国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

炎癥微環(huán)境中ERN1調(diào)節(jié)軟骨細(xì)胞炎癥因子的實(shí)驗(yàn)研究*

2023-03-10 06:26:28梁利鄧琳羅瑞馮乃波李小麗范夢(mèng)恬郭風(fēng)勁
中國(guó)病理生理雜志 2023年2期
關(guān)鍵詞:原代細(xì)胞株軟骨

梁利, 鄧琳, 羅瑞, 馮乃波, 李小麗, 范夢(mèng)恬, 郭風(fēng)勁

炎癥微環(huán)境中ERN1調(diào)節(jié)軟骨細(xì)胞炎癥因子的實(shí)驗(yàn)研究*

梁利, 鄧琳, 羅瑞, 馮乃波, 李小麗, 范夢(mèng)恬, 郭風(fēng)勁△

(重慶醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院細(xì)胞生物學(xué)與遺傳學(xué)教研室,重慶 400016)

探討內(nèi)質(zhì)網(wǎng)到細(xì)胞核信號(hào)1(endoplasmic reticulum-to-nucleus signaling 1,)基因?qū)ρ装Y微環(huán)境中軟骨細(xì)胞炎癥因子和軟骨分解代謝的影響。通過CRISPR-Cas9系統(tǒng)構(gòu)建人基因敲除的C28/I2軟骨細(xì)胞株(KO);從C57BL/6J背景的軟骨特異性敲除(cKO)小鼠軟骨組織分離原代軟骨細(xì)胞,分別為對(duì)照組(flox/flox)、cKO組(flox/flox-Col2Cre+);在C28/I2人正常軟骨細(xì)胞中過表達(dá)腺病毒(Ad),以AdGFP為對(duì)照組;實(shí)驗(yàn)采用10 μg/L白介素1β(interleukin-1β, IL-1β)誘導(dǎo)過表達(dá)軟骨細(xì)胞或缺陷軟骨細(xì)胞,形成炎癥微環(huán)境,用qPCR和Western blot檢測(cè)IL-1β處理缺失或過表達(dá)細(xì)胞后,腫瘤壞死因子α(tumor necrosis factor α, TNFα)、IL-4、IL-6、IL-10等炎癥因子和軟骨分解代謝標(biāo)志物基質(zhì)金屬蛋白酶13(matrix metalloproteinase 13, MMP13)、含血小板結(jié)合蛋白基序的解整聯(lián)蛋白及金屬蛋白酶5(a disintegrin and metalloproteinase with thrombospondin motifs 5, ADAMTS5)的表達(dá)。前交叉韌帶切除(anterior cruciate ligament resection, ACLT)術(shù)制作cKO小鼠骨關(guān)節(jié)炎(osteoarthriti, OA)模型,免疫組化法檢測(cè)軟骨組織TNFα和IL-1β的表達(dá)。成功將單向?qū)NA(sgRNA)構(gòu)建至LentiCRISPRv2載體,并在C28/I2細(xì)胞中成功篩選出敲除穩(wěn)定細(xì)胞株。qPCR結(jié)果顯示,在體外炎癥微環(huán)境中,敲除可上調(diào)軟骨細(xì)胞促炎細(xì)胞因子IL-6和TNFα mRNA水平(<0.05),下調(diào)抗炎細(xì)胞因子IL-4和IL-10 mRNA水平(<0.05)。Western blot結(jié)果顯示,當(dāng)軟骨細(xì)胞處于炎癥微環(huán)境中,敲除可顯著上調(diào)TNFα表達(dá)(<0.05),增強(qiáng)ADAMTS5和MMP13的表達(dá)(<0.05),而過表達(dá)則顯著抑制TNFα表達(dá)(<0.05)。免疫組化法結(jié)果顯示,ACLT術(shù)后cKO可促進(jìn)TNFα、IL-1β表達(dá)?;蛲ㄟ^調(diào)節(jié)促炎及抗炎因子平衡參與炎癥反應(yīng)。

基因;炎癥因子;軟骨細(xì)胞;軟骨分解代謝

軟骨細(xì)胞作為軟骨中存在的唯一細(xì)胞,是軟骨基質(zhì)分解代謝的主要來源,其維持基質(zhì)成分的平衡[1]。在正常生理?xiàng)l件下,軟骨成分的降解和合成保持動(dòng)態(tài)平衡。同時(shí),由年齡、肥胖、代謝紊亂、創(chuàng)傷、勞損、遺傳等因素引起的炎癥都是誘發(fā)骨關(guān)節(jié)炎的重要因素[2]。據(jù)報(bào)道,炎癥細(xì)胞因子如IL-1β和TNFα等通過調(diào)控炎癥介質(zhì)的產(chǎn)生和一系列基質(zhì)金屬蛋白酶(matrix metalloproteinases, MMPs)家族成員的表達(dá),在骨關(guān)節(jié)炎(osteoarthritis, OA)的發(fā)病機(jī)制中發(fā)揮著重要作用[3]。IL-1β啟動(dòng)炎癥相關(guān)信號(hào)通路的激活并刺激MMPs的表達(dá),從而導(dǎo)致軟骨基質(zhì)的破壞[4]。因此,抑制IL-1β和IL-1β誘導(dǎo)的炎癥介質(zhì)表達(dá)會(huì)減緩OA的進(jìn)展[5-6]。

