行工況會進一步惡化。其核心關(guān)鍵是以往的配電網(wǎng)安全運行控制分析模型較少考慮時滯或者按照固定常數(shù)的延時執(zhí)行,難以滿足實際需求。因此,構(gòu)建含風(fēng)電配電網(wǎng)運行控制的時滯分析模型,獲知系統(tǒng)保持穩(wěn)定狀態(tài)所允許的最大時滯,即時滯穩(wěn)定裕度,不僅是含風(fēng)電的配電網(wǎng)精準(zhǔn)調(diào)控、安全運行的基礎(chǔ)[7],也是調(diào)度運行管理人員關(guān)注的重點,值得深入研究。
目前,針對配電網(wǎng)運行控制的時滯穩(wěn)定性分析,國內(nèi)外文獻(xiàn)不多。參照大電網(wǎng),電力系統(tǒng)時滯穩(wěn)定性分析方法主要有頻域法和時域法[8]。頻域法是將理論上發(fā)展較為完善的線性系統(tǒng)穩(wěn)定性分析理論推廣到線性時滯系統(tǒng),其穩(wěn)定條件是系統(tǒng)的特征根全部位于復(fù)平面的左半平面。但是,由于時滯系統(tǒng)特征方程中存在超越項,在數(shù)學(xué)上有無窮多種可能的解,導(dǎo)致特征方程的求解特別困難。學(xué)者們廣泛采用Rekasius變換[9]、Pade近似法[10]、Smith補償技術(shù)[11]等對超越項進行變換求解,基本實現(xiàn)了對定常時滯和系統(tǒng)參數(shù)已知的時滯電力系統(tǒng)模型求解,但對于復(fù)雜變化的時滯項仍難以處理,從而極大地限制了頻域法的適用范圍。時域法是目前時滯系統(tǒng)進行穩(wěn)定性分析最主要的方法之一[12]。它通過對Lyapunov-Krasovskii(L-K)直接法的推演得到穩(wěn)定判據(jù),避免了頻域法中繁雜的計算和時滯項的處理。然而,基于L-K直接法得到的判穩(wěn)條件只是系統(tǒng)穩(wěn)定的充分非必要條件,其保守性無法避免[13]。為降低判據(jù)保守性,國內(nèi)外學(xué)者從構(gòu)造更優(yōu)的L-K泛函和采用更優(yōu)的變換技術(shù)兩方面展開了研究。文獻(xiàn)[14]構(gòu)建了能夠體現(xiàn)時滯電力系統(tǒng)多元信息融合的增廣L-K泛函,并應(yīng)用Bessel-Legendre不等式處理泛函導(dǎo)數(shù)中的積分項,減小了時滯電力系統(tǒng)的保守性。文獻(xiàn)[15]提出一種廣義的自由權(quán)矩陣方法來估計函數(shù)正向差分中的求和項,解決了原來求和項不能提供延遲變化信息的問題。文獻(xiàn)[16]對積分不等式進行改進,并與自由權(quán)矩陣結(jié)合,降低了解析誤差和判據(jù)保守性。文獻(xiàn)[17]提出一個替代性不等式,并與Wirtinger不等式結(jié)合,得到逆凸組合不等式,降低了保守性。文獻(xiàn)[18]推導(dǎo)出一種改進的逆凸組合不等式,系統(tǒng)的時滯上限進一步增加。為解決配電網(wǎng)時滯問題,文獻(xiàn)[19]構(gòu)建分布式光伏接入配電網(wǎng)的時滯補償模型,解決了通信延遲和閉環(huán)控制帶來的滯后性問題。綜上所述,以上文獻(xiàn)在一定程度上降低了電力系統(tǒng)時滯穩(wěn)定裕度的保守性,但是目前在配電網(wǎng)節(jié)點電壓安全分析研究中考慮時滯因素的相關(guān)文獻(xiàn),還較為缺乏。
為此,借鑒大電網(wǎng)時滯穩(wěn)定性分析方法,考慮到配電網(wǎng)拓?fù)浣Y(jié)構(gòu)復(fù)雜、設(shè)備類型多樣等特點,結(jié)合風(fēng)電出力的不確定性,本文深入開展了計及時滯的含風(fēng)電配電網(wǎng)節(jié)點電壓安全分析研究。首先,分析含風(fēng)電的配電網(wǎng)電壓安全運行控制過程中時滯產(chǎn)生機理,得到配電網(wǎng)時滯系統(tǒng)模型的偏導(dǎo)數(shù)微分超越方程一般形式;然后,針對時滯系統(tǒng)模型中超越項難以求解的問題,提出一種增廣向量和L-K泛函的構(gòu)造方法,并利用Wirtinger不等式對泛函導(dǎo)數(shù)中的積分項進行估計處理,以降低穩(wěn)定判據(jù)的保守性,實現(xiàn)對時滯穩(wěn)定裕度的求解;最后,基于典型案例,通過與相同參數(shù)設(shè)置下不同方法的結(jié)果進行對比,證明本文方法的有效性,進一步通過IEEE 33算例證明本文方法有效地擴大了系統(tǒng)的穩(wěn)定運行區(qū)域,且降低了穩(wěn)定判據(jù)的保守性。