李澤星 夏加寬 劉鐵法 郭志研 魯冰娜
基于極間虛齒的表貼式永磁電機(jī)六倍頻振動(dòng)噪聲的削弱
李澤星1夏加寬1劉鐵法2郭志研1魯冰娜1
(1. 沈陽(yáng)工業(yè)大學(xué)電氣工程學(xué)院 沈陽(yáng) 110870 2. 中國(guó)科學(xué)院沈陽(yáng)自動(dòng)化研究所 沈陽(yáng) 110169)
采用極間虛齒結(jié)構(gòu)對(duì)表貼式永磁電機(jī)的六倍頻振動(dòng)噪聲進(jìn)行削弱,與傳統(tǒng)的優(yōu)化方法相比,該方法結(jié)構(gòu)簡(jiǎn)單,且基本不影響基波磁場(chǎng)和平均轉(zhuǎn)矩。首先,基于麥克斯韋張量法,推導(dǎo)了考慮力波分量相角的六倍頻電磁力諧波表達(dá)式,分析了六倍頻電磁力的產(chǎn)生機(jī)理,并以一臺(tái)8極48槽表貼式永磁電機(jī)為例,采用有限元法進(jìn)行驗(yàn)證;接著,引入凸極磁導(dǎo)函數(shù),基于磁場(chǎng)調(diào)制原理,分析了虛齒對(duì)磁通密度時(shí)間諧波的調(diào)制作用及對(duì)六倍頻電磁力的削弱機(jī)理;然后,建立多物理場(chǎng)有限元模型,對(duì)比了優(yōu)化前后電機(jī)的關(guān)鍵電磁性能以及振動(dòng)和噪聲頻譜,結(jié)果表明,極間虛齒可有效削弱電機(jī)的六倍頻電磁力和振動(dòng)噪聲;最后對(duì)優(yōu)化后的樣機(jī)進(jìn)行噪聲實(shí)驗(yàn),與仿真結(jié)果對(duì)比,驗(yàn)證了理論和有限元模型的正確性。
極間虛齒 表貼式永磁同步電機(jī) 六倍頻振動(dòng)噪聲 有限元法
永磁電機(jī)具有結(jié)構(gòu)簡(jiǎn)單、功率密度高、效率高等優(yōu)點(diǎn),被廣泛用于水下航行器推進(jìn)系統(tǒng)[1-3]。然而,隱蔽性作為水下航行器的重要指標(biāo),容易受到永磁電機(jī)低頻振動(dòng)噪聲的影響[4-5]。
在低頻段,六倍頻振動(dòng)噪聲是非常顯著的,其由六倍頻電磁力引起[6-10]。文獻(xiàn)[6-8]分別分析了10極45槽、8極12槽、8極9槽、10極12槽四種分?jǐn)?shù)槽永磁電機(jī)的電磁力和電磁振動(dòng)特性,結(jié)果表明,六倍頻振動(dòng)是主要的峰值點(diǎn)。文獻(xiàn)[9]對(duì)一臺(tái)8極48槽永磁同步電機(jī)進(jìn)行了噪聲實(shí)驗(yàn),結(jié)果表明,六倍頻電磁力約為二倍頻電磁力的三分之一,但其產(chǎn)生的噪聲幅值卻與二倍頻噪聲基本一致。文獻(xiàn)[10]對(duì)一臺(tái)8極48槽電動(dòng)汽車用永磁電機(jī)的力波特性進(jìn)行分析,結(jié)果表明,六倍頻電磁力是零階力波的主要頻率分量;通常來(lái)講,模態(tài)越低,振動(dòng)越強(qiáng),較小的低階力波即可引起較大的振動(dòng)噪聲[11]。六倍頻電磁力與3次、5次和7次磁通密度諧波密切相關(guān),由于這些磁場(chǎng)諧波在永磁電機(jī)中占比較大,這導(dǎo)致六倍頻電磁力及其振動(dòng)噪聲普遍都顯著地存在于各類永磁電機(jī)中[12]。因此,針對(duì)六倍頻電磁力的分析和削弱是十分必要的。
目前,國(guó)內(nèi)外已有許多學(xué)者對(duì)電機(jī)振動(dòng)噪聲的削弱方法進(jìn)行研究[13-18]。文獻(xiàn)[13]以一臺(tái)6極36槽永磁電機(jī)為例,提出了一種極間填充永磁體的方法來(lái)削弱振動(dòng),該方法對(duì)二倍頻振動(dòng)噪聲的削弱非常有效,但是對(duì)六倍頻振動(dòng)噪聲的削弱并不明顯。文獻(xiàn)[14]以一臺(tái)8極48槽永磁電機(jī)為例,基于麥克斯韋張量法,分析了轉(zhuǎn)子分段斜極對(duì)電機(jī)徑向力波諧波的影響,結(jié)果表明,當(dāng)轉(zhuǎn)子被分為5段且斜極角度為3°時(shí),六倍頻電磁力可以被有效降低,但是平均轉(zhuǎn)矩下降了5%。文獻(xiàn)[15]提出了一種定子齒頂偏移的結(jié)構(gòu)來(lái)削弱一臺(tái)6極36槽內(nèi)置式永磁電機(jī)的振動(dòng),但是平均轉(zhuǎn)矩下降了4%。此外,還有定子齒削角[16],斜槽[17]及轉(zhuǎn)子表面插入銅環(huán)[18]等方法,可用來(lái)削弱六倍頻振動(dòng)噪聲,但是這些方法都有一個(gè)共性問(wèn)題,即影響基波磁場(chǎng),導(dǎo)致平均轉(zhuǎn)矩嚴(yán)重下降。而且,目前基于轉(zhuǎn)子側(cè)的優(yōu)化方法普遍比較復(fù)雜,會(huì)導(dǎo)致電機(jī)成本的增加和轉(zhuǎn)子可靠性的降低[9,13,18]。因此,如何在保證平均轉(zhuǎn)矩基本不變的情況下,提出一種簡(jiǎn)單可靠的方法,有效削弱六倍頻振動(dòng)噪聲是一個(gè)亟待解決的問(wèn)題。
