韓韋鈺, 陳遠(yuǎn)興, 李超中, 劉圍圍, 趙永超, 趙然尊
·綜述·
YTHDC1 m6A修飾調(diào)控與疾病發(fā)病機(jī)制的研究進(jìn)展*
韓韋鈺, 陳遠(yuǎn)興, 李超中, 劉圍圍, 趙永超, 趙然尊△
(遵義醫(yī)科大學(xué)附屬醫(yī)院心血管內(nèi)科,貴州 遵義 563000)
6-甲基腺苷;甲基結(jié)合蛋白;表觀遺傳學(xué)
表觀遺傳學(xué)是指DNA序列不變的情況下,基于非基因序列改變所致的基因表達(dá)水平的變化[1],如DNA甲基化[2]、RNA甲基化[3]、組蛋白修飾[4]、染色質(zhì)構(gòu)象變化[5]等。表觀遺傳學(xué)在真核生物中的變化主要是調(diào)控細(xì)胞增殖[6-7]、分化[8]、代謝[3, 9]、周期循環(huán)[10]以及免疫調(diào)控[11]等生物學(xué)過程,這一過程中通過某些調(diào)控分子量的變化或發(fā)生結(jié)構(gòu)修飾變化等,進(jìn)而靶向調(diào)節(jié)下游靶基因的生物學(xué)效應(yīng)。
6-甲基腺苷(6-methyladenosine, m6A)是幾乎所有真核生物mRNA中最豐富的細(xì)胞內(nèi)修飾之一,由甲基轉(zhuǎn)移酶和去甲基化酶動態(tài)調(diào)節(jié)-腺苷甲硫氨酸的轉(zhuǎn)移修飾,進(jìn)而被甲基結(jié)合蛋白識別并調(diào)控生命活動過程。YT521-B同源結(jié)構(gòu)域(YT521-B homology domain, YTH domain)家族的分子,含有識別m6A的復(fù)合體結(jié)構(gòu)[12],包括常見且重要的結(jié)合蛋白YTHDC1/2和YTHDF1/2/3[3],其中YTHDC1是m6A修飾中唯一一個定位于細(xì)胞核內(nèi)的YTH家族甲基結(jié)合蛋白[13],它通過影響RNA的核定位[14]、穩(wěn)定性[15]、衰減[16]和剪接[17]等過程調(diào)控多種代謝反應(yīng),進(jìn)而影響疾病的發(fā)生發(fā)展。近年研究表明,YTHDC1的許多修飾功能在調(diào)控疾病的發(fā)生發(fā)展中發(fā)揮著關(guān)鍵作用。本文重點(diǎn)闡述了YTHDC1通過剪接、出核、穩(wěn)定性和降解等作用方式對疾病發(fā)生發(fā)展的調(diào)控作用及機(jī)制。
1.1YTHDC1通過剪接機(jī)制調(diào)控疾病在人類基因組中,剪接貫穿生命活動的始終,剪接變異常與人類疾病的發(fā)生發(fā)展密切相關(guān)[18]。YTHDC1是一個廣泛表達(dá)的核蛋白,參與定位于YT體的剪接位點(diǎn)[19],與包括富含絲氨酸/精氨酸剪切因子2(serine/arginine-rich splicing factor 2, SRSF2)在內(nèi)的多種已知的剪接體蛋白共定位[20]。通常DNA轉(zhuǎn)錄產(chǎn)生不成熟的前體RNA,需經(jīng)過一系列的酶切修飾最終成為成熟的mRNA,進(jìn)而翻譯為蛋白以參與人體一切生物學(xué)過程和生理功能。m6A修飾的YTHDC1通過募集和調(diào)節(jié)前體mRNA剪接因子進(jìn)入靶向mRNA的結(jié)合區(qū)域而調(diào)節(jié)mRNA剪接[17],在參與前體mRNA走向成熟的過程中發(fā)揮不可替代的作用。研究表明,YTHDC1以濃度依賴的方式調(diào)節(jié)轉(zhuǎn)錄本剪接位點(diǎn)的選擇[19]。異常的RNA剪接產(chǎn)生的替代基因亞型可調(diào)控疾病的發(fā)生發(fā)展[21],但這一過程是如何被激活、識別和發(fā)揮調(diào)控信號通路作用尚未可知。