本文所提方法可為含風(fēng)電的配電網(wǎng)節(jié)點電壓安全運行精準(zhǔn)調(diào)控提供數(shù)值參考,也為實現(xiàn)配電網(wǎng)與用戶側(cè)可再生能源的良好互動和穩(wěn)定響應(yīng)奠定理論基礎(chǔ),以促進未來新型電力系統(tǒng)更好地適應(yīng)高比例風(fēng)/光等新能源的接入。
圖1 風(fēng)電機組接入點處戴維南等效模型
風(fēng)電機組的定子電流方程為
其中
風(fēng)電機組機電動力學(xué)方程為
由戴維南等效電路圖,得到
式中,為電容。式(8)經(jīng)過線性化處理后得到
將式(1)代入式(9)得
此時,式(11)可表示為
其中
于是,得到配電網(wǎng)時滯系統(tǒng)模型的一般形式,即
式(13)是典型的偏導(dǎo)數(shù)微分超越方程,直接解析求解通常十分困難。為此,本文通過構(gòu)造合適的L-K泛函,再將判穩(wěn)條件轉(zhuǎn)換為標(biāo)準(zhǔn)線性矩陣不等式(Linear Matrix Inequality,LMI)形式,最后利用LMI求解器進行求解。
根據(jù)目前時滯系統(tǒng)的研究,時滯被分為兩種:定常時滯和時變時滯。其中,根據(jù)時變時滯導(dǎo)數(shù)的信息是否已知,時變時滯又分為三種:①時滯導(dǎo)數(shù)具有確定的上下界;②時滯導(dǎo)數(shù)具有確定的上界;③時滯的導(dǎo)數(shù)未知,也被稱為隨機時滯。在實際情況中,時變時滯導(dǎo)數(shù)的信息一般很難得到,因此本文重點研究更加符合實際情況的隨機時滯模型。本文的穩(wěn)定判據(jù)適用于研究隨機時滯影響下電力系統(tǒng)在穩(wěn)定狀態(tài)下所允許的最大時滯。
一般而言,判斷時滯系統(tǒng)穩(wěn)定的充分條件是泛函正定且其導(dǎo)數(shù)負(fù)定,因此構(gòu)造更優(yōu)的L-K泛函和采用更優(yōu)的放縮變換技術(shù)可以簡化推導(dǎo)過程,以達(dá)到降低判據(jù)求解難度和判據(jù)保守性的目的[21]。為求解本文時滯方程式(13),首先,充分利用時滯的上下界信息,提出一種增廣向量和L-K泛函的構(gòu)造方法;然后,對泛函導(dǎo)數(shù)進行放縮處理得到穩(wěn)定判據(jù);最后,將穩(wěn)定判據(jù)轉(zhuǎn)換成LMI形式并利用LMI求解器得到穩(wěn)定裕度。
利用Lyapunov穩(wěn)定性定理分析本文時滯系統(tǒng)穩(wěn)定性的基本思路為:構(gòu)造L-K泛函并采用Wirtinger積分不等式處理泛函導(dǎo)數(shù)中的積分項,再借助LMI工具箱求解穩(wěn)定裕度。其中,LMI工具箱所能求解的線性矩陣不等式的階次最多不超過50~60階,因此分析高維電力系統(tǒng)首要考慮的問題就是模型降階。由于時滯相關(guān)項在整個系統(tǒng)變量中只占少數(shù),因此可以利用常見的Hankel算法、Schur算法等降階方法將系統(tǒng)模型等價地分為時滯相關(guān)部分和時滯無關(guān)部分,從而實現(xiàn)系統(tǒng)的降維。其中,本文利用Schur補引理進行降階。
在泛函中引入新的增廣變量以及積分項,并結(jié)合文獻(xiàn)[16],針對系統(tǒng)(13)構(gòu)造的L-K泛函為
式中
為驗證本文所提穩(wěn)定裕度求解方法的有效性和優(yōu)越性,分別在典型二階系統(tǒng)和接入不同組風(fēng)電機組的IEEE 33節(jié)點配電系統(tǒng)中進行仿真驗證。
系統(tǒng)時滯上界值越大,系統(tǒng)安全運行區(qū)域越大,表明所得穩(wěn)定判據(jù)保守性越小。因此,可以通過比較時滯上界值來衡量時滯系統(tǒng)穩(wěn)定判據(jù)的保守性。基于典型二階系統(tǒng)進行驗證分析,通過與改進積分不等式的方法[26]和構(gòu)造新型L-K泛函并對積分區(qū)間進行時滯分割的方法[27]進行對比,驗證本文方法的保守性。