本文采用極間虛齒結(jié)構(gòu)對(duì)表貼式永磁電機(jī)的六倍頻振動(dòng)噪聲進(jìn)行削弱,并基于磁場(chǎng)調(diào)制機(jī)理[19-20],解釋了虛齒對(duì)六倍頻電磁力諧波及基波磁場(chǎng)的影響。首先,基于麥克斯韋張量法,分析了六倍頻電磁力的產(chǎn)生機(jī)理;接著,引入凸極磁導(dǎo)函數(shù),結(jié)合有限元模型分析了虛齒對(duì)氣隙磁場(chǎng)時(shí)間諧波及六倍頻電磁力的影響。然后,建立多物理場(chǎng)耦合模型,對(duì)比了優(yōu)化前后電機(jī)的電磁性能及振動(dòng)噪聲頻譜;最后,將優(yōu)化后樣機(jī)的仿真結(jié)果與噪聲實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證了理論及有限元模型的正確性。考慮到空載狀態(tài)的噪聲響應(yīng)即可反映該電機(jī)的噪聲趨勢(shì)與特征[21],因此,為方便起見(jiàn),本文主要對(duì)樣機(jī)空載下的六倍頻電磁力諧波進(jìn)行分析,并使用有限元法驗(yàn)證了虛齒結(jié)構(gòu)在負(fù)載工況的有效性,所得結(jié)論可以為表貼式永磁電機(jī)六倍頻振動(dòng)噪聲的削弱提供有價(jià)值的參考。
本文以一臺(tái)8極48槽表貼式永磁電機(jī)為例進(jìn)行分析,其橫截面示意圖如圖1所示。電機(jī)的基本參數(shù)見(jiàn)表1,定子采用斜槽結(jié)構(gòu),用來(lái)削弱槽頻振動(dòng)[17]。
圖1 8極48槽表貼式永磁同步電機(jī)橫截面示意圖
表1 樣機(jī)基本參數(shù)
Tab.1 The basic parameters of prototype
樣機(jī)定、轉(zhuǎn)子簡(jiǎn)化示意圖如圖2所示。其中,是轉(zhuǎn)子位置角,當(dāng)=0°時(shí),永磁體中心線與定子某個(gè)齒的中心線對(duì)齊。是轉(zhuǎn)子相對(duì)于參考位置的旋轉(zhuǎn)角度。
圖2 樣機(jī)定、轉(zhuǎn)子簡(jiǎn)化模型
六倍頻振動(dòng)噪聲主要由六倍頻電磁力諧波引起,分析六倍頻電磁力諧波的形成原因是降低六倍頻振動(dòng)噪聲的關(guān)鍵。本文基于麥克斯韋張量法與磁場(chǎng)調(diào)制機(jī)理,分析六倍頻電磁力諧波與磁場(chǎng)諧波的關(guān)系,從而得到六倍頻電磁力諧波的產(chǎn)生機(jī)理。
定子齒表面相當(dāng)于等勢(shì)面,其中心位置基本不受開(kāi)槽效應(yīng)影響,則在永磁磁場(chǎng)作用下,定子齒表面中心線上一點(diǎn)的磁通密度隨時(shí)間的變化曲線為[22-24]
需要強(qiáng)調(diào)的是,本文旨在分析六倍頻電磁力時(shí)間諧波,其與磁通密度時(shí)間諧波直接相關(guān),因此,在磁場(chǎng)分析時(shí),不再考慮磁場(chǎng)的空間分布特性,而主要考慮定子齒表面中心線上一點(diǎn)隨時(shí)間(或者隨轉(zhuǎn)子轉(zhuǎn)過(guò)的電角度)的變化。在分析過(guò)程中,基波代表頻率為基頻的諧波,即1次時(shí)間諧波。
根據(jù)麥克斯韋張量法[25-27],且忽略幅值較小的切向磁通密度,定子齒表面單位面積上受到的徑向電磁力為[28]
由式(2)可以看出,對(duì)于特定的電磁力諧波,其由多個(gè)力波分量組成,這些力波分量之間磁通密度諧波含量不同,相互作用關(guān)系受到各個(gè)分量相位的影響。為方便起見(jiàn),定義(R1,R2)為由R1和R2次磁通密度時(shí)間諧波組成的力波分量。
組成六倍頻電磁力諧波的分量需要
忽略幅值較小的磁通密度高次諧波,主要考慮1、3、5、7次等幅值較大的磁場(chǎng)諧波之間的相互作用,則六倍頻電磁力主要由(1, 5)、(1, 7)、(3, 3)組成,因此,六倍頻電磁力諧波可表示為
結(jié)合樣機(jī)有限元模型,計(jì)算得到磁通密度時(shí)間諧波波形及其快速傅里葉變換(Fast Fourier Transform, FFT)分解結(jié)果如圖3所示。在圖3b中,通過(guò)幅值的正負(fù)來(lái)區(qū)分各次諧波的初始相位;當(dāng)幅值為正時(shí),相位為0;幅值為負(fù)時(shí),相位為π。
圖3 磁通密度曲線及其FFT分解結(jié)果
基于有限元計(jì)算結(jié)果與式(4),可以確定(1, 7)和(3, 3)為正向分量,(1, 5)為負(fù)向分量,即式(4)可簡(jiǎn)化為