m6A修飾直接干擾RNA與RNA結(jié)合蛋白之間的相互作用。一般mRNA分子的二級結(jié)構(gòu)由于受m6A修飾作用而影響剪接因子與靶基因序列的結(jié)合[22],具有YTH結(jié)構(gòu)域的蛋白質(zhì)可結(jié)合m6A修飾的RNA并調(diào)控下游分子的表達(dá)。Li等[23]發(fā)現(xiàn),肺癌中Aurora激酶A(Aurora kinase A, AURKA)的核移位是RNA異常剪接的先決條件[24],特異性觸發(fā)剪接因子RNA結(jié)合基序4(RNA-binding motif 4, RBM4)可產(chǎn)生從全亞型(RBM4 full isoform, RBM4-FL)到短亞型(RBM4 short isoform, RBM4-S)的剪接,RBM4-FL通過抑制某些信號通路活性而發(fā)揮抗腫瘤作用,而RBM4-S作用正相反,拮抗RBM4-FL作用而具有致癌性。在肺癌的發(fā)生發(fā)展過程中,細(xì)胞核AURKA的非經(jīng)典激活促進(jìn)m6A甲基結(jié)合蛋白YTHDC1介導(dǎo)的腫瘤抑制基因RBM4的剪切,破壞SRSF3與YTHDC1的結(jié)合,抑制RBM4-FL誘導(dǎo)的m6A-YTHDC1-SRSF3信號通路激活,促進(jìn)RBM4-S的致癌作用。同樣地,作為致癌基因的異黏蛋白(metadherin,)亦是誘發(fā)腫瘤發(fā)生的重要分子[25]。研究表明,MTDH表達(dá)和胞質(zhì)定位與疾病的低存活率相關(guān);MTDH特異性定位于核斑點(diǎn)上[26],與同定位于核內(nèi)的YTHDC1相互作用,在不同的剪接位點(diǎn)上進(jìn)行剪接調(diào)控,調(diào)控位點(diǎn)包括乳腺癌易感性基因1(breast cancer susceptibility gene 1, BRCA1)、小鼠雙微體基因2(mouse double minute 2, MDM2)和血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)[27]等腫瘤相關(guān)蛋白轉(zhuǎn)錄本,進(jìn)而影響腫瘤的發(fā)展、術(shù)后療效與疾病預(yù)后[28]。先前研究發(fā)現(xiàn),人乳頭瘤病毒16型(human papillomavirus type 16, HPV16)E6/E7 mRNA是雙結(jié)構(gòu),具有多個5'端和3'端剪接位點(diǎn)[29-30],其剪接受多個作用于HPV16 mRNA的順式調(diào)控元件和同源的細(xì)胞反式作用剪接因子調(diào)控[31];近期研究表明,HPV16還可被剪接為m6A甲基化的環(huán)狀E6/E7 RNA。Cui等[32]發(fā)現(xiàn),細(xì)胞核中的YTHDC1與HPV16 mRNA結(jié)合,過表達(dá)YTHDC1可抑制HPV16 E6/E7 mRNA的剪接,以犧牲E7 mRNA為代價(jià)保留E6編碼內(nèi)含子,促進(jìn)HPV16的剪接成為成熟的mRNA。其他研究也發(fā)現(xiàn)在某些心臟疾病中YTHDC1通過剪接調(diào)節(jié)發(fā)揮重要作用。Gao等[33]發(fā)現(xiàn),心臟特異性條件性敲減可導(dǎo)致小鼠左心室顯著擴(kuò)大和嚴(yán)重收縮功能障礙,并伴隨心肌細(xì)胞收縮力下降和肌節(jié)排列紊亂,即發(fā)生擴(kuò)張型心肌?。桓咄繙y序發(fā)現(xiàn)YTHDC1通過對m6A修飾的肌凝蛋白(titin)mRNA的異常剪接,誘導(dǎo)心肌細(xì)胞收縮障礙。見表1。
表1 YTHDC1在調(diào)控疾病進(jìn)展過程中發(fā)揮m6A修飾功能作用
RBM4: RNA-binding motif 4; HPV: human papillomavirus; DCM: dilated cardiomyopathy; HBV: hepatitis B virus; PML: promyelocytic leukemia; SRSF: serine/arginine-rich splicing factor; MALAT1: metastasis-associated lung adenocarcinoma transcript 1; PDPK1: 3-phosphoinositide dependent protein kinase 1; PDAC: pancreatic ductal adenocarcinoma; SLC7A5: solute carrier family 7 member 5; AML: acute myeloid leukemia; MCM4: minichromosome maintenance 4; ESC: embryonic stem cell.