當(dāng)及時,給定時滯下界,分別求得定理1與文獻(xiàn)[26-27]穩(wěn)定判據(jù)對應(yīng)的時滯穩(wěn)定裕度,結(jié)果如圖2所示。
配電網(wǎng)拓?fù)浣Y(jié)構(gòu)如圖3所示,分布式電源(Distributed Generation, DG)的接入位置參考文獻(xiàn)[28],風(fēng)電機組參數(shù)參考文獻(xiàn)[29]。其中,配電網(wǎng)基準(zhǔn)功率為10MW,基準(zhǔn)電壓為12.66kV,1號節(jié)點接變電站低壓側(cè)母線。通過仿真風(fēng)電機組出力波動導(dǎo)致配電網(wǎng)部分節(jié)點電壓越限的過程,觀察時滯影響下節(jié)點電壓的變化,證明本文方法的正確性和研究的必要性。
圖3 含單臺風(fēng)電機組的IEEE 33節(jié)點配電網(wǎng)
3.2.1 基礎(chǔ)數(shù)據(jù)
根據(jù)IEEE 33數(shù)據(jù)和風(fēng)電機組參數(shù)[29],可得到狀態(tài)矩陣和t為
數(shù)值代入過程見附錄。求解得到最大時滯上界值為5.1s。
3.2.2 仿真驗證
風(fēng)電機組接入后,配電網(wǎng)33節(jié)點電壓變化如圖4所示。其中,12、13、14、15、16節(jié)點電壓越限。
圖4 調(diào)壓前,含單臺風(fēng)電機組配電網(wǎng)節(jié)點電壓變化
本文采用以電壓質(zhì)量為目標(biāo)的無功電壓優(yōu)化策略[30]:利用風(fēng)電無功余量進行無功優(yōu)化,將節(jié)點電壓和額定電壓偏差的方差作為目標(biāo),達(dá)到提升系統(tǒng)電壓水平的目的。保證系統(tǒng)電壓偏差最小的目標(biāo)函數(shù)如式(19)所示。約束條件包括功率平衡約束、節(jié)點電壓約束、平衡節(jié)點約束、風(fēng)機出力約束、無功補償約束等,此處不再贅述,可參考文獻(xiàn)[30]。
在不考慮配電網(wǎng)時滯情況下,調(diào)壓后各節(jié)點電壓變化如圖5所示,未出現(xiàn)電壓越限問題。
圖5 調(diào)壓后,含單臺風(fēng)電機組配電網(wǎng)節(jié)點電壓變化
然而,實際情況中調(diào)控信號的時滯影響不可忽略,導(dǎo)致節(jié)點電壓不會因調(diào)控指令而立刻變化。根據(jù)本文方法求得的最大時滯上界值為5.1s,設(shè)置調(diào)控時滯分別為0s、5.1s、5.2s,觀察15節(jié)點電壓的變化,仿真對比如圖6所示。
圖6 含單臺風(fēng)電機組配電網(wǎng)仿真對比
通過對比仿真結(jié)果,得到以下結(jié)論:
(1)如圖6所示,未考慮時滯影響調(diào)控后的系統(tǒng)不能適應(yīng)波動性電源的運行,且無法準(zhǔn)確地反映與風(fēng)電機組之間的動態(tài)響應(yīng);未按照時滯穩(wěn)定裕度調(diào)節(jié),配電網(wǎng)節(jié)點電壓處于失穩(wěn)狀態(tài);按照時滯穩(wěn)定裕度調(diào)節(jié),配電網(wǎng)節(jié)點電壓在安全運行范圍內(nèi)變化,風(fēng)電機組能更好地跟蹤調(diào)度運行指令,使電壓可控性滿足配電網(wǎng)的需求。
(2)時滯上界值為5.1s時,系統(tǒng)電壓臨界穩(wěn)定;大于5.1s時,即超過穩(wěn)定上界,配電系統(tǒng)逐漸振蕩失去穩(wěn)定,仿真結(jié)果驗證了對于接入單臺風(fēng)電機組的配電系統(tǒng),本文時滯穩(wěn)定裕度求解的正確性和必要性。
為進一步驗證本文方法的有效性,求解接入雙臺風(fēng)電機組配電系統(tǒng)的穩(wěn)定裕度。雙臺風(fēng)電機組的接入位置參考文獻(xiàn)[28],含雙臺風(fēng)電機組的IEEE 33節(jié)點配電網(wǎng)如圖7所示。
圖7 含雙臺風(fēng)電機組的IEEE 33節(jié)點配電網(wǎng)
通過仿真風(fēng)電機組出力波動導(dǎo)致配電網(wǎng)部分節(jié)點電壓越限的過程,觀察時滯影響下節(jié)點電壓的變化,證明本文判據(jù)的正確性和保守性。