及其各個(gè)力波分量的波形及幅值關(guān)系如圖4所示,可以發(fā)現(xiàn),由于F(1, 7)和F(3, 3)幅值之和的絕對(duì)值大于F(1, 5)幅值的絕對(duì)值,導(dǎo)致正負(fù)分量之間無(wú)法相互抵消,從而引起了六倍頻電磁力。因此,可通過(guò)正負(fù)力波分量之間的相互補(bǔ)償關(guān)系來(lái)削弱六倍頻電磁力。從磁通密度時(shí)間諧波來(lái)看,即盡量減小5次諧波與7次諧波的差值,以及減小3次諧波的幅值。
圖5 與的對(duì)比
Tab.2 The comparison of amplitudes of and
加入極間虛齒后轉(zhuǎn)子橫截面示意圖如圖6所示,兩個(gè)相鄰磁極之間增加鐵心凸起結(jié)構(gòu)。該凸起結(jié)構(gòu)類似于定子齒,會(huì)導(dǎo)致轉(zhuǎn)子鐵心具有齒槽效應(yīng),但齒間無(wú)繞組,因此稱之為極間虛齒。在圓周方向,虛齒與面嵌式永磁電機(jī)的極間凸起一致,位于相鄰的永磁體之間,其周向?qū)挾惹『门c永磁體互補(bǔ),可用于永磁體定位。增加虛齒結(jié)構(gòu)的轉(zhuǎn)子等效簡(jiǎn)易模型如圖7所示。在圖7中,為極間虛齒的徑向厚度。本節(jié)中,計(jì)算結(jié)果均以=1.2mm的模型為基礎(chǔ)。
圖6 加入極間虛齒后轉(zhuǎn)子橫截面示意圖
圖7 加入極間虛齒后轉(zhuǎn)子等效模型
極間虛齒相當(dāng)于轉(zhuǎn)子輔助齒,會(huì)引起氣隙磁導(dǎo)發(fā)生改變。根據(jù)已經(jīng)取得的研究成果[29],可引入凸極磁導(dǎo)函數(shù)來(lái)表征虛齒引入的諧波磁導(dǎo),即
永磁體作用下,定子齒表面中心線一點(diǎn)的磁動(dòng)勢(shì)隨時(shí)間變化的表達(dá)式為[30-31]
將式(7)永磁磁動(dòng)勢(shì)作用于式(6)凸極磁導(dǎo)函數(shù),可得到該點(diǎn)在虛齒影響下的磁通密度為
對(duì)比式(1)與式(8),可以發(fā)現(xiàn),引入虛齒后,磁通密度諧波的頻率成分并沒(méi)有變化,但是諧波磁導(dǎo)會(huì)對(duì)原有磁場(chǎng)諧波形成調(diào)制作用,改變與其相差2S次諧波磁通密度的幅值。調(diào)制效應(yīng)與諧波磁導(dǎo)的相位相關(guān),調(diào)制程度正比于諧波磁導(dǎo)幅值和相應(yīng)磁通密度諧波幅值的乘積。
定子齒表面中心上一點(diǎn)的磁導(dǎo)隨時(shí)間的變化可表示為
一個(gè)電周期內(nèi)該點(diǎn)磁導(dǎo)隨時(shí)間的變化曲線及其FFT結(jié)果如圖8所示。圖8中,當(dāng)幅值為正時(shí),相位為0;幅值為負(fù)時(shí),相位為π。
圖8 磁導(dǎo)波形及其FFT分解結(jié)果
基于式(8)及有限元計(jì)算結(jié)果,以3次諧波為例,進(jìn)一步討論虛齒對(duì)磁場(chǎng)諧波的調(diào)制效應(yīng)。由于其他諧波磁通密度幅值較小,僅考慮基波在凸極磁導(dǎo)調(diào)制后對(duì)3次諧波的影響,且忽略諧波之間相互作用關(guān)系的迭代效應(yīng)?;ù艌?chǎng)可分別與2次磁導(dǎo)與4次磁導(dǎo)相互作用,調(diào)制得到3次諧波磁場(chǎng),由式(8)可以確定,基波與2次磁導(dǎo)相互作用后,得到的3次諧波磁場(chǎng)為負(fù)向分量;基波與4次磁導(dǎo)相互作用后得到的3次諧波磁場(chǎng)為正向分量。則調(diào)制后,3次諧波幅值變化量為
同理,可以得到調(diào)制后基波及其他諧波的幅值變化量見(jiàn)表3。表3中,基波的變化量主要由3次諧波與2次和4次磁導(dǎo)分別作用,5次諧波與4次和6次磁導(dǎo)分別作用,7次諧波與6次磁導(dǎo)分別作用得到,由于其變化量較小,結(jié)果僅給出了變化量總和。
表3 基波及其他諧波的變化量
Tab.3 The changes of the fundamental wave and other main harmonics
分析表3可知:
1)由于基波磁場(chǎng)的幅值變化量主要由幅值較小的諧波磁場(chǎng)與相應(yīng)磁導(dǎo)相互作用得到,變化量較小,基本可以忽略,因此,虛齒基本不影響基波磁場(chǎng)。
2)由于2次諧波磁導(dǎo)幅值大于4次諧波磁導(dǎo)幅值,因此,虛齒對(duì)3次諧波磁場(chǎng)表現(xiàn)為削弱作用。
3)虛齒對(duì)5次和7次諧波磁場(chǎng)表現(xiàn)為增大作用,而5次諧波磁場(chǎng)增加量大于7次諧波磁場(chǎng)增加量,因此,虛齒的引入減小了5次和7次諧波磁場(chǎng)的差值。