大量研究表明未折疊蛋白反應(yīng)(unfolded protein response, UPR)參與機(jī)體的免疫應(yīng)答和炎癥反應(yīng)[7-8]。人肌醇需求酶1α(inositol-requiring enzyme 1α, IRE1α)是位于內(nèi)質(zhì)網(wǎng)膜的跨膜蛋白,由內(nèi)質(zhì)網(wǎng)到細(xì)胞核信號(hào)1(endoplasmic reticulum-to-nucleus signaling 1,)基因編碼,是UPR的重要分子傳感器,參與調(diào)節(jié)蛋白質(zhì)折疊和維持肉質(zhì)網(wǎng)(endoplasmic reticulum, ER)穩(wěn)態(tài)[9]。IRE1α與軟骨或骨骼生長(zhǎng)和發(fā)育密切相關(guān)[10]。內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)的定向誘導(dǎo)可導(dǎo)致軟骨產(chǎn)生Schmid型干骺端軟骨發(fā)育不全病理變化[11]。IRE1α的缺乏會(huì)增加軟骨細(xì)胞的凋亡,而IRE1α的激活會(huì)增強(qiáng)軟骨細(xì)胞的活力并減少骨關(guān)節(jié)炎中相關(guān)細(xì)胞的凋亡[10]。

雖然一些文獻(xiàn)報(bào)道了IRE1α在骨骼發(fā)育及相關(guān)疾病中的作用,但是IRE1α對(duì)OA軟骨細(xì)胞炎癥反應(yīng)的影響仍不清楚。本研究通過構(gòu)建缺陷軟骨細(xì)胞、軟骨特異性敲除小鼠原代軟骨細(xì)胞及過表達(dá)重組腺病毒,觀察在炎癥微環(huán)境中對(duì)軟骨細(xì)胞炎癥和分解代謝的影響,探討/IRE1α對(duì)炎癥微環(huán)境中軟骨細(xì)胞炎癥因子和軟骨分解代謝的影響。

材料和方法

1 實(shí)驗(yàn)小鼠

C57BL/6J背景的flox/+小鼠購(gòu)自上海南方模式生物科技發(fā)展有限公司,相同背景的Col2-Cre工具鼠由中國(guó)人民解放軍陸軍軍醫(yī)大學(xué)陳林教授饋贈(zèng)。通過Cre-LoxP繁殖獲得flox/flox對(duì)照(control)小鼠和flox/flox-Col2Cre軟骨特異性敲除(cKO)小鼠。所有動(dòng)物研究均按照機(jī)構(gòu)指南進(jìn)行,并得到重慶醫(yī)科大學(xué)倫理委員會(huì)的批準(zhǔn)。

2 細(xì)胞、質(zhì)粒和病毒

293T細(xì)胞株由本實(shí)驗(yàn)室保存。人正常軟骨細(xì)胞C28/I2、CRISPR-Cas9載體LentiCRISPRv2及慢病毒包裝質(zhì)粒psPAX2、VSVG由美國(guó)紐約大學(xué)劉傳聚教授饋贈(zèng)。慢病毒包裝用陽(yáng)性對(duì)照質(zhì)粒Lenti-GFP由本實(shí)驗(yàn)室保存。過表達(dá)腺病毒(Ad)及對(duì)照(AdGFP)由本實(shí)驗(yàn)室保存。

3 主要試劑

BsmBI酶、CIP酶、T4連接酶(NEB);T4 PNK酶(TaKaRa);λ-EcoT14 I/Bgl Ⅱ digest DNA Marker(TaKaRa);STBL3感受態(tài)(擎科生物);Polybrene、PEI(Sigma);嘌呤霉素(Abcam);Ⅱ型膠原酶(Worthington);血清(BIOAGRIO);DMEM、DMEM/F12培養(yǎng)基(BI);RIPA強(qiáng)裂解液、青鏈霉素(碧云天);Trizol試劑(Invitrogen);逆轉(zhuǎn)錄試劑盒、2×SYBR Green(Novoprotein); 抗GAPDH和含血小板結(jié)合蛋白基序的解整聯(lián)蛋白及金屬蛋白酶5(a disintegrin and metalloproteinase with thrombospondin motif 5, ADAMTS5)抗體(Affinity);抗MMP13抗體(Proteintech); 抗IRE1α(CST); 抗TNFα和IL-1β抗體(Novus);小鼠基因組提取試劑盒(Bimake)。本實(shí)驗(yàn)中所有引物由北京擎科生物科技有限公司重慶分公司合成,見表1~3。

表1 小鼠ERN1基因型鑒定引物

F: forward; R: reverse.

表2 CRISPR-Cas9 oligo引物

F: forward; R: reverse.

表3 qPCR引物

M: mouse; F: forward; R: reverse; H: human.