3.3.1 基礎(chǔ)數(shù)據(jù)
根據(jù)IEEE 33節(jié)點配電網(wǎng)數(shù)據(jù)并結(jié)合文獻(xiàn)[29,31]中風(fēng)電機組的參數(shù),可得到狀態(tài)矩陣和t為
數(shù)值代入過程見附錄。求解得到最大時滯上界值為5.9s。
3.3.2 仿真驗證
風(fēng)電機組接入后,配電網(wǎng)33節(jié)點電壓變化如圖8所示,13、14、15、16、17、18節(jié)點電壓發(fā)生越限。
為消除電壓越限問題,有必要進行配電網(wǎng)的電壓運行控制,本文采用文獻(xiàn)[30]的調(diào)壓策略。在不考慮調(diào)控信號時滯情況下,調(diào)壓后各節(jié)點電壓未出現(xiàn)越限問題,如圖9所示。
圖8 調(diào)壓前,含雙臺風(fēng)電機組配電網(wǎng)節(jié)點電壓變化
圖9 調(diào)壓后,含雙臺風(fēng)電機組配電網(wǎng)節(jié)點電壓變化
然而,實際情況中調(diào)控信號的時滯影響不可忽略,導(dǎo)致節(jié)點電壓不會立刻變化。根據(jù)本文方法求得的最大時滯上界值為5.9s,分別設(shè)置時滯為0s、5.9s、6.0s,觀察15節(jié)點電壓變化,仿真對比如圖10所示。
圖10 含雙臺風(fēng)電機組配電網(wǎng)仿真對比
通過仿真對比結(jié)果,得到以下結(jié)論:
(1)與單臺風(fēng)電機組的情況一致,按照時滯穩(wěn)定裕度調(diào)節(jié)后,配電網(wǎng)節(jié)點電壓能夠適應(yīng)波動性電源的運行、準(zhǔn)確反映與配電網(wǎng)系統(tǒng)間的動態(tài)響應(yīng),并且在安全運行范圍內(nèi)變化。
(2)在時滯上界值為5.9s時,系統(tǒng)電壓臨界穩(wěn)定;大于5.9s時,即超過穩(wěn)定上界,系統(tǒng)逐漸振蕩失去穩(wěn)定,仿真結(jié)果驗證了對于接入雙臺風(fēng)電機組的配電網(wǎng)系統(tǒng),本文時滯穩(wěn)定裕度求解的正確性和必要性。
綜上所述,在配電網(wǎng)節(jié)點電壓安全控制過程中,當(dāng)調(diào)控信號的通信時延超過所得時滯穩(wěn)定裕度,配電網(wǎng)會出現(xiàn)部分節(jié)點電壓越限并逐步惡化。基于圖6和圖10的仿真對比,可以發(fā)現(xiàn):隨著高比例風(fēng)電的接入,系統(tǒng)通信、數(shù)據(jù)采集、數(shù)據(jù)處理等過程會更加復(fù)雜多樣,系統(tǒng)時滯也會逐漸增大。因此,為實現(xiàn)配電網(wǎng)系統(tǒng)安全動態(tài)調(diào)控并提高運行控制精度,在研究系統(tǒng)安全運行時,必須充分考慮調(diào)控通信延時等時滯因素,并利用保守性較小的方法求解時滯穩(wěn)定裕度,為系統(tǒng)動態(tài)調(diào)控提供可靠的數(shù)值參考。
表1 不同方法的時滯上界值(單位:s)
Tab.1 Different methods to obtain the upper bound of time delay
由表1結(jié)果得到以下結(jié)論:
(1)在相同時滯參數(shù)取值下,無論是單臺風(fēng)電機組還是雙臺風(fēng)電機組接入配電網(wǎng),本文方法求得的穩(wěn)定判據(jù)保守性更低,時滯穩(wěn)定裕度更大,系統(tǒng)具有更大的穩(wěn)定運行區(qū)域,證明了本文方法的優(yōu)越性。
(2)隨著波動性電源接入規(guī)模增大,發(fā)電機組分布松散性更強,時滯影響更加嚴(yán)重,而文獻(xiàn)[26-27]在接入更多臺風(fēng)電機組情況下求得的時滯上界值會更保守,因此不能為配電網(wǎng)電壓調(diào)控和安全運行提供精準(zhǔn)的數(shù)據(jù)參考,將直接影響配電網(wǎng)調(diào)控的高效性與準(zhǔn)確性。