因此,虛齒主要依靠調(diào)制作用,降低3次諧波,并減小5次和7次諧波磁場(chǎng)的差值來(lái)削弱六倍頻電磁力諧波,且基本不影響基波磁場(chǎng)。
加入虛齒后,氣隙磁通密度隨時(shí)間的變化曲線及其FFT分解結(jié)果如圖9所示。圖9中,為5次諧波和7次諧波差值。各次諧波的變化量與3.1節(jié)中計(jì)算結(jié)果存在差異,但變化趨勢(shì)相同。誤差主要由未考慮除基波外其他諧波之間的相互作用以及調(diào)制關(guān)系的迭代效應(yīng)引起,并不影響各次諧波的變化趨勢(shì)。圖9b中,3次諧波的降低以及5次諧波和7次諧波差值的減小,與3.1節(jié)中所得結(jié)論基本一致,驗(yàn)證了3.1節(jié)中理論分析的正確性。
圖9 原方案與優(yōu)化方案磁通密度對(duì)比
虛齒的高度會(huì)影響其調(diào)制特性,六倍頻電磁力諧波幅值隨虛齒高度的變化趨勢(shì)如圖10所示。
圖10 六倍頻電磁力諧波幅值隨虛齒高度變化曲線
考慮到電機(jī)結(jié)構(gòu),虛齒高度被限定在0~4mm,即不超過(guò)永磁體的厚度??梢园l(fā)現(xiàn),隨著高度的增加,六倍頻電磁力先減小后增大。
1)在0~0.6mm范圍內(nèi),六倍頻電磁力幅值緩慢下降。
2)在0.6~1.2mm范圍內(nèi),隨著虛齒高度增加,六倍頻電磁力幅值快速下降。
3)在1.2~2.4mm范圍內(nèi),六倍頻電磁力幅值趨于平緩,六倍頻電磁力幅值變化不明顯;=1.2mm恰好為下降速度的轉(zhuǎn)折點(diǎn)。
4)在2.4~4mm范圍內(nèi),六倍頻電磁力幅值逐漸增大。
由于=1.2mm恰好為下降速度的轉(zhuǎn)折點(diǎn),繼續(xù)增加虛齒高度至2.4mm的過(guò)程中,六倍頻電磁力變化并不明顯,因此本文選用=1.2mm作為優(yōu)化方案,與原方案相比,六倍頻電磁力諧波降低了58.5%。
優(yōu)化前后空載下電機(jī)的電磁力密度隨時(shí)間變化曲線及其FFT分解結(jié)果如圖11所示。可以看出,除六倍頻電磁力以外,與優(yōu)化前相比,電機(jī)的2倍頻和4倍頻電磁力密度幅值基本不變,8倍頻、10倍頻及12倍頻電磁力諧波略有增大,但是考慮到這三種諧波占比較小,且并非主要的激振源,因此其變化程度基本可以忽略。
圖11 空載下原方案與優(yōu)化方案電磁力密度對(duì)比
優(yōu)化前后電機(jī)的齒槽轉(zhuǎn)矩隨時(shí)間變化曲線及其FFT分解結(jié)果如圖12所示??梢钥闯?,優(yōu)化后樣機(jī)的齒槽轉(zhuǎn)矩峰峰值有所增大,但是相對(duì)于額定轉(zhuǎn)矩(5.82N·m)來(lái)說(shuō),其僅占比0.4%,因此基本可以忽略。
圖12 原方案與優(yōu)化方案齒槽轉(zhuǎn)矩對(duì)比
優(yōu)化前后負(fù)載下電機(jī)的電磁力密度隨時(shí)間變化曲線及其FFT分解結(jié)果如圖13所示??梢钥闯觯额l電磁力諧波幅值明顯下降,因此,極間虛齒結(jié)構(gòu)在空載極負(fù)載工況下均可有效削弱六倍頻電磁力諧波。
圖13 負(fù)載下原方案與優(yōu)化方案電磁力密度對(duì)比
額定電流下,優(yōu)化前后,電機(jī)的平均轉(zhuǎn)矩曲線如圖14所示,三種情況的平均轉(zhuǎn)矩見(jiàn)表4??梢钥闯?,當(dāng)采用d=0方式時(shí),優(yōu)化后樣機(jī)的平均轉(zhuǎn)矩降低了0.19%,當(dāng)采用最大轉(zhuǎn)矩電流比方式時(shí),優(yōu)化后樣機(jī)的平均轉(zhuǎn)矩降低了0.15%,下降幅度小于d=0控制方式;兩種控制方式下,平均轉(zhuǎn)矩的下降基本可以忽略。因此,虛齒基本不影響平均轉(zhuǎn)矩。
圖14 原方案與優(yōu)化方案平均轉(zhuǎn)矩對(duì)比
表4 原方案與優(yōu)化方案平均轉(zhuǎn)矩對(duì)比
Tab.4 The comparison of the average torque of the original scheme and the optimized scheme
為了驗(yàn)證該方法的通用性,本文增加了虛齒結(jié)構(gòu)對(duì)不同極槽配合永磁電機(jī)六倍頻電磁力諧波的影響分析。8極9槽、8極18槽及10極12槽三種極槽配合永磁電機(jī)的有限元模型如圖15所示。
圖15 不同極槽配合永磁電機(jī)有限元模型
添加虛齒結(jié)構(gòu)前后,三種極槽配合電機(jī)六倍頻電磁力諧波計(jì)算結(jié)果如圖16所示。可以看出,添加虛齒后,三種極槽配合電機(jī)六倍頻電磁力諧波幅值均明顯降低,其中,8極18槽方案六倍頻電磁力諧波下降最明顯,8極9槽方案六倍頻電磁力諧波下降幅度最小。綜合虛齒結(jié)構(gòu)在不同極槽配合電機(jī)的應(yīng)用效果,該方法對(duì)六倍頻電磁力諧波的削弱具有較好的通用性。