4 主要方法

4.1構(gòu)建C28/I2細(xì)胞敲除穩(wěn)定細(xì)胞株(1)LentiCRISPR-sg質(zhì)粒構(gòu)建:將合成的oligo引物正反義鏈退火形成雙鏈DNA,T4 PNK酶加磷;BsmBI內(nèi)切酶酶切l(wèi)entiCRISPRv2質(zhì)粒,質(zhì)粒長(zhǎng)度為14 873 bp,酶切后CIP酶去磷酸化,凝膠電泳棄掉約2 kb的小片段,膠回收純化大片段;T4 DNA連接酶連接4 ℃過夜;STBL3感受態(tài)轉(zhuǎn)化涂板;挑取單克隆菌搖菌,測(cè)序;(2)慢病毒包裝:將測(cè)序正確的質(zhì)粒進(jìn)行293T細(xì)胞慢病毒包裝,包裝質(zhì)粒比例為L(zhǎng)entiCRISPR-sgRNA∶psPAX2∶VSVG=3∶2∶1,以Lenti-GFP為包裝效率陽(yáng)性對(duì)照,PEI輔助轉(zhuǎn)染;收集72~96 h病毒上清;(3)篩選敲除穩(wěn)定細(xì)胞株:感染C28/I2細(xì)胞,以Lenti-GFP感染為陽(yáng)性對(duì)照,polybrene輔助感染;0.5 mg/L puromycin篩選,當(dāng)C28/I2空細(xì)胞殺死完后,收取部分感染慢病毒的細(xì)胞進(jìn)行Western blot鑒定,將有明顯敲低效果的細(xì)胞進(jìn)行單克隆細(xì)胞株篩選,Western blot鑒定敲除效果。

4.2小鼠基因型鑒定剪取2~3周待鑒定小鼠腳趾,提取基因組;以基因組為模板,分別用flox引物和Col2-Cre引物進(jìn)行PCR擴(kuò)增;2%瓊脂糖凝膠電泳;基因型結(jié)果判讀:野生型只有361 bp一條帶,flox/+雜合子有361、486 bp兩條帶,flox/flox純合子只有486 bp一條帶;Col2-Cre陽(yáng)性有300 bp條帶,陰性則無條帶。

4.3分離小鼠原代軟骨細(xì)胞收集新生6 d的flox/flox對(duì)照(control)小鼠和flox/flox-Col2Cre特異性敲除(cKO)小鼠;取下膝關(guān)節(jié)軟骨;PBS清洗;1 g/L Ⅱ型膠原酶37 ℃消化12~16 h;加含10%血清、1%青鏈霉素的DMEM/F12培養(yǎng)基培養(yǎng),48 h換液傳代。

4.4qPCR(1)過表達(dá):接種C28/I2細(xì)胞,待細(xì)胞貼壁后,分別加入最適滴度的AdGFP(對(duì)照組)和Ad(過表達(dá)組),polybrene輔助感染,感染5 h后更換新鮮的完全培養(yǎng)基培養(yǎng);此外,根據(jù)實(shí)驗(yàn)在細(xì)胞感染AdGFP和Ad腺病毒5 h換液時(shí),分別加IL-1β使終濃度為10 μg/L模擬細(xì)胞炎癥微環(huán)境;(2)敲除:接種敲除的C28/I2細(xì)胞(KO1和KO2)及對(duì)照(parental);接種小鼠原代軟骨細(xì)胞(對(duì)照組)和cKO小鼠原代軟骨細(xì)胞(NER/cKO組);待細(xì)胞貼壁,分別加IL-1β使終濃度為10 μg/L模擬細(xì)胞炎癥微環(huán)境。收集IL-1β作用36 h后的細(xì)胞,Trizol法提取RNA,參照試劑盒說明書逆轉(zhuǎn)錄為cDNA,進(jìn)行qPCR測(cè)定。

4.5Western blot細(xì)胞處理方法同qPCR;收集IL-1β作用 48 h的細(xì)胞,RIPA裂解液提取細(xì)胞蛋白;SDS-PAGE膠分離,220 mA恒流,1 KD/min轉(zhuǎn)移目的蛋白至PVDF膜,5% BSA室溫封閉1 h, GAPDH(1∶8 000)及其余Ⅰ抗(1∶1 000)4 ℃孵育過夜,TBST洗膜,孵育Ⅱ抗羊抗兔(1∶10 000)室溫2 h,洗膜,ECL顯影。

4.6前交叉韌帶切除(anterior cruciate ligament transection, ACLT)術(shù)隨機(jī)選取8~10周齡的雄性小鼠flox/flox(control)和flox/flox-Col2Cre(cKO)各6只,麻醉,膝關(guān)節(jié)處脫毛,剪開膝關(guān)節(jié)處皮膚暴露關(guān)節(jié)腔,手術(shù)組切斷前交叉韌帶,髕韌帶復(fù)位,縫合,消毒傷口。假手術(shù)(sham)組,不切斷前交叉韌帶,其余方法同手術(shù)組。

4.7免疫組化cKO和control小鼠ACLT術(shù)后8周的膝關(guān)節(jié)石蠟切片進(jìn)行脫蠟水化;抗原修復(fù),復(fù)合消化液37 ℃,30 min;加辣根過氧化物酶阻斷劑室溫孵育10 min;正常山羊血清封閉;加入Ⅰ抗(1∶200),4 ℃孵育過夜;孵育生物素標(biāo)記羊抗兔/鼠Ⅱ抗(37 ℃、1 h);HRP標(biāo)記鏈霉卵白素工作液室溫孵育15 min;DAB顯色;脫水,封片,鏡檢。

5 統(tǒng)計(jì)學(xué)處理

應(yīng)用Graphpad Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。兩組間的比較采用檢驗(yàn),多組間的比較采用單因素方差分析,以<0.05認(rèn)為差異有統(tǒng)計(jì)學(xué)意義。