針對科學(xué)計算耗時、通信延時等時滯現(xiàn)象造成含風(fēng)電配電網(wǎng)電壓越限的問題,本文建立了含風(fēng)電的配電網(wǎng)節(jié)點電壓運行分析的時滯模型,基于Lyapunov穩(wěn)定性理論,構(gòu)建了新的L-K增廣型泛函,并在處理泛函導(dǎo)數(shù)積分項時引入Wirtinger積分不等式,最終得到了以線性矩陣不等式表示的穩(wěn)定判據(jù),獲知了系統(tǒng)時滯穩(wěn)定裕度,并通過案例分析得到以下結(jié)論:
1)時滯現(xiàn)象對系統(tǒng)動態(tài)響應(yīng)效果具有顯著影響,間歇性風(fēng)電帶來的多重時滯環(huán)節(jié)需要在配電網(wǎng)系統(tǒng)模型中加以考慮。
2)本文方法可用于分析隨機時滯影響下系統(tǒng)安全運行的時滯上界值。當(dāng)調(diào)控通信時間小于時滯上界值時,系統(tǒng)能夠保持穩(wěn)定;而當(dāng)調(diào)控通信時間超過時滯上界值時,系統(tǒng)電壓會逐漸失去穩(wěn)定。在相同時滯參數(shù)取值下,本文得到的系統(tǒng)穩(wěn)定裕度更大,說明本文有效降低了判據(jù)保守性。
本文所得時滯上界值可解決時滯影響下調(diào)度中心無法實現(xiàn)對風(fēng)電機組等波動性電源精準(zhǔn)調(diào)控這一難題,能夠在既定電源結(jié)構(gòu)下充分挖掘機組的控制靈活性,保證配電系統(tǒng)的安全運行并提高風(fēng)電機組可控性,實現(xiàn)精細(xì)化、精準(zhǔn)化調(diào)控。為順應(yīng)雙碳目標(biāo)下新型電力系統(tǒng)的變革,時滯電力系統(tǒng)與人工智能、云計算以及大數(shù)據(jù)等新興技術(shù)關(guān)系密切,研究時滯電力系統(tǒng)與信息技術(shù)多元融合下的穩(wěn)定裕度將成為未來的熱門方向,以期為我國打造具有精準(zhǔn)評估、快速應(yīng)變能力的堅強智能電網(wǎng)提供關(guān)鍵技術(shù)并成為能源系統(tǒng)與信息系統(tǒng)交互耦合的橋梁。
與此同時,本研究中仍存在一些問題亟須考慮:
1)在接入高比例可再生能源的電力系統(tǒng)中,需要考慮各發(fā)電機組之間、各場群之間的協(xié)調(diào),以避免造成發(fā)電機組各自調(diào)節(jié)后電網(wǎng)電壓并不理想甚至惡化的結(jié)果。
2)需要考慮電力系統(tǒng)過高維度帶來的高計算量問題。高維度電力系統(tǒng)的計算復(fù)雜度會隨著系統(tǒng)維度的增加呈指數(shù)倍增長。因此,如何降低高維度時滯電力系統(tǒng)的計算復(fù)雜度也已經(jīng)成為亟須解決的問題。
1. 式(17)到式(18)的推導(dǎo)
從泛函構(gòu)建到泛函求導(dǎo),再根據(jù)穩(wěn)定性定理對泛函導(dǎo)數(shù)進行放縮,最終得到穩(wěn)定判據(jù)——定理1的過程。
本文構(gòu)造的Lyapunov-Krasovskii泛函[16]為
其中
構(gòu)造適當(dāng)?shù)腖-K泛函后,對泛函進行求導(dǎo),利用相關(guān)引理對泛函導(dǎo)數(shù)進行放縮變換。
式中
式中,上標(biāo)“-”表示共軛。
利用引理2對式(A4)進一步處理,可得
對式(A5)進一步運用Schur補引理得到保證系統(tǒng)漸近穩(wěn)定的結(jié)論,即定理1。
代入對應(yīng)數(shù)值,得到
代入對應(yīng)數(shù)值,得到
[1] 曾博, 徐富強, 劉一賢, 等. 綜合考慮經(jīng)濟-環(huán)境-社會因素的多能耦合系統(tǒng)高維多目標(biāo)規(guī)劃[J]. 電工技術(shù)學(xué)報, 2021, 36(7): 1434-1445. Zeng Bo, Xu Fuqiang, Liu Yixian, et al. High-dimensional multiobjective optimization for multi-energy coupled system planning with consideration of economic, environmental and social factors[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1434-1445.