總之,YTHDC1通過介導(dǎo)mRNA發(fā)生可變剪接,參與靶分子結(jié)構(gòu)變化、剪接因子突變、前體RNA成熟以及剪接后出核翻譯等多種生物學(xué)過程,這種通過轉(zhuǎn)錄后修飾調(diào)控來影響相應(yīng)的功能蛋白的表達(dá)變化,對疾病的發(fā)生發(fā)展發(fā)揮巨大的影響。
1.2YTHDC1通過出核機(jī)制調(diào)控疾病大多數(shù)mRNA輸出是由多種蛋白質(zhì)因子和前體mRNA修飾特異性控制的,如TAP-p15異二聚體[44]、核輸出蛋白1(exportin 1, XPO1)[45]、適配器蛋白轉(zhuǎn)錄輸出1(transcription-export-1, TREX-1)[46]、TREX-2[47]以及富含絲氨酸/精氨酸蛋白等。研究表明,m6A甲基結(jié)合蛋白YTHDC1介導(dǎo)甲基化mRNA從細(xì)胞核輸出到細(xì)胞質(zhì)[14],促進(jìn)成熟RNA進(jìn)入翻譯場所中,從而保證細(xì)胞生物過程的正常運(yùn)行。缺失可導(dǎo)致細(xì)胞核內(nèi)m6A mRNA的停留時間延長,使細(xì)胞核內(nèi)轉(zhuǎn)錄物的聚集增多而細(xì)胞質(zhì)內(nèi)的轉(zhuǎn)錄物減少,進(jìn)而轉(zhuǎn)錄本翻譯為功能性蛋白質(zhì)亦相應(yīng)減少,導(dǎo)致生物體功能代謝紊亂。近期眾多研究也發(fā)現(xiàn)參與m6A修飾的YTHDC1也涉及RNA的出核過程[48],但這一過程的具體作用機(jī)制尚未完全清楚。
新近研究發(fā)現(xiàn),YTHDC1可能通過與富含絲氨酸/精氨酸蛋白(serine/arginine-rich protein, SR)相互作用調(diào)控mRNA的核輸出過程[14, 49]。Roundtree等[14]發(fā)現(xiàn),HeLa細(xì)胞中YTHDC1介導(dǎo)m6A修飾的mRNA從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)中,其機(jī)制是YTHDC1與出核適配器蛋白SRSF3相互作用,促進(jìn)核內(nèi)mRNA與SRSF3和RNA出核受體1(nuclear RNA export factor 1, NXF1)結(jié)合,從而介導(dǎo)其出核過程,YTHDC1的這一作用進(jìn)一步拓展了轉(zhuǎn)錄本的化學(xué)修飾作用。盡管多項(xiàng)研究顯示m6A修飾會對RNA穩(wěn)定性和轉(zhuǎn)錄本翻譯產(chǎn)生負(fù)面影響,但Kim等[34]發(fā)現(xiàn)m6A修飾對乙型肝炎病毒(hepatitis B virus, HBV)轉(zhuǎn)錄產(chǎn)生一個作為反轉(zhuǎn)錄模板的前基因組RNA(pregenomic RNA, pgRNA),在細(xì)胞質(zhì)包裝中產(chǎn)生積極的影響;該反轉(zhuǎn)錄模板可產(chǎn)生松弛的環(huán)狀DNA,并轉(zhuǎn)化為共價(jià)閉合環(huán)狀DNA(covalently closed circular DNA, cccDNA);在這一過程中,YTHDC1通過識別m6A甲基化的HBV轉(zhuǎn)錄本,促進(jìn)其由胞核轉(zhuǎn)運(yùn)至胞質(zhì)中;敲減時細(xì)胞中病毒轉(zhuǎn)錄本則聚集在細(xì)胞核,且細(xì)胞核相關(guān)DNA及其轉(zhuǎn)錄產(chǎn)生的cccDNA合成減少,從而減少HBV核心顆粒的逆轉(zhuǎn)錄,影響HBV的生命周期,進(jìn)而達(dá)到阻止肝臟疾病的發(fā)病與進(jìn)展的治療效果。Chen等[35]在血液惡性疾病相關(guān)研究中也發(fā)現(xiàn),減少YTHDC1可導(dǎo)致不同的致癌基因mRNA滯留于細(xì)胞核中,核斑點(diǎn)特異性長鏈非編碼RNA肺腺癌轉(zhuǎn)移相關(guān)轉(zhuǎn)錄本1(metastasis-associated lung adenocarcinoma transcript 1, MALAT1)在調(diào)控調(diào)控維甲酸受體α(retinoic acid receptor α, RARα)mRNA從細(xì)胞質(zhì)到細(xì)胞核的輸出過程依賴YTHDC1與SRSF3的相互作用,需要YTHDC1識別m6A修飾進(jìn)而調(diào)控惡性造血中的髓系祖細(xì)胞分化。
綜上所述,YTHDC1可與核出口適配器蛋白結(jié)合調(diào)控嵌合mRNA的出核過程,缺失將導(dǎo)致部分mRNA在胞核內(nèi)過度蓄積而胞質(zhì)轉(zhuǎn)錄物的不足,進(jìn)而調(diào)控基因表達(dá)和細(xì)胞生物功能,參與多種疾病的發(fā)生發(fā)展。