結(jié)果

1 人ERN1基因敲除C28/I2穩(wěn)定細(xì)胞株的構(gòu)建和鑒定

LentiCRISPRv2載體經(jīng)B I酶切線性化,切下約2.0 kb片段,見圖1A;棄掉小片段DNA,膠回收獲得大片段DNA,見圖1B;與退火的寡聚核苷酸雙鏈連接,轉(zhuǎn)化,挑菌,測(cè)序,成功將3條sgRNA逐一連接至載體,測(cè)序結(jié)果,見圖1C;以Lenti-GFP質(zhì)粒為對(duì)照,293T細(xì)胞包裝慢病毒,包裝96 h時(shí)細(xì)胞熒光,見圖1D;收集慢病毒上清,感染C28/I2人軟骨細(xì)胞,感染48 h時(shí)細(xì)胞熒光,見圖1E;經(jīng)嘌呤霉素篩選得到基因敲低細(xì)胞株,Western blot結(jié)果顯示sg1#、sg2#有顯著敲低效果,見圖1F;進(jìn)一步經(jīng)過多輪單克隆細(xì)胞株篩選,成功獲得KO1、KO2敲除細(xì)胞株,Western blot鑒定結(jié)果,見圖1G。

Figure 1. Construction and screening of stable cell lines with specific ERN1 knockout in C28/I2 cells using CRISPR-Cas9 technology. A: the result of restriction enzyme digestion of LentiCRISPRv2 (M: λ-EcoT14 I/Bgl II digest DNA marker; 1: LentiCRISPRv2 digested by BsmB I); B: the result of gel purification (M: DNA marker; 1': LentiCRISPRv2 plasmid without digestion; 2': result of gel purification of larger band); C: DNA sequence of LentiCRISPRv2-sgRNA plasmids; D: packaging of lentivirus positive control lenti-GFP in 293T cells; E: infection of Lenti-GFP supernatant in C28/I2 cells; F: ERN1 knockdown effect with puromycin screening was identified using Western blot in C28/I2 cells; G: Western blot confirmation of ERN1 knockout in C28/I2 cells.

2 ERN1敲除C28/I2軟骨細(xì)胞中抗炎因子水平降低、致炎因子水平升高

采用不同濃度梯度IL-1β處理C28/I2細(xì)胞不同時(shí)間,Western blot結(jié)果顯示,隨著IL-1β濃度增加,IRE1α表達(dá)也隨之增加;在10 μg/L IL-1β誘導(dǎo)C28/I2細(xì)胞36 h、48 h時(shí),IRE1α蛋白表達(dá)顯著增加(<0.01),見圖2。同時(shí)IL-1β處理敲除基因的C28/I2軟骨細(xì)胞穩(wěn)定細(xì)胞株,其qPCR結(jié)果顯示,與Parental細(xì)胞比較,IL-1β誘導(dǎo)時(shí),敲除明顯抑制抗炎因子IL-4、IL-10的mRNA水平(<0.01),促進(jìn)致炎因子IL-6的mRNA水平(<0.01),見圖3A。Western blot結(jié)果顯示,敲除C28/I2軟骨細(xì)胞與對(duì)照Parental比較,無IL-1β誘導(dǎo)時(shí),TNFα蛋白表達(dá)無明顯差異;但在IL-1β誘導(dǎo)時(shí),敲除細(xì)胞株KO1+IL-1β、ERN1 KO2+IL-1β組TNFα表達(dá)顯著升高(<0.05),見圖3B、C。

Figure 2. Expression changes of IRE1α in C28/I2 cells treated with different concentrations of IL-1β for 24 h (A) or with 10 μg/L IL-1β for different time (B) were detected by Western blot. Mean±SD. n=3.**P<0.01 vs 0 h group.

Figure 3. The mRNA and protein levels of ERN1 and inflammatory factors in ERN1-deficient C28/I2 chondrocytes were detected. A: the mRNA levels of ERN1, IL-4, IL-10 and IL-6 detected by qPCR; B: the protein level of TNFα in cells without IL-1β stimulation detected by Western blot; C: the protein level of TNFα in IL-1β-induced ERN1 knockout C28/I2 cells detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs parental+IL-1β group.

3 ERN1 cKO小鼠原代軟骨細(xì)胞中致炎因子升高、抗炎因子降低

分離缺陷小鼠原代軟骨細(xì)胞,IL-1β處理,qPCR結(jié)果顯示,與對(duì)照組相比,缺陷顯著增強(qiáng)TNFα、IL-6 mRNA水平(<0.01),抑制IL-10的mRNA水平(<0.05),見圖4A。Western blot結(jié)果顯示,未加IL-1β處理,正常生理?xiàng)l件下control組與cKO組TNFα表達(dá)無明顯差異,而在IL-1β誘導(dǎo)時(shí),cKO顯著上調(diào)TNFα蛋白表達(dá)(<0.05),見圖4B、C。

Figure 4. The mRNA and protein levels of ERN1 and inflammatory factors in ERN1 cKO mouse primary chondrocytes were detected. A: the mRNA levels of ERN1, TNFα, IL-10 and IL-6 in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by qPCR; B: the protein levels of TNFα were detected by Western blot in primary chondrocytes without IL-1β stimulation; C: the protein levels of TNFα in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by Western blot. Mean±SD. n=3. *P<0.05, **P<0.01 vs control+IL-1β group.