[2] 周博, 艾小猛, 方家琨, 等. 計及超分辨率風(fēng)電出力不確定性的連續(xù)時間魯棒機組組合[J]. 電工技術(shù)學(xué)報, 2021, 36(7): 1456-1467. Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al. Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467.
[3] 朱澤安, 周修寧, 王旭, 等. 基于穩(wěn)暫態(tài)聯(lián)合仿真模擬的區(qū)域多可再生能源系統(tǒng)評估決策[J]. 電工技術(shù)學(xué)報, 2020, 35(13): 2780-2791. Zhu Zean, Zhou Xiuning, Wang Xu, et al. Evaluation and decision-making of regional multi-renewable energy system based on steady-transient integrated simulation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2780-2791.
[4] 卓振宇, 張寧, 謝小榮, 等. 高比例可再生能源電力系統(tǒng)關(guān)鍵技術(shù)及發(fā)展挑戰(zhàn)[J]. 電力系統(tǒng)自動化, 2021, 45(9): 171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191.
[5] 李保杰, 李進波, 李洪杰, 等. 土耳其“3.31”大停電事故的分析及對我國電網(wǎng)安全運行的啟示[J]. 中國電機工程學(xué)報, 2016, 36(21): 5788-5795, 6021. Li Baojie, Li Jinbo, Li Hongjie, et al. Analysis of Turkish blackout on March 31, 2015 and lessons on China power grid[J]. Proceedings of the CSEE, 2016, 36(21): 5788-5795, 6021.
[6] 張沛, 田佳鑫, 謝樺. 計及多個風(fēng)場預(yù)測誤差的電力系統(tǒng)風(fēng)險快速計算方法[J]. 電工技術(shù)學(xué)報, 2021, 36(9): 1876-1887. Zhang Pei, Tian Jiaxin, Xie Hua. A fast risk assessment method with consideration of forecasting errors of multiple wind farms[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1876-1887.
[7] Dong Chaoyu, Jia Hongjie, Xu Qianwen, et al. Time-delay stability analysis for hybrid energy storage system with hierarchical control in DC microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6633-6645.
[8] 樂健, 趙聯(lián)港, 廖小兵, 等. 考慮控制時滯和參數(shù)不確定的虛擬同步電機并網(wǎng)系統(tǒng)穩(wěn)定性分析[J]. 中國電機工程學(xué)報, 2021, 41(12): 4275-4286. Le Jian, Zhao Liangang, Liao Xiaobing, et al. Stability analysis of grid-connected inverter system containing virtual synchronous generator under time delay and parameter uncertainty[J]. Proceedings of the CSEE, 2021, 41(12): 4275-4286.
[9] Cao Yulei, Li Chongtao, He Tingyi, et al. A novel rekasius substitution based exact method for delay margin analysis of multi-area load frequency control systems[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5222-5234.
[10] 郭春義, 彭意, 徐李清, 等. 考慮延時影響的MMC-HVDC系統(tǒng)高頻振蕩機理分析[J]. 電力系統(tǒng)自動化, 2020, 44(22): 119-126. Guo Chunyi, Peng Yi, Xu Liqing, et al. Analysis on high-frequency oscillation mechanism for MMC-HVDC system considering influence of time delay[J]. Automation of Electric Power Systems, 2020, 44(22): 119-126.
[11] 馬燕峰, 霍亞欣, 李鑫, 等. 考慮時滯影響的雙饋風(fēng)電場廣域附加阻尼控制器設(shè)計[J]. 電工技術(shù)學(xué)報, 2020, 35(1): 158-166. Ma Yanfeng, Huo Yaxin, Li Xin, et al. Design of wide area additional damping controller for doubly fed wind farms considering time delays[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166.
[12] 古麗扎提·海拉提, 王杰. 多時滯廣域測量電力系統(tǒng)穩(wěn)定分析與協(xié)調(diào)控制器設(shè)計[J]. 電工技術(shù)學(xué)報, 2014, 29(2): 279-289. Gulizhati Hailati, Wang Jie. Multiple time delays analysis and coordinated stability control for power system wide area measurement[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 279-289.
[13] Zhang Chuanke, He Yong, Jiang Lin, et al. Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals[J]. IEEE Transactions on Automatic Control, 2017, 62(10): 5331-5336.
[14] 肖伸平, 張?zhí)? 唐軍, 等. 基于PI控制的時滯電力系統(tǒng)穩(wěn)定性分析[J]. 電網(wǎng)技術(shù), 2020, 44(10): 3949-3954. Xiao Shenping, Zhang Tian, Tang Jun, et al. Stability analysis for power systems with time-delay based on PI control[J]. Power System Technology, 2020, 44(10): 3949-3954.