圖16 不同極槽配合下虛齒對(duì)六倍頻電磁力諧波的影響
樣機(jī)定子結(jié)構(gòu)及其3D有限元模型如圖17所示,主要包含定子、機(jī)殼、端蓋。
圖17 樣機(jī)定子模型
當(dāng)電機(jī)特定階次電磁力頻率接近定子相應(yīng)模態(tài)固有模態(tài)頻率時(shí),電機(jī)會(huì)發(fā)生共振現(xiàn)象[10]。優(yōu)化結(jié)構(gòu)位于轉(zhuǎn)子,不影響定子結(jié)構(gòu)件模態(tài)。定子各階模態(tài)振型及其固有頻率如圖18所示。為清晰起見(jiàn),在展示定子模態(tài)振型時(shí),隱藏其他結(jié)構(gòu)件。由圖18可知,額定工況下,計(jì)算得到的電機(jī)固有頻率與電磁力頻率相差較遠(yuǎn),因此,電機(jī)不會(huì)發(fā)生共振。
優(yōu)化前后樣機(jī)的振動(dòng)頻譜如圖19所示。可以看出,主要的頻率點(diǎn)包括6、12、18等6及其倍數(shù)點(diǎn),其中6處振動(dòng)加速度幅值最大。與原方案相比,6處振動(dòng)加速度幅值由0.856m/s2下降至0.475 m/s2,降低44.5%。12處振動(dòng)加速度幅值略微增加,但與6處幅值相比,仍然較小,因此其變化基本可以忽略。
圖19 樣機(jī)振動(dòng)加速度頻譜對(duì)比
優(yōu)化前后樣機(jī)的聲壓級(jí)(Sound Pressure Level, SPL)如圖20所示。與振動(dòng)加速度頻譜相比,趨勢(shì)基本一致,主要頻率點(diǎn)仍為6及其倍數(shù)點(diǎn)。與原方案相比,6處噪聲幅值明顯下降,證明了本文優(yōu)化方法的有效性。
圖20 樣機(jī)SPL頻譜對(duì)比
為了驗(yàn)證分析理論及方法的正確性,本文對(duì)優(yōu)化后樣機(jī)進(jìn)行噪聲實(shí)驗(yàn)。噪聲實(shí)驗(yàn)設(shè)置如圖21所示。電機(jī)被放在消聲室內(nèi),傳感器置于離電機(jī)機(jī)殼表面1m位置。麥克風(fēng)及數(shù)據(jù)采集器均為丹麥BK公司生產(chǎn)。
額定轉(zhuǎn)速下,噪聲實(shí)驗(yàn)結(jié)果如圖22所示??梢钥闯?,仿真結(jié)果存在一定誤差,這主要是因?yàn)檫M(jìn)行有限元仿真時(shí),對(duì)模型進(jìn)行了適當(dāng)?shù)暮?jiǎn)化和等效,且未考慮機(jī)械結(jié)構(gòu)及固定方式等因素的影響。但誤差在可接受的范圍內(nèi),兩者趨勢(shì)基本一致,主要峰值頻率點(diǎn)均為6、12、18等6及其倍數(shù)點(diǎn)。因此,有限元結(jié)果與實(shí)驗(yàn)結(jié)果的對(duì)比,可驗(yàn)證理論分析及仿真結(jié)果的有效性。
圖22 SPL頻譜仿真與實(shí)測(cè)對(duì)比
本文采用極間虛齒的結(jié)構(gòu)對(duì)表貼式永磁電機(jī)六倍頻振動(dòng)噪聲進(jìn)行削弱。首先,基于麥克斯韋張量法與磁場(chǎng)調(diào)制原理,解釋了虛齒削弱六倍頻電磁力的機(jī)理;接著,分析了極間虛齒結(jié)構(gòu)在不同工況及電機(jī)拓?fù)浣Y(jié)構(gòu)的有效性;最后,對(duì)優(yōu)化后樣機(jī)進(jìn)行了噪聲實(shí)驗(yàn), 驗(yàn)證了仿真及理論的正確性。所得結(jié)論可以為表貼式永磁電機(jī)六倍頻振動(dòng)噪聲的削弱提供有價(jià)值的參考。
1)六倍頻電磁力主要由(1, 5),(1, 7),(3, 3)相互作用得到,其中正向分量與負(fù)向分量的差值決定了六倍頻電磁力的大小。
2)虛齒會(huì)引起凸極效應(yīng),對(duì)原有氣隙磁場(chǎng)形成調(diào)制作用。以本文8極48槽樣機(jī)為例,適當(dāng)高度的虛齒可以降低3次諧波的幅值,減小5次與7次諧波之間的差值,從而有效地削弱六倍頻電磁力及其引起的振動(dòng)噪聲。此外,虛齒基本不影響基波磁場(chǎng)及平均轉(zhuǎn)矩,可以有效保證電機(jī)轉(zhuǎn)矩密度不變。
[1] Liu Guangwei, Qiu Guohua, Shi Jin, et al. Study on counter-rotating dual-rotor permanent magnet motor for underwater vehicle propulsion[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.