1.3YTHDC1通過穩(wěn)定性機(jī)制調(diào)控疾病多種致病因素可導(dǎo)致的一系列影響機(jī)體和組織細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)的功能蛋白的產(chǎn)生,這些蛋白可能發(fā)揮不良調(diào)節(jié)作用參與疾病的發(fā)生發(fā)展。m6A修飾可靶向RNA使其穩(wěn)定性降低,誘導(dǎo)RNA降解,進(jìn)而實(shí)現(xiàn)對靶基因表達(dá)的調(diào)控,調(diào)節(jié)細(xì)胞對外界環(huán)境的適應(yīng)性[50-51]。
近期研究發(fā)現(xiàn),YTHDC1可通過m6A依賴方式識別不同的靶標(biāo)并介導(dǎo)不同的RNA命運(yùn),例如靶向調(diào)節(jié)miRNA、lncRNA和mRNA,影響其內(nèi)在結(jié)構(gòu)的穩(wěn)定性,調(diào)控其降解過程而發(fā)揮誘導(dǎo)或治療疾病的目的。Cao等[36]在抗骨肉瘤治療的研究中發(fā)現(xiàn),miR-451a通過YTHDC1介導(dǎo)m6A修飾增強(qiáng)了3-磷酸肌醇依賴性蛋白激酶1(3-phosphoinositide dependent protein kinase 1, PDPK1)mRNA的穩(wěn)定性,抑制蛋白激酶B(protein kinase B, PKB)/哺乳動物類雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)的磷酸化修飾信號通路,抑制骨肉瘤細(xì)胞增殖和遷移,促進(jìn)骨肉瘤細(xì)胞凋亡,從而抑制骨肉瘤的進(jìn)展。此外,Hou等[15]在胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma, PDAC)中也發(fā)現(xiàn),YTHDC1通過調(diào)節(jié)mRNA的穩(wěn)定性而影響疾病預(yù)后,miR-30d在胰腺導(dǎo)管腺癌組織中的表達(dá)顯著降低,并且抑制腫瘤的生長與轉(zhuǎn)移,與疾病預(yù)后良好顯著相關(guān);YTHDC1通過降低前體miR-30d穩(wěn)定性促進(jìn)產(chǎn)生成熟的miR-30d,miR-30d再直接靶向作用于基因啟動子結(jié)合的轉(zhuǎn)錄因子Runt相關(guān)轉(zhuǎn)錄因子1(Runt-related transcription factor 1, RUNX1)來調(diào)節(jié)溶質(zhì)載體家族2成員1(solute carrier family 2 member 1, SLC2A1)和己糖激酶1(hexokinase 1, HK1)的表達(dá),進(jìn)而抑制腫瘤的生長,減少PDAC的不良預(yù)后。
YTHDC1亦可調(diào)節(jié)LncRNA穩(wěn)定性使其與非編碼RNA的相互作用進(jìn)而發(fā)揮不同的生物學(xué)功能,并調(diào)控疾病的發(fā)生與發(fā)展。Tang等[37]研究發(fā)現(xiàn),在直腸癌中長鏈非編碼RNA 857(LINC00857)具有明確的致癌性,進(jìn)一步研究發(fā)現(xiàn)LINC00857與YTHDC1相互作用,進(jìn)而調(diào)節(jié)溶質(zhì)載體家族7成員5(solute carrier family 7 member 5, SLC7A5),增加SLC7A5 mRNA穩(wěn)定性,從而促進(jìn)結(jié)直腸癌細(xì)胞的增殖和遷移。YTHDC1作為核結(jié)合蛋白在調(diào)節(jié)RNA代謝方面也具有重要的作用。Sheng等[38]發(fā)現(xiàn),YTHDC1是人類急性白血病細(xì)胞增殖所必須的,其在急性髓系白血?。╝cute myeloid leukemia, AML)患者的白血病細(xì)胞中表達(dá)明顯增高;還有研究發(fā)現(xiàn),阻斷YTHDC1可降低小鼠DNA復(fù)制的關(guān)鍵調(diào)節(jié)因子微小染色體維持蛋白4(minichromosome maintenance 4, MCM4)的穩(wěn)定性,降低其表達(dá)水平,從而顯著抑制白血病細(xì)胞的增殖以及疾病的進(jìn)展;進(jìn)一步研究顯示,單倍體的敲減可抑制白血病細(xì)胞的增殖與存活,但不會抑制體內(nèi)造血干細(xì)胞與祖細(xì)胞的生長。然而,在不同疾病中YTHDC1的表達(dá)作用卻截然不同結(jié)果。Zhou等[39]從罹患葡萄膜炎小鼠視網(wǎng)膜細(xì)胞的單細(xì)胞RNA測序數(shù)據(jù)中發(fā)現(xiàn),YTHDC1在視網(wǎng)膜小膠質(zhì)細(xì)胞中顯著表達(dá)下調(diào);YTHDC1通過維持sirtuin 1 mRNA的穩(wěn)定性,減少信號傳導(dǎo)及轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3, STAT3)磷酸化,從而抑制小膠質(zhì)細(xì)胞向M1型極化,表明YTHDC1通過調(diào)控靶標(biāo)mRNA穩(wěn)定性對小膠質(zhì)細(xì)胞的炎癥反應(yīng)調(diào)節(jié)至關(guān)重要。總之,YTHDC1在骨肉瘤、PDAC和白血病等多種惡性腫瘤中通過靶向調(diào)節(jié)RNA穩(wěn)定性等而調(diào)控疾病的發(fā)生發(fā)展。