4 軟骨細(xì)胞中ERN1過表達(dá)上調(diào)抗炎因子、下調(diào)致炎因子

在C28/I2細(xì)胞中轉(zhuǎn)染腺病毒(Ad),AdGFP為對(duì)照。軟骨細(xì)胞經(jīng)IL-1β處理,qPCR結(jié)果顯示,與AdGFP組比較,過表達(dá)顯著上調(diào)IL-4和IL-10 mRNA水平(<0.05),下調(diào)IL-6 mRNA水平(<0.01),見圖5。Western blot結(jié)果顯示,過表達(dá)在IL-1β處理前后都會(huì)抑制TNFα蛋白表達(dá),且在IL-1β誘導(dǎo)后,Ad抑制TNFα表達(dá)更顯著(<0.01),見圖6。

Figure 5. The mRNA levels of ERN1 and inflammatory factors IL-4, IL-10 and IL-6 were detected by qPCR after over-expression of ERN1 in IL-1β-induced C28/I2 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs AdGFP+IL-1β group.

Figure.6. The protein levels of IRE1α and TNFα were detected after over-expression of ERN1. A: the protein levels of IRE1α and TNFα were detected by Western blot after over-expression of ERN1 without IL-1β stimulation; B: the protein levels of IRE1α and TNFα were detected by Western blot after overexpression of ERN1 in IL-1β-induced C28/I2 cells. Mean±SD. n=3. *P<0.05, **P<0.01 vs AdGFP+IL-1β group.

5 ERN1缺陷C28/I2軟骨細(xì)胞中,IL-1β促進(jìn)軟骨分解代謝

收集缺陷C28/I2軟骨細(xì)胞KO1、KO2和對(duì)照parental細(xì)胞蛋白進(jìn)行Western blot檢測(cè),結(jié)果顯示,無IL-1β處理時(shí),parental和KO1、KO2細(xì)胞的分解代謝標(biāo)志物MMP13、ADAMTS5表達(dá)無明顯差異,且蛋白表達(dá)量低,見圖7A;而細(xì)胞在IL-1β處理后,與parental組比較,缺陷顯著上調(diào)MMP13和ADAMTS5的蛋白表達(dá)水平(<0.05),見圖7B。

Figure 7. The protein levels of ADAMTS5 and MMP13 in ERN1-deficient C28/I2 chondrocytes were detected. A: the protein levels of MMP13 and ADAMTS5 in ERN1 knockout C28/I2 cells were detected by Western blot without IL-1β stimulation; B: the protein levels of MMP13 and ADAMTS5 in IL-1β-induced ERN1 knockout C28/I2 cells were detected by Western blot. Mean±SD. n=3.**P<0.01 vs parental+IL-1β group.

6 ERN1 cKO小鼠原代軟骨細(xì)胞中,IL-1β上調(diào)分解代謝

收集缺陷小鼠原代軟骨細(xì)胞cKO和對(duì)照小鼠原代軟骨細(xì)胞蛋白,Western blot結(jié)果顯示,無IL-1β處理時(shí),與control組相比,cKO組的ADAMTS5差異不顯著,MMP13表達(dá)顯著降低,見圖8A;在IL-1β處理后,cKO細(xì)胞MMP13和ADAMTS5的蛋白表達(dá)水平顯著上調(diào)(<0.05),見圖8B。

Figure 8. The protein levels of ADAMTS5 and MMP13 in ERN1 cKO mouse primary chondrocytes were detected. A: the protein levels of MMP13 and ADAMTS5 in ERN1 cKO mouse primary chondrocytes without IL-1β stimulation were detected by Western blot; B: the protein levels of MMP13 and ADAMTS5 in IL-1β-induced ERN1 cKO mouse primary chondrocytes were detected by Western blot. Mean±SD. n=3. *P<0.05 vs control+IL-1β group.

7 ERN1缺陷對(duì)小鼠骨關(guān)節(jié)炎軟骨的影響

收集ACLT術(shù)后8周的cKO和control小鼠膝關(guān)節(jié),進(jìn)行石蠟切片。免疫組化染色結(jié)果顯示,與control小鼠相比,cKO組IL-1β和TNFα表達(dá)水平顯著升高(<0.01),見圖9。

Figure 9. The expression and distribution of IL-1β (A) and TNFα (B) in the articular cartilage of control and ERN1 cKO mice for 8 weeks after ACLT modeling were detected by immunohistochemistry and the proportion of positive cells was quantified. Mean±SD. n=3. **P<0.01 vs control group.

討論

關(guān)節(jié)軟骨細(xì)胞由于年齡、肥胖、炎癥、代謝障礙、創(chuàng)傷、勞損、遺傳等因素所引發(fā)的炎癥是誘發(fā)骨關(guān)節(jié)炎的首要因素,炎癥因子與軟骨細(xì)胞、胞外基質(zhì)蛋白和細(xì)胞粘附分子之間的一系列復(fù)雜精細(xì)的調(diào)控與骨關(guān)節(jié)炎等相關(guān)疾病的發(fā)生密切相關(guān)。研究表明炎癥與UPR在許多方面存在聯(lián)系。UPR與細(xì)胞內(nèi)炎癥反應(yīng)信號(hào)通路的偶聯(lián)是引發(fā)炎癥反應(yīng)的主要原因之一,也是許多炎癥疾病的發(fā)病機(jī)制和病理基礎(chǔ)[12]。ERS已被證實(shí)與多種疾病的發(fā)生、發(fā)展有關(guān),包括OA[13]、類風(fēng)濕性關(guān)節(jié)炎[14]和其他炎癥性疾病[15-16]。IRE1α作為UPR的經(jīng)典傳感器,在不同的生物體、組織和疾病中具有多樣化功能。在腫瘤細(xì)胞中,抑制IRE1α活性可降低腫瘤細(xì)胞增殖并增加乳腺癌、結(jié)腸直腸癌和肝癌等各種癌癥類型的化學(xué)敏感性[17-19]。骨髓特異性缺失f/f,Lyz2-Cre小鼠在很大程度上逆轉(zhuǎn)高脂肪飲食誘導(dǎo)的白色脂肪組織中的M1-M2極化失衡,并阻斷高脂飲食誘導(dǎo)的肥胖、胰島素抵抗、高脂血癥和肝脂肪變性[20]。IRE1α激活的ERS和機(jī)體免疫細(xì)胞中的UPR信號(hào)通路IRE1α可以增加炎癥細(xì)胞因子的釋放,進(jìn)一步促進(jìn)炎癥的產(chǎn)生[21-22]。但I(xiàn)RE1α在軟骨細(xì)胞中的功能與作用卻很少報(bào)道,本研究探討了/IRE1α在炎癥微環(huán)境中與軟骨細(xì)胞炎癥因子和軟骨分解代謝的關(guān)系,為后續(xù)深入解讀IRE1α在軟骨細(xì)胞的功能奠定基礎(chǔ)。