[15] Zhang Chuanke, He Yong, Jiang L, et al. Delay-variation-dependent stability of delayed discrete-time systems[J]. IEEE Transactions on Automatic Control, 2016, 61(9): 2663-2669.
[16] 錢偉, 王晨晨, 費樹岷. 區(qū)間變時滯廣域電力系統(tǒng)穩(wěn)定性分析與控制器設(shè)計[J]. 電工技術(shù)學(xué)報, 2019, 34(17): 3640-3650. Qian Wei, Wang Chenchen, Fei Shumin. Stability analysis and controller design of wide-area power system with interval time-varying delay[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3640-3650.
[17] Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems[J]. Automatica, 2013, 49(9): 2860-2866.
[18] Zhang Xianming, Han Qinglong, Seuret A, et al. An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay[J]. Automatica, 2017, 84: 221-226.
[19] 竇曉波, 葛浦東, 全相軍, 等. 計及不確定時滯的有源配電網(wǎng)無功電壓魯棒控制[J]. 中國電機工程學(xué)報, 2019, 39(5): 1290-1301. Dou Xiaobo, Ge Pudong, Quan Xiangjun, et al. Reactive power and voltage robust control for active distribution network considering uncertain delay[J]. Proceedings of the CSEE, 2019, 39(5): 1290-1301.
[20] 周明, 元博, 張小平, 等. 基于SDE的含風(fēng)電電力系統(tǒng)隨機小干擾穩(wěn)定分析[J]. 中國電機工程學(xué)報, 2014, 34(10): 1575-1582. Zhou Ming, Yuan Bo, Zhang Xiaoping, et al. Stochastic small signal stability analysis of wind power integrated power systems based on stochastic differential equations[J]. Proceedings of the CSEE, 2014, 34(10): 1575-1582.
[21] Lee T H, Park J H. Improved stability conditions of time-varying delay systems based on new Lyapunov functionals[J]. Journal of the Franklin Institute, 2018, 355(3): 1176-1191.
[22] 錢偉, 蔣鵬沖. 時滯電力系統(tǒng)帶記憶反饋控制方法[J]. 電網(wǎng)技術(shù), 2017, 41(11): 3605-3611. Qian Wei, Jiang Pengchong. A method of memory feedback control for power system with time-delay[J]. Power System Technology, 2017, 41(11): 3605-3611.
[23] Sun Jian, Liu G P, Chen Jie, et al. Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J]. Automatica, 2010, 46(2): 466-470.
[24] Wu Min, Peng Chen, Zhang Jin, et al. Further results on delay-dependent stability criteria of discrete systems with an interval time-varying delay[J]. Journal of the Franklin Institute, 2017, 354(12): 4955-4965.
[25] Zhang Xianming, Han Qinglong. New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 533-539.
[26] 李寧, 孫永輝, 衛(wèi)志農(nóng), 等. 基于Wirtinger不等式的電力系統(tǒng)延時依賴穩(wěn)定判據(jù)[J]. 電力系統(tǒng)自動化, 2017, 41(2): 108-113. Li Ning, Sun Yonghui, Wei Zhinong, et al. Delay-dependent stability criteria for power system based on Wirtinger integral inequality[J]. Automation of Electric Power Systems, 2017, 41(2): 108-113.
[27] 汪豪, 錢偉, 郭建峰, 等. 變時滯影響下廣域電力系統(tǒng)的H∞控制[J]. 電力系統(tǒng)保護與控制, 2021, 49(18): 70-80. Wang Hao, Qian Wei, Guo Jianfeng, et al. H∞control for a wide-area power system with time-varying delay[J]. Power System Protection and Control, 2021, 49(18): 70-80.
[28] 孟庭如, 鄒貴彬, 許春華, 等. 一種分區(qū)協(xié)調(diào)控制的有源配電網(wǎng)調(diào)壓方法[J]. 中國電機工程學(xué)報, 2017, 37(10): 2852-2860. Meng Tingru, Zou Guibin, Xu Chunhua, et al. A voltage regulation method based on district-dividing coordinated control for active distribution network[J]. Proceedings of the CSEE, 2017, 37(10): 2852-2860.
[29] Pidre J C, Carrillo C J, Lorenzo A E F. Probabilistic model for mechanical power fluctuations in asynchronous wind parks[J]. IEEE Transactions on Power Systems, 2003, 18(2): 761-768.