1.4YTHDC1通過降解機(jī)制調(diào)控疾病2020年首次報(bào)道YTHDC1可通過促進(jìn)染色體相關(guān)調(diào)控RNA(chromosome-associated regulatory RNAs, carRNAs)的衰減來增加染色質(zhì)的可及性并激活轉(zhuǎn)錄[40],在小鼠胚胎干細(xì)胞(embryonic stem cell, ESC)中敲除可增加染色質(zhì)的可及性并激活依賴m6A的轉(zhuǎn)錄方式,YTHDC1通過外泌體靶向介導(dǎo)核因子的降解,促進(jìn)包括啟動子相關(guān)RNAs、增強(qiáng)子RNAs和重復(fù)RNAsCarRNAs在內(nèi)的carRNAs的一個子集的衰變,促進(jìn)染色質(zhì)的開放和下游的轉(zhuǎn)錄。正常細(xì)胞中,YTHDC1的低表達(dá)維持細(xì)胞增殖的平穩(wěn)以及細(xì)胞內(nèi)環(huán)境的穩(wěn)態(tài);而在腫瘤細(xì)胞中,YTHDC1的高表達(dá)介導(dǎo)相關(guān)RNA的衰減來激活轉(zhuǎn)錄過程,導(dǎo)致腫瘤細(xì)胞的惡性增殖。在此研究基礎(chǔ)上,Liang等[41]在糖尿病患者的表皮、短期高糖處理的人角質(zhì)細(xì)胞株以及長期高血糖小鼠模型中發(fā)現(xiàn)選擇性自噬接頭蛋白1(sequestome 1, SQSTM1)顯著表達(dá)下調(diào),伴隨著細(xì)胞自噬作用減弱;同時與SQSTM1相互作用的YTHDC1也同步表達(dá)下調(diào),YTHDC1的減少促使細(xì)胞核中SQSTM1 mRNA降解,并與ELAV樣RNA結(jié)合蛋白1(ELAV-like RNA binding protein 1, ELAVL1/HuR)相互作用共同調(diào)節(jié)SQSTM1表達(dá),并調(diào)控高糖條件下誘導(dǎo)的角質(zhì)細(xì)胞自噬、凋亡以及傷口愈合的功能作用,而內(nèi)源性過表達(dá)YTHDC1則可挽救高糖誘導(dǎo)的自噬流量的阻斷,促進(jìn)高糖自噬導(dǎo)致的表皮傷口的愈合。Li等[42]通過膠質(zhì)瘤的甲基化免疫共沉淀分析顯示YTHDC1與SRSF3起始密碼子區(qū)結(jié)合,并以m6A依賴的方式介導(dǎo)SRSF轉(zhuǎn)錄本的無意義衰減,降低SRSF蛋白的表達(dá)進(jìn)而導(dǎo)致可變剪接異構(gòu)體開關(guān)發(fā)生顯著變化,這揭示了YTHDC1在膠質(zhì)母細(xì)胞瘤生長和腫瘤進(jìn)展的機(jī)制。YTHDC1也參與缺血性疾病的病理生理過程。Zhang等[43]研究了YTHDC1與神經(jīng)細(xì)胞活性和缺血性卒中的關(guān)系時發(fā)現(xiàn)YTHDC1是一種新的神經(jīng)元活性的調(diào)節(jié)因子,敲減表達(dá)將加重缺血性腦細(xì)胞損傷,而過表達(dá)YTHDC1將促進(jìn)磷酸酶及張力蛋白同源物(phosphatase and tensin homolog, PTEN)mRNA降解,增加PKB磷酸化,促進(jìn)腦缺血后神經(jīng)元的存活。
綜上所述,YTHDC1在多種惡性疾病中通過對自噬受體、凋亡蛋白等進(jìn)行修飾降解,或者與起始密碼子區(qū)結(jié)合,介導(dǎo)無意義降解,參與多種病理過程的調(diào)控,進(jìn)而達(dá)到調(diào)節(jié)疾病發(fā)生發(fā)展的過程。
大量研究已證實(shí),YTHDC1作為m6A甲基結(jié)合蛋白,在基于識別m6A修飾的基礎(chǔ)上通過調(diào)節(jié)靶分子的剪接、出核、穩(wěn)定性和降解等作用于下游分子,調(diào)控疾病的發(fā)生發(fā)展,在腫瘤[52-53]以及非腫瘤性疾?。?4-55]的研究進(jìn)展中發(fā)揮著不可或缺的作用(圖1),從甲基結(jié)合蛋白的研究角度進(jìn)一步豐富m6A RNA修飾領(lǐng)域的研究,促進(jìn)表觀遺傳學(xué)的發(fā)展。
Figure 1. The role of YTHDC1 in disease regulation.