IL-1β是一種重要的致炎細(xì)胞因子,在軟骨降解與軟骨相關(guān)疾病中起著重要作用。IL-1β誘導(dǎo)促進(jìn)諸如IL-6、TNFα等促炎細(xì)胞因子的表達(dá)和蛋白分泌,這可能導(dǎo)致對(duì)軟骨細(xì)胞的繼發(fā)性損傷[23]。OA病理生物學(xué)的主要特征是軟骨損傷伴隨促炎細(xì)胞因子水平升高[24]。另一方面,IL-4和IL-10是多效性細(xì)胞因子,可通過負(fù)性調(diào)節(jié)自分泌和旁分泌反饋環(huán)抑制促炎環(huán)境,并參與軟骨細(xì)胞的保護(hù)[25-26]。

在這項(xiàng)研究中,我們探討了對(duì)炎癥微環(huán)境中軟骨細(xì)胞炎癥因子和軟骨分解代謝的影響。首先通過Western blot實(shí)驗(yàn)發(fā)現(xiàn),在生理?xiàng)l件下,軟骨細(xì)胞缺陷,沒有引起TNFα的蛋白變化;但在IL-1β誘導(dǎo)下,軟骨細(xì)胞缺陷顯著促進(jìn)TNFα的表達(dá);同時(shí)在mRNA水平也驗(yàn)證這一作用,缺陷的C28/I2軟骨細(xì)胞和軟骨特異性缺失的小鼠原代軟骨細(xì)胞在炎癥微環(huán)境中,發(fā)現(xiàn)軟骨缺失能促進(jìn)TNFα和IL-6的表達(dá),抑制IL-4和IL-10表達(dá);反之,在軟骨細(xì)胞中過表達(dá),抑制促炎細(xì)胞因子表達(dá),促進(jìn)抗炎細(xì)胞因子表達(dá);并在ACLT誘導(dǎo)的小鼠OA模型中發(fā)現(xiàn)ERN1軟骨缺陷會(huì)導(dǎo)致TNFα和IL-1β顯著升高。以上結(jié)果表明,對(duì)于炎癥微環(huán)境中的軟骨細(xì)胞具有保護(hù)作用。

研究報(bào)道,抑制MMPs產(chǎn)生可以抑制軟骨降解的進(jìn)展[27-28]。在關(guān)節(jié)軟骨中,IL-1β能夠增加MMPs的釋放及膠原蛋白和蛋白聚糖的降解[29]。此外,ADAMTS也是OA中重要的蛋白質(zhì)水解產(chǎn)物,尤其是ADAMTS4和ADAMTS5,它們負(fù)責(zé)裂解聚集蛋白聚糖[30]。因此,靶向MMPs、ADAMTS的個(gè)體化治療代表了一種有希望的OA潛在治療策略。在本研究中,我們通過敲除基因,檢測(cè)MMP13和ADAMTS5的表達(dá),發(fā)現(xiàn)缺陷可以促進(jìn)人正常軟骨細(xì)胞和小鼠原代軟骨細(xì)胞IL-1β誘導(dǎo)的軟骨分解代謝標(biāo)志物MMP13、ADMATS5的表達(dá)。結(jié)果表明,缺陷可以促進(jìn)炎癥微環(huán)境中軟骨細(xì)胞分解代謝。

綜合上述結(jié)果,過表達(dá)對(duì)炎癥微環(huán)境中的軟骨細(xì)胞具有抗炎保護(hù)作用,缺陷對(duì)軟骨細(xì)胞炎癥微環(huán)境具有促炎和促進(jìn)軟骨分解代謝的多重作用。通過調(diào)節(jié)炎癥因子的敏感性,參與炎癥反應(yīng)。本研究初步闡明軟骨細(xì)胞中/IRE1α參與炎癥微環(huán)境的可能機(jī)制,為進(jìn)一步探究/IRE1α與OA及炎癥相關(guān)疾病的關(guān)系奠定基礎(chǔ)。

[1] Lee HP, Gu L, Mooney DJ, et al. Mechanical confinement regulates cartilage matrix formation by chondrocytes[J]. Nat Mater, 2017, 16(12):1243-1251.

[2] Mobasheri A, Rayman MP, Gualillo O, et al. The role of metabolism in the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol, 2017, 13(5):302-311.