[2] Chasiotis I D, Karnavas Y L. A generic multi-criteria design approach toward high power density and fault-tolerant low-speed PMSM for pod applications[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 356-370.
[3] Li Wei, Cheng Ming. Investigation of influence of winding structure on reliability of permanent magnet machines[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 87-95.
[4] Chai Feng, Li Yi, Pei Yulong, et al. Analysis of radial vibration caused by magnetic force and torque pulsation in interior permanent magnet synchronous motors considering air-gap deformations[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 6703-6714.
[5] Xu Jiaqun, Zhang Hongqiang. Random asymmetric carrier PWM method for PMSM vibration reduction[J]. IEEE Access, 2020, 8: 109411-109420.
[6] 陳益廣, 韓柏然, 沈勇環(huán), 等. 永磁同步推進(jìn)電機(jī)電磁振動(dòng)分析[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(23): 16-22. Chen Yiguang, Han Boran, Shen Yonghuan, et al. Electromagnetic vibration analysis of permanent magnet synchronous propulsion motor[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 16-22.
[7] Sun Tao, Kim Y H, Cho W J, et al. Effect of pole and slot combination on noise and vibration in permanent magnet synchronous motor[C]//Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA, 2010: 1.
[8] Zou Jibin, Lan Hua, Xu Yongxiang, et al. Analysis of global and local force harmonics and their effects on vibration in permanent magnet synchronous machines[J]. IEEE Transactions on Energy Conversion, 2017, 32(4): 1523-1532.
[9] 王曉遠(yuǎn), 賀曉鈺, 高鵬. 電動(dòng)汽車用V型磁鋼轉(zhuǎn)子永磁電機(jī)的電磁振動(dòng)噪聲削弱方法研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(16): 4919-4926, 4994. Wang Xiaoyuan, He Xiaoyu, Gao Peng. Research on electromagnetic vibration and noise reduction method of V type magnet rotor permanent magnet motor electric vehicles[J]. Proceedings of the CSEE, 2019, 39(16): 4919-4926, 4994.
[10] 李曉華, 劉成健, 梅柏杉, 等. 電動(dòng)汽車IPMSM寬范圍調(diào)速振動(dòng)噪聲源分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2018, 38(17): 5219-5227, 5319. Li Xiaohua, Liu Chengjian, Mei Boshan, et al. Vibration and noise sources analysis of IPMSM for electric vehicles in a wide-speed range[J]. Proceedings of the CSEE, 2018, 38(17): 5219-5227, 5319.