[30] 劉華志, 李永剛, 王優(yōu)胤, 等. 無功電壓優(yōu)化對新能源消納的影響[J]. 電工技術(shù)學(xué)報, 2019, 34(增刊2): 646-653. Liu Huazhi, Li Yonggang, Wang Youyin, et al. Influence about reactive power voltage optimization on the dissipation of new energy[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 646-653.
[31] 張子泳, 胡志堅, 劉宇凱. 計及廣域信號時變時滯影響的大型雙饋風(fēng)力發(fā)電系統(tǒng)附加魯棒阻尼控制[J]. 電工技術(shù)學(xué)報, 2014, 29(4): 246-255. Zhang Ziyong, Hu Zhijian, Liu Yukai. Additional robust damping control of large scale DFIG-based wind power generation system with wide-area signals' time-varying delay influence[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 246-255.
Analysis on Node Voltage Security of Distribution Network with Wind Power Considering Time Delay
Cui Qingxue1Li Xialin1Ge Leijiao1Li Tianchu2Li Xian2
(1. Key Laboratory of Smart Grid of Ministry of Education Tianjin University Tianjin 300072 China 2. Power Research Institute of Hainan Power Grid Co. Ltd Haikou 570311 China)
The superposition effect of time-delay phenomenon leads to the failure of preset parameters for the safe operation control of distribution network voltage, and the system operation condition is further deteriorated. However, the previous analysis models of distribution network security operation control seldom consider the time-delay or execute according to the time-delay of a fixed constant, which is difficult to meet the actual demand. At the same time, there is still a lack of relevant literature that considers the time-delay factor in the node voltage security analysis of distribution network. In order to address these issues, this paper has carried out in-depth research on node voltage security analysis of wind power distribution network with time-delay. By solving the time-delay stability margin, a numerical reference is provided for the accurate regulation of the safe operation of the node voltage of the distribution network with wind power.
Firstly, construct a mathematical model of partial derivative differential transcendental equation for node voltage safety analysis of time-delay distribution networks with wind power. Then, propose a Lyapunov-Krasovskii generalized function construction method, and apply Wirtinger's inequality technique to deal with the integral term in the generalized derivative to solve the constructed partial derivative differential transcendental equation and obtain the stability criterion to know its time-delay stability margin. Finally, the simulation is verified with the help of the typical case and IEEE 33 examples.
Simulation results of typical second-order systems show that the proposed method can significantly reduce the conservatism of stability criteria. Simulation results of distribution network with a single wind turbine generator unit show that when the upper limit of time-delay is 5.1 s, the system voltage is critical stable; when it is greater than 5.1 s, that is, it exceeds the upper limit of stability, and the distribution system gradually loses stability. Simulation results of distribution network with two wind turbine generators show that the system voltage is critical stable when the upper limit of time-delay is 5.9s; when it is greater than 5.9s, that is, it exceeds the upper limit of stability, and the system gradually loses stability. The regulated system without considering the effect of time-delay can not adapt to the operation of fluctuating power supply, and can not accurately reflect the dynamic response with wind turbines. After adjusting according to the time-delay stability margin, the node voltage of the distribution network can adapt to the operation of fluctuating power sources, accurately reflect the dynamic response with the distribution network system, and change within the safe operation range.
The following conclusions can be drawn from the simulation analysis: (1) Time-delay has a significant impact on the dynamic response of the system, and multiple time-delay links caused by intermittent wind power need to be considered in the distribution network system model. (2) The method presented in this paper can be used to analyze the upper bound of time-delay for safe operation of systems under the influence of random time delays. When the control communication time is less than the upper bound of the delay, the system can maintain stability. When the control communication time exceeds the upper limit of time-delay, the system voltage will gradually lose stability. Under the same delay parameter value, the system stability margin obtained in this paper is larger, which shows that this paper effectively reduces the conservatism of the criterion.
Distribution network, time-delay, voltage safety, Lyapunov-Krasovskii function, Wirtinger inequality
國家電網(wǎng)有限公司總部科技項目(5100-202155018A-0-0-00)、國家自然科學(xué)基金項目(51807134)和電力系統(tǒng)大型發(fā)電設(shè)備安全控制與仿真國家重點實驗室開放基金課題(N0.SKLD21KM10)資助。
2021-12-24
2022-03-23
10.19595/j.cnki.1000-6753.tces.212097
TM712
崔慶雪 女,1999年生,碩士研究生,研究方向為配電網(wǎng)時滯不確定性分析。E-mail:a1023480040@163.com
葛磊蛟 男,1984年生,副教授,碩士生導(dǎo)師,研究方向為智能配電網(wǎng)態(tài)勢感知、新能源并網(wǎng)優(yōu)化控制和智能配用電大數(shù)據(jù)云計算技術(shù)等。E-mail:legendglj99@tju.edu.cn(通信作者)
(編輯 赫蕾)