盡管已有較多關(guān)于m6A甲基結(jié)合蛋白YTHDC1修飾功能作用的報(bào)道,但仍有許多問題有待闡明。YTHDC1作為定位于細(xì)胞核內(nèi)的甲基結(jié)合蛋白,大多僅是單獨(dú)研究YTHDC1對下游靶分子的作用,未深入研究其作用識別的-腺苷甲硫氨酸具體是由哪些甲基轉(zhuǎn)移酶或者去甲基化酶參與修飾的。近期Liu等[56]研究發(fā)現(xiàn)YTHDC1以m6A依賴的方式對發(fā)育早期小鼠胚胎干細(xì)胞的維持,但未闡明調(diào)節(jié)m6A差異變化具體機(jī)制。YTHDC1具有多種不同的作用方式發(fā)揮生物學(xué)效應(yīng),包括調(diào)控剪接、出核、穩(wěn)定性、降解和翻譯等。但目前的相關(guān)研究中,在RNA翻譯水平的研究少見[49],因此亟需從翻譯等多方面深入研究YTHDC1功能。此外,YTHDC1通過結(jié)合不同的RNA,包括miRNA[15]、LncRNA[37]、circRNA[57]和mRNA[41]等發(fā)揮各自不同的生物學(xué)效應(yīng),其結(jié)合的方式及效應(yīng)是否與不同種類RNA的結(jié)構(gòu)不同相關(guān),尚未進(jìn)行有效探究。隨著對YTHDC1深入研究和認(rèn)識,闡明YTHDC1的調(diào)控機(jī)制與分子效應(yīng),不僅將豐富表觀遺傳學(xué)在人類疾病發(fā)生發(fā)展中的作用,而且可能成為多種人類疾病潛在的診斷生物標(biāo)志物和治療靶標(biāo)。
[1] Mi S, Shi Y, Dari G, et al. Function of m6A and its regulation of domesticated animals' complex traits[J]. J Anim Sci, 2022, 100(3):skac034.
[2] Nie WF. DNA methylation: from model plants to vegetable crops[J]. Biochem Soc Trans, 2021, 49(3):1479-1487.
[3] An Y, Duan H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1):14.
[4] Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5):329-349.
[5] Pacheco MB, Camilo V, Henrique R, et al. Epigenetic editing in prostate cancer: challenges and opportunities[J]. Epigenetics, 2022, 17(5):564-588.
[6] Pan J, Liu F, Xiao X, et al. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis[J]. J Exp Clin Cancer Res, 2022, 41(1):19.
[7]嚴(yán)沁宇, 劉桐, 任藝藝, 等. m6A修飾在鱗狀細(xì)胞癌中的作用研究進(jìn)展[J]. 中國病理生理雜志, 2022, 38(3):543-552.
Yan QY, Liu T, Ren YY, et al. Progress in investigating the role of m6A modification in squamous cell carcinoma [J]. Chin J Pathophysiol, 2022, 38(3):543-552.
[8] Li J, Zhang X, Wang X, et al. The m6A methylation regulates gonadal sex differentiation in chicken embryo[J]. J Anim Sci Biotechnol, 2022, 13(1):52.
[9]張哲明, 吳艷, 卞濤. RNA m6A修飾在肺部疾病中的研究進(jìn)展[J]. 中國病理生理雜志, 2021, 37(9):1719-1723.
Zhang ZM, Wu Y, Bian T. Advances in RNA m6A modification in lung diseases[J]. Chin J Pathophysiol, 2021, 37(9):1719-1723.
[10] Li H, Zhong Y, Cao G, et al. METTL3 promotes cell cycle progression via m6A/YTHDF1-dependent regulation oftranslation[J]. Int J Biol Sci, 2022, 18(8):3223-3236.
[11] Zhao H, Xu Y, Xie Y, et al. m6A regulators is differently expressed and correlated with immune response of esophageal cancer[J]. Front Cell Dev Biol, 2021, 9:650023.