[11] Wang Shanming, Hong Jianfeng, Sun Yuguang, et al. Analysis of zeroth-mode slot frequency vibration of integer slot permanent-magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2954-2964.
[12] 邢澤智, 王秀和, 趙文良, 等. 表貼式永磁同步電機(jī)電磁激振力波計(jì)算與定子振動(dòng)特性分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2021, 41(14): 5004-5013. Xing Zezhi, Wang Xiuhe, Zhao Wenliang, et al. Calculation of electromagnetic force waves and analysis of stator vibration characteristics of surface mount permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2021, 41(14): 5004-5013.
[13] Wang Shanming, Hong Jianfeng, Sun Yuguang, et al. Filling force valley with interpoles for pole-frequency vibration reduction in surface-mounted PM synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6709-6720.
[14] Wang Xiaoyuan, Sun Xibin, Gao Peng. Study on the effects of rotor‐step skewing on the vibration and noise of a PMSM for electric vehicles[J]. IET Electric Power Applications, 2020, 14(1): 131-138.
[15] 謝穎, 李飛, 黎志偉, 等. 內(nèi)置永磁同步電機(jī)減振設(shè)計(jì)與研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2017, 37(18): 5437-5445, 5543. Xie Ying, Li Fei, Li Zhiwei, et al. Optimized design and research of vibration reduction with an interior permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2017, 37(18): 5437-5445, 5543.
[16] 李巖, 李雙鵬, 周吉威, 等. 基于定子齒削角的近極槽永磁同步電機(jī)振動(dòng)噪聲削弱方法[J]. 電工技術(shù)學(xué)報(bào), 2015, 30(6): 45-52. Li Yan, Li Shuangpeng, Zhou Jiwei, et al. Weakening approach of the vibration and noise based on the stator tooth chamfering in PMSM with similar number of poles and slots[J]. Transactions of China Electrote-chnical Society, 2015, 30(6): 45-52.
[17] Cassat A, Espanet C, Coleman R, et al. A practical solution to mitigate vibrations in industrial PM motors having concentric windings[J]. IEEE Transactions on Industry Applications, 2012, 48(5): 1526-1538.
[18] Hong Jianfeng, Wang Shanming, Sun Yuguang, et al. An effective method with copper ring for vibration reduction in permanent magnet brush DC motors[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
[19] 石玉君, 程子活, 蹇林旎. 兩種典型的場(chǎng)調(diào)制型永磁電機(jī)的對(duì)比分析[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 120-130. Shi Yujun, Cheng Zihuo, Jian Linni. Comparative analysis of two typical field modulated permanent-magnet machines[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 120-130.
[20] 劉家琦, 白金剛, 鄭萍, 等. 基于磁場(chǎng)調(diào)制原理的齒槽轉(zhuǎn)矩研究[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(5): 931-941. Liu Jiaqi, Bai Jingang, Zheng Ping, et al. Investigation of cogging torque based on magnetic field modulation principle[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 931-941.
[21] Chiba A. Acoustic noise reduction of switched reluctance motor with reduced RMS current and enhanced efficiency[C]//2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, USA, 2016: 1.
[22] Xing Zezhi, Zhao Wenliang, Wang Xiuhe, et al. Reduction of radial electromagnetic force waves based on PM segmentation in SPMSMs[J]. IEEE Transactions on Magnetics, 2020, 56(2): 1-7.
[23] 于占洋, 李巖, 井永騰, 等. 基于混合磁場(chǎng)解析法的磁極偏心型表貼式永磁同步電機(jī)空載特性分析[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(18): 3811-3820. Yu Zhanyang, Li Yan, Jing Yongteng, et al. No-load characteristic analysis of surface-mounted permanent magnet synchronous motor with non-concentric pole based on hybrid magnetic field analysis method[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3811-3820.
[24] Wang Shanming, Hong Jianfeng, Sun Yuguang, et al. Effect comparison of zigzag skew PM pole and straight skew slot for vibration mitigation of PM brush DC motors[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4752-4761.
[25] Hong Jianfeng, Wang Shanming, Sun Yuguang, et al. Piecewise stagger poles with continuous skew edge for vibration reduction in surface-mounted PM synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8498-8506.
[26] 肖陽(yáng), 宋金元, 屈仁浩, 等. 變頻諧波對(duì)電機(jī)振動(dòng)噪聲特性的影響規(guī)律[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(12): 2607-2615. Xiao Yang, Song Jinyuan, Qu Renhao, et al. The effect of harmonics on electromagnetic vibration and noise characteristic in inverter-duty motor[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2607-2615.
[27] 夏加寬, 康樂(lè), 詹宇聲, 等. 表貼式三相永磁同步電機(jī)極槽徑向力波補(bǔ)償模型及參數(shù)辨識(shí)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(8): 1596-1606. Xia Jiakuan, Kang Le, Zhan Yusheng, et al. The model of pole slot radial force wave compensation for surface-mounted three-phase permanent magnet synchronous motor and parameter identification[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1596-1606.