[3] Riewruja K, Phakham S, Sompolpong P, et al. Cytokine profiling and intra-articular injection of autologous platelet-rich plasma in knee osteoarthritis[J]. Int J Mol Sci, 2022, 23(2):890.

[4] Scott KM, Cohen DJ, Hays M, et al. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451[J]. Osteoarthritis Cartilage, 2021, 29(1):113-123.

[5] Bollmann M, Pinno K, Ehnold LI, et al. MMP-9 mediated Syndecan-4 shedding correlates with osteoarthritis severity[J]. Osteoarthritis Cartilage, 2021, 29(2):280-289.

[6]卓澤銘, 范忠誠(chéng), 郭祥. 桑寄生提取物聯(lián)合miR-375對(duì)骨關(guān)節(jié)炎軟骨細(xì)胞活力和凋亡的影響[J]. 中國(guó)病理生理雜志, 2020, 36(6):1082-1088.

Zhuo ZM, Fan ZC, Guo X. Effect of Herba Taxilli extracts combined with miR-375 on viability and apoptosis of osteoarthritic chondrocytes[J]. Chin J Pathophysiol, 2020, 36(6):1082-1088.

[7] You K, Wang L, Chou CH, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis[J]. Science, 2021, 371(6524):eabb6896.

[8] Mogilenko DA, Haas JT, L'Homme L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR[J]. Cell, 2019, 177(5):1201-1216.e19.

[9] Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8):421-438.

[10] Huang R, Hui Z, Wei S, et al. IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis[J]. J Cell Physiol, 2022, 237(1):118-127.

[11] Mullan LA, Mularczyk EJ, Kung LH, et al. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism[J]. J Clin Invest, 2017, 127(10):3861-3865.

[12] 郜婕, 唐成林, 劉仁建, 等. 不同強(qiáng)度電針對(duì)肥胖大鼠附睪脂肪細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激的影響[J]. 中國(guó)病理生理雜志, 2013, 29(2):354-357.

Cao J, Tang CL, Liu RJ, et al. Effect of electroacupuncture in different intensities on endoplasmic reti-culum stress in adipose tissues from high-fat diet-induced obese rats [J]. Chin J Pathophysiol, 2013, 29(2):354-357.

[13] Lee SY, Wong PF, Jamal J, et al. Naturally-derived endoplasmic reticulum stress inhibitors for osteoarthritis?[J]. Eur J Pharmacol, 2022, 922:174903.

[14] Barrera MJ, Aguilera S, Castro I, et al. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: potential role in Sj?gren's syndrome[J]. Autoimmun Rev, 2021, 20(8):102867.

[15] Liu N, Bai L, Lu Z, et al. TRPV4 contributes to ER stress and inflammation: implications for Parkinson's disease[J]. J Neuroinflammation, 2022, 19(1):26.

[16] 敖文, 徐在革, 白楊, 等. 基于內(nèi)質(zhì)網(wǎng)應(yīng)激-自噬通路研究茯苓多糖對(duì)2型糖尿病小鼠腸道屏障功能損傷和炎癥反應(yīng)的影響[J]. 中國(guó)病理生理雜志, 2022, 38(5):829-838.

Ao W, Xu ZG, Bai Y, et al. Poria cocos polysaccharide improves intestinal barrier function and attenuates inflammatory response in type 2 diabetic mice through endoplasmic reticulum stress-autophagy pathway[J]. Chin J Pathophysiol, 2022, 38(5):829-838.

[17] Logue SE, McGrath EP, Cleary P, et al. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy[J]. Nat Commun, 2018, 9(1):3267.

[18] Fang P, Xiang L, Huang S, et al. IRE1α-XBP1 signaling pathway regulates IL-6 expression and promotes progression of hepatocellular carcinoma[J]. Oncol Lett, 2018, 16(4):4729-4736.

[19] Jin C, Jin Z, Chen NZ, et al. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma[J]. Biochem Biophys Res Commun, 2016, 470(1):75-81.

[20] Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity[J]. Nat Immunol, 2017, 18(5):519-529.

[21] Keestra-Gounder AM, Byndloss MX, Seyffert N, et al. NOD1 and NOD2 signalling links ER stress with inflammation[J]. Nature, 2016, 532(7599):394-397.

[22] Kim S, Joe Y, Kim HJ, et al. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production[J]. J Immunol, 2015, 194(9):4498-4506.

[23] Eugene SP, Reddy VS, Trinath J. Endoplasmic reticulum stress and intestinal inflammation: a perilous union[J]. Front Immunol, 2020, 11:543022.

[24] Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6):568-578.

[25] Moss KL, Jiang Z, Dodson ME, et al. Sustained interleukin-10 transgene expression following intra-articular AAV5-IL-10 administration to horses[J]. Hum Gene Ther, 2020, 31(1/2):110-118.

[26] Song SY, Hong J, Go S, et al. Interleukin-4 gene transfection and spheroid formation potentiate therapeutic efficacy of mesenchymal stem cells for osteoarthritis[J]. Adv Healthc Mater, 2020, 9(5):e1901612.

[27] Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis[J]. Br J Pharmacol, 2019, 176(1):26-37.

[28] 賀自克, 王上增, 沈錦濤. 基于Hedgehog通路探討補(bǔ)腎活血方對(duì)實(shí)驗(yàn)性膝骨性關(guān)節(jié)炎兔退變軟骨的保護(hù)作用[J]. 中國(guó)病理生理雜志, 2020, 36(4):700-706.