[12] Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain[J]. Nat Chem Biol, 2014, 10(11):927-929.
[13] Woodcock CB, Horton JR, Zhou J, et al. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA[J]. Nucleic Acids Res, 2020, 48(18):10329-10341.
[14] Roundtree IA, Luo GZ, Zhang Z, et al. YTHDC1 mediates nuclear export of6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311.
[15] Hou Y, Zhang Q, Pang W, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect[J]. Cell Death Differ, 2021, 28(11):3105-3124.
[16] Yang L, Chen Y, Liu N, et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3[J]. Mol Cancer, 2022, 21(1):23.
[17] Xiao W, Adhikari S, Dahal U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519.
[18] van Asperen JV, Robe P, Hol EM. GFAP alternative splicing and the relevance for disease: a focus on diffuse gliomas[J]. ASN Neuro, 2022, 14:17590914221102065.
[19] Rafalska I, Zhang Z, Benderska N, et al. The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation[J]. Hum Mol Genet, 2004, 13(15):1535-1549.
[20] Zhang B, zur Hausen A, Orlowska-Volk M, et al. Alternative splicing-related factor YT521: an independent prognostic factor in endometrial cancer[J]. Int J Gynecol Cancer, 2010, 20(4):492-499.
[21] Yin H, Wang J, Li H, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness[J]. Nat Commun, 2021, 12(1):4230.
[22] Roost C, Lynch SR, Batista PJ, et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification[J]. J Am Chem Soc, 2015, 137(5):2107-2115.
[23] Li S, Qi Y, Yu J, et al. Nuclear Aurora kinase A switches m6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4[J]. Signal Transduct Target Ther, 2022, 7(1):97.
[24] Lai CH, Chen RY, Hsieh HP, et al. A selective Aurora-A 5'-UTR siRNA inhibits tumor growth and metastasis[J]. Cancer Lett, 2020, 472:97-107.
[25] Shen M, Xie S, Rowicki M, et al. Therapeutic targeting of metadherin suppresses colorectal and lung cancer progression and metastasis[J]. Cancer Res, 2021, 81(4):1014-1025.
[26] Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: significance in malignancy and crucial role in colorectal cancer[J]. Adv Clin Chem, 2022, 106:235-280.
[27] Zhang B, Shao X, Zhou J, et al. YT521 promotes metastases of endometrial cancer by differential splicing of vascular endothelial growth factor A[J]. Tumor Biol, 2016, 37(12):15543-15549.
[28] Luxton HJ, Simpson BS, Mills IG, et al. The oncogene metadherin interacts with the known splicing proteins YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA Splicing[J]. Cancers (Basel), 2019, 11(9):1233.
[29] Zheng ZM, Tao M, Yamanegi K, et al. Splicing of a cap-proximal human Papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5' cap[J]. J Mol Biol, 2004, 337(5):1091-1108.
[30] Zheng Y, J?nsson J, Hao C, et al. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 inhibit splicing to human papillomavirus 16 splice site SA409 through a UAG-containing sequence in the E7 coding region[J]. J Virol, 2020, 94(20):e01509-20.
[31] Kajitani N, Schwartz S. Role of viral ribonucleoproteins in human papillomavirus type 16 gene expression[J]. Viruses, 2020, 12(10):1110.
[32] Cui X, Nilsson K, Kajitani N, et al. Overexpression of m6A-factors METTL3, ALKBH5, and YTHDC1 alters HPV16 mRNA splicing[J]. Virus Genes, 2022, 58(2):98-112.
[33] Gao S, Sun H, Chen K, et al. Depletion of m6A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin[J]. J Cell Mol Med, 2021, 25(23):10879-10891.
[34] Kim GW, Imam H, Siddiqui A. The RNA binding proteins ythdc1 and fmrp regulate the nuclear export of6-methyladenosine-modified hepatitis B virus transcripts and affect the viral life cycle[J]. J Virol, 2021, 95(13):e0009721.
[35] Chen ZH, Chen TQ, Zeng ZC, et al. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies[J]. Cell Death Dis, 2020, 11(7):566.
[36] Cao D, Ge S, Li M. MiR-451a promotes cell growth, migration and EMT in osteosarcoma by regulating YTHDC1-mediated m6A methylation to activate the AKT/mTOR signaling pathway[J]. J Bone Oncol, 2022, 33:100412.
[37] Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5[J]. Oncol Lett, 2021, 22(2):578.
[38] Sheng Y, Wei J, Yu F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication[J]. Blood, 2021, 138(26):2838-2852.