[28] 羅玉濤, 盧若皓. 基于結(jié)構(gòu)參數(shù)分級(jí)優(yōu)化的電機(jī)電磁噪聲抑制[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(14): 2957-2970. Luo Yutao, Lu Ruohao. Hierarchical optimization of structural parameters for motor electromagnetic noise suppression[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2957-2970.
[29] Xia Jiakuan, Li Zexing, Zhang Zixuan, et al. Influence of salient effect on air-gap flux density distribution of interior permanent-magnet synchronous machines[J]. IEEE Access, 2021, 9: 58852-58860.
[30] Wang Shanming, Hong Jianfeng, Sun Yuguang, et al. Analysis and reduction of electromagnetic vibration of PM brush DC motors[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4605-4612.
[31] 李曉華, 趙容健, 田曉彤, 等. 逆變器供電對(duì)電動(dòng)汽車內(nèi)置式永磁同步電機(jī)振動(dòng)噪聲特性影響研究[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(21): 4455-4464. Li Xiaohua, Zhao Rongjian, Tian Xiaotong, et al. Study on vibration and noise characteristics of interior permanent magnet synchronous machine for electric vehicles by inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4455-4464.
Reduction of Six Times Frequency Vibration and Noise of Surface-Mounted Permanent Magnet Synchronous Machines with Interpolar Virtual Teeth
Li Zexing1Xia Jiakuan1Liu Tiefa2Guo Zhiyan1Lu Bingna1
(1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China 2. Shenyang Institute of Automation Chinese Academy of Science Shenyang 110169 China)
The permanent magnet synchronous machines (PMSMs) are the most attractive candidates for the use as the power sources for underwater vehicles due to its inherent high efficiency and high power density. However, as an essential performance for the underwater vehicles, concealment is vulnerable to low-frequency vibration and noise caused by PMSMs.
In the low frequency domain, the six-times frequency vibration plays a significant role for PMSMs, which is caused by the six-times frequency force harmonic. The six-times frequency force harmonic is closely related to the fundamental wave, the third-, fifth- and seventh-order magnetic field harmonics. As these magnetic field harmonics account for a large proportion in all magnetic field harmonics, the six-times frequency vibration and noise are generally and significantly present in PMSMs with different combines of pole and slot number. Therefore, it is necessary to analyze and weaken the six-times frequency force harmonic. In this paper, a weakening method of the interpolar virtual teeth is proposed.
After adding virtual teeth, the air-gap flux density and its FFT result are calculated. Compared with the original motor, the 3rdharmonic and the difference between the 5th and 7th harmonics is reduced under the influence of the virtual teeth.
After adding virtual teeth, the electromagnetic force density and its FFT result are calculated. Compared with the original motor, the 2nd and 4th force harmonics are basically unchanged, while the 6th harmonic is significantly reduced by 58.5%.
After adding virtual teeth, the torque on load is calculated. The control mode of the original motor isd=0, and the control modes of the optimized motor with virtual teeth ared=0 and the maximum ratio of torque to current, respectively. Compared with the original motor, the average torque of the optimized motor with virtual teeth is basically unchanged. Therefore, the virtual tooth structure can effectively reduce the sixth harmonic of electromagnetic force while ensuring the torque density.
After adding virtual teeth, the vibration spectrum is calculated. The main frequency points include 6, 12, 18, and the amplitudes of the vibration acceleration at 6is largest. Compared with the original motor, the acceleration amplitude of the optimized motor with virtual teeth at 6decreases from 0.856 m/s2to 0.475 m/s2.
After adding virtual teeth, the noise spectrum is calculated. The trend of noise spectrum is basically the same as the vibration spectrum. Compared with the original motor, the noise amplitude at 6is significantly reduced, which proves the effectiveness of the proposed optimized method.
The noise experiment is carried out in the noise laboratory. The measured results are similar to that of the simulation, and the characteristic points at 6, 12and 18are consistent. Since this simulated project only evaluated the electromagnetic noise, the measured noise may contain other noise sources such as rotor eccentricity, bearing noise and friction noise, which inevitably lead to the difference between calculated values and measured values. However, the simulation results generally meet the required accuracy, and the error is deemed acceptable. Therefore, the theoretical analysis and simulation results are confirmed.
Interpolar virtual teeth, surface-mounted permanent magnet synchronous machines, six times frequency vibration and noise, finite element method
國(guó)家自然科學(xué)基金資助項(xiàng)目(52077142)。
2021-09-07
10.19595/j.cnki.1000-6753.tces.211436
TM351
李澤星 男,1992年生,博士研究生,研究方向?yàn)橛来烹姍C(jī)振動(dòng)噪聲分析及抑制。E-mail:lzxsut@qq.com(通信作者)
夏加寬 男,1962年生,教授,博士生導(dǎo)師,研究方向?yàn)橛来烹姍C(jī)設(shè)計(jì)及其控制。E-mail:sygdxjk@163.com
2021-10-18
(編輯 赫蕾)