He ZK, Wang SZ, Shen JT. Protective effect of Bushen-Huoxue prescription on degenarative carti-lage in rabbits with experimental knee osteoarthritis based on Hedgehog pathway[J]. Chin J Pathophysiol, 2020, 36(4):700-706.

[29] Liu J, Cao L, Gao X, et al. Ghrelin prevents articular cartilage matrix destruction in human chondrocytes[J]. Biomed Pharmacother, 2018, 98:651-655.

[30] Rogerson FM, Last K, Golub SB, et al. ADAMTS-9 in mouse cartilage has aggrecanase activity that is distinct from ADAMTS-4 and ADAMTS-5[J]. Int J Mol Sci, 2019, 20(3):573.

Regulatory effect of ERN1 on biological properties of chondrocytes in an inflammatory microenvironment

LIANG Li, DENG Lin, LUO Rui, FENG Naibo, LI Xiaoli, FAN Mengtian, GUO Fengjin△

(,,400016,)

To explore the effect of endoplasmic reticulum-to-nucleus signaling 1 () gene on the biological properties of chondrocytes in an inflammatory microenvironment.Theknockout C28/I2 human normal chondrocyte cell lineKO was constructed by CRISPR-Cas9 system. Primary chondrocytes fromcartilage-specific knockout mice with C57BL/6J background were isolated, and the experiments were divided into control group (flox/flox),cKO group (flox/flox-Col2Cre+).adenovirus (Ad) was over-expressed in C28/I2 human normal chondrocytes, with AdGFP as the control group. Interleukin-1β (IL-1β) at 10 μg/L was used in chondrocytes to form an inflammatory microenvironment. The expression of inflammatory factors tumor necrosis factor α (TNFα), IL-4, IL-6 and IL-10, and cartilage catabolism markers matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) in chondrocytes afterdeletion or overexpression in the inflammatory microenvironment induced by IL-1β was detected by qPCR and Western blot.ThesgRNA was successfully constructed into LentiCRISPRv2 vector, andknockout stable cell line were successfully screened in C28/I2 cells. qPCR results showed that in the inflammatory microenvironment,deficiency up-regulated the mRNA levels of pro-inflammatory cytokines IL-6 and TNFα in chondrocytes (<0.05), and down-regulated the mRNA levels of anti-inflammatory cytokines IL-4 and IL-10 (<0.05). Western blot results showed that when chondrocytes were in the inflammatory microenvironment,deficiency significantly up-regulated the expression of pro-inflammatory cytokine TNFα (<0.05), and enhanced the expression of cartilage catabolism markers ADAMTS5 and MMP13 (<0.05). The expression of TNFα was significantly inhibited after over-expression of(<0.05).regulates the inflammatory sensitivity of chondrocytes by regulating the levels of pro-inflammatory and anti-inflammatory factors, and then participates in the inflammatory response.

gene; inflammatory factors; chondrocytes; cartilage catabolism

R329.2; R363.2+1

A

10.3969/j.issn.1000-4718.2023.02.014

1000-4718(2023)02-0314-11

2022-08-22

2022-11-01

[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81871769);重慶市科委面上項(xiàng)目(No. cstc2020jcyj-msxmX0175);重慶市科委博士后科學(xué)基金項(xiàng)目(No. cstc2021jcyj-bshX0214);重慶醫(yī)科大學(xué)研究生拔尖人才培育項(xiàng)目(No. BJRC202019)

Tel: 15310288670; E-mail: guo.fengjin@cqmu.edu.cn

(責(zé)任編輯:余小慧,李淑媛)

猜你喜歡
原代細(xì)胞株軟骨
改良無血清法培養(yǎng)新生SD乳鼠原代海馬神經(jīng)元細(xì)胞
新生大鼠右心室心肌細(xì)胞的原代培養(yǎng)及鑒定
鞍區(qū)軟骨黏液纖維瘤1例
艾迪注射液對(duì)大鼠原代肝細(xì)胞中CYP1A2、CYP3A2酶活性的影響
中成藥(2018年9期)2018-10-09 07:18:32
原發(fā)肺軟骨瘤1例報(bào)告并文獻(xiàn)復(fù)習(xí)
穩(wěn)定敲低MYH10基因細(xì)胞株的建立
Rab27A和Rab27B在4種不同人肝癌細(xì)胞株中的表達(dá)
穩(wěn)定抑制PAK2蛋白表達(dá)的HUH—7細(xì)胞株的建立
橋粒芯糖蛋白1、3 在HaCaT 細(xì)胞、A431 細(xì)胞及原代角質(zhì)形成細(xì)胞中的表達(dá)
CYP2E1基因過表達(dá)細(xì)胞株的建立及鑒定
南溪县| 井陉县| 盐池县| 关岭| 大竹县| 来安县| 张家川| 丹寨县| 西青区| 洪泽县| 江安县| 宁陕县| 临泽县| 凤凰县| 达孜县| 林芝县| 扎囊县| 巧家县| 台东县| 达拉特旗| 平陆县| 雷山县| 遂平县| 东乌珠穆沁旗| 澳门| 曲阳县| 连城县| 夏邑县| 新河县| 纳雍县| 庆安县| 马尔康县| 荣成市| 称多县| 湖口县| 栾川县| 阳江市| 墨脱县| 巫溪县| 南汇区| 南皮县|