[39] Zhou H, Xu Z, Liao X, et al. Low expression of YTH domain-containing 1 promotes microglial m1 polarization by reducing the stability of sirtuin 1 mRNA[J]. Front Cell Neurosci, 2021, 15:774305.
[40] Liu J, Dou X, Chen C, et al.6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription[J]. Science, 2020, 367(6477):580-586.
[41] Liang D, Lin WJ, Ren M, et al. m6A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin[J]. Autophagy, 2022, 18(6):1318-1337.
[42] Li F, Yi Y, Miao Y, et al.6-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma[J]. Cancer Res, 2019, 79(22):5785-5798.
[43] Zhang Z, Wang Q, Zhao X, et al. YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA[J]. Cell Death Dis, 2020, 11(11):977.
[44] Katahira J, Str?sser K, Podtelejnikov A,et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human[J]. EMBO J, 1999, 18(9):2593-2609.
[45] Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-dependent nuclear export in cancer[J]. Biochemistry (Mosc), 2022, 87(Suppl 1):S178-S191.
[46] Gales JP, Kubina J, Geldreich A, et al. Strength in diversity: nuclear export of viral RNAs[J]. Viruses, 2020, 12(9):1014.
[47] Glukhova AA, Kurshakova MM, Nabirochkina EN, et al. PCID2, a subunit of the Drosophila TREX-2 nuclear export complex, is essential for both mRNA nuclear export and its subsequent cytoplasmic trafficking[J]. RNA Biol, 2021, 18(11):1969-1980.
[48] Edupuganti RR, Geiger S, Lindeboom R, et al.6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis[J]. Nat Struct Mol Biol, 2017, 24(10):870-878.
[49] Widagdo J, Anggono V, Wong JJ. The multifaceted effects of YTHDC1-mediated nuclear m6A recognition[J]. Trends Genet, 2022, 38(4):325-332.
[50] Yu F, Wei J, Cui X, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response[J]. Nucleic Acids Res, 2021, 49(10):5779-5797.
[51] Xia C, Wang J, Wu Z, et al. METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway[J]. Toxicology, 2021, 462:152961.
[52] Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers: YTH domain-containing proteins[J]. Cell Death Discov, 2022, 8(1):137.
[53] Song N, Cui K, Zhang K, et al. The role of m6A RNA methylation in cancer: implication for nature products anti-cancer research[J]. Front Pharmacol, 2022, 13:933332.
[54] Zhang B, Jiang H, Dong Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases[J]. Genes Dis, 2021, 8(6):746-758.
[55] R?nningen T, Dahl MB, Valderhaug TG, et al. m6A regulators in human adipose tissue: depot-specificity and correlation with obesity[J]. Front Endocrinol (Lausanne), 2021, 12:778875.
[56] Liu J, Gao M, He J, et al. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity[J]. Nature, 2021, 591(7849):322-326.
[57] Rong D, Wu F, Lu C, et al. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression[J]. Mol Ther Nucleic Acids, 2021, 26:637-648.
Recent progress in study of YTHDC1 m6A modification and regulation and pathological mechanism of diseases
HAN Weiyu, CHEN Yuanxing, LI Chaozhong, LIU Weiwei,ZHAO Yongchao, ZHAO Ranzun△
(,,563000,)
6-methyladenosine (m6A) RNA modification is a key field in epigenetics, which is considered as a key regulator of gene expression and protein translation. In recent years, with the deep development of studies on methyltransferase and demethylase, more and more studies have found that methyl-binding protein plays an important role in the methylation modification of m6A RNA. The YT521-B homology (YTH) domain-containing protein 1 (YTHDC1), as the only intranuclear RNA m6A methylated binding protein in the m6A modified YTH domain family of methyl-binding proteins, has a relatively unique role in selective splicing and nuclear export, as well as regulating RNA stability and degradation. Furthermore, it plays a very extensive and important role in regulating the occurrence and development of many diseases. This paper reviews the effects of YTHDC1 on the pathogenesis of diseases and the specific mechanisms, so as to further understand the importance of YTHDC1 in regulating the occurrence and development of the diseases.
6-methyladenosine; methyl-binding protein; epigenetics
R394; R363
A
10.3969/j.issn.1000-4718.2023.02.018
1000-4718(2023)02-0352-07
2022-07-25
2022-10-31
[基金項(xiàng)目]國家自然科學(xué)基金(地區(qū)科學(xué)基金)資助項(xiàng)目(No. 81960066);貴州省衛(wèi)生健康委科學(xué)技術(shù)基金資助項(xiàng)目(No. gzwkj2021-103);貴州省科技廳自然科學(xué)基金資助項(xiàng)目(黔科合基礎(chǔ)-ZK[2022]一般671號)
Tel: 0851-28608096; E-mail: kouke80@126.com
(責(zé)任編輯:余小慧,羅森)