徐磊,王勻,許楨英,倪旺,閆金金
高溫合金成形
同軸送粉激光熔覆氣泡逃逸行為及分布研究
徐磊,王勻,許楨英,倪旺,閆金金
(江蘇大學(xué) 機(jī)械工程學(xué)院,江蘇 鎮(zhèn)江 212013)
獲取Inconel 718合金在同軸送粉激光熔覆過(guò)程中,熔池內(nèi)氣泡的動(dòng)態(tài)行為及熔覆層中氣孔缺陷的分布規(guī)律。建立熔池內(nèi)部氣泡力學(xué)模型和方程,考慮氣泡浮力、重力、氣泡和熔液相對(duì)運(yùn)動(dòng)產(chǎn)生的黏滯力,以及熔液對(duì)流帶來(lái)的拖曳力等力的綜合作用,著重研究浮力、拖曳力對(duì)氣泡逃逸行為的影響,并計(jì)算不同條件下的氣泡逃逸時(shí)間;搭建“三明治”觀測(cè)平臺(tái),原位觀測(cè)在熔覆過(guò)程中熔池內(nèi)氣泡的動(dòng)態(tài)行為,獲取熔池壽命;進(jìn)行單因素Inconel 718合金同軸送粉激光熔覆實(shí)驗(yàn),探究熔覆層氣孔缺陷的分布規(guī)律。熔池壽命通常在0.2~0.4 s;熔池內(nèi)氣泡直徑臨界值約為60 μm,當(dāng)熔池內(nèi)氣泡直徑大于60 μm時(shí)更容易通過(guò)自身浮力逸出,與單因素實(shí)驗(yàn)獲得的熔覆層中96.94%的氣孔缺陷直徑小于60 μm具有較好的一致性;對(duì)熔覆層氣孔缺陷表征發(fā)現(xiàn),浮力對(duì)臨界直徑以下氣泡運(yùn)動(dòng)狀態(tài)的影響一般小于拖曳力。Inconel 718合金在激光熔覆過(guò)程中,熔池內(nèi)氣泡大小存在臨界值,且主要受浮力向上運(yùn)動(dòng)及受拖曳力隨熔池對(duì)流運(yùn)動(dòng)的影響,熔覆層中氣孔缺陷傾向于分布在對(duì)流路徑上。
同軸送粉激光熔覆;Inconel 718;氣泡逃逸;受力分析;氣孔分布
同軸送粉激光熔覆以其成形尺寸不受限制、靈活性高、材料選擇性廣及易實(shí)現(xiàn)自動(dòng)化等顯著優(yōu)勢(shì),成為當(dāng)前大型金屬零件凈成型、梯度材料制備及零件修復(fù)和表面改性的首選增材制造技術(shù)[1-6]。在同軸送粉激光熔覆過(guò)程中,存在開(kāi)放環(huán)境及氣流和粉末沖擊等因素,使熔池易引入氣體,部分氣體會(huì)以氣泡形式在熔池中出現(xiàn)。氣泡運(yùn)動(dòng)行為及其分布規(guī)律是導(dǎo)致熔覆層孔隙缺陷的根本原因,不僅降低了熔覆層的強(qiáng)度,且極易造成脆性斷裂[5-6]。因此,深入研究氣泡在熔池中的運(yùn)動(dòng)形態(tài)及其分布規(guī)律,是尋求降低熔覆層孔隙率及提高熔覆質(zhì)量的前提。為此,Ng等[7]對(duì)激光熔覆的未熔合孔隙和氣孔孔隙進(jìn)行探究表明,氣孔孔隙比未熔合孔隙更難消除,氣孔孔隙與熔池動(dòng)力學(xué)相關(guān),氣泡易隨Marangoni對(duì)流流動(dòng)并被熔覆層保留。Yang等[8]在研究銅合金激光熔覆修復(fù)涂層時(shí)發(fā)現(xiàn),在熔覆層橫截面上氣孔沿熔池底部呈鏈狀分布,較低的送粉率和較高的激光功率有助于減少氣孔缺陷。Hojjatzadeh等[9]通過(guò)原位高速X射線成像系統(tǒng)觀測(cè)氣孔的演變過(guò)程,分析了浮力、拖曳力、熱毛細(xì)力對(duì)氣泡的影響,并認(rèn)為熱毛細(xì)力對(duì)氣泡的影響最大。Zhang等[10]采用高速相機(jī)直接觀測(cè)法,研究了熔池表面2種氣泡的演變過(guò)程,發(fā)現(xiàn)氣泡存在滯留和破裂等2種現(xiàn)象。胡勇等[11-12]從多物理場(chǎng)耦合角度,在建立定向洛倫茲力作用下的熔池模型基礎(chǔ)上,模擬了激光熔覆層的熔池氣泡運(yùn)動(dòng)過(guò)程發(fā)現(xiàn),洛倫茲力向下可以有效抑制熔池表面流速,降低流體拖曳效應(yīng),氣泡向上運(yùn)動(dòng)能力增強(qiáng),從而減少了熔池內(nèi)部孔隙。吳祖鵬等[13]對(duì)Ni60A合金激光熔覆層氣孔成因進(jìn)行研究表明,在熔覆層中氣泡運(yùn)動(dòng)與激光能量輸入密切相關(guān),且在線性密度大于等于200 J/mm時(shí),能提高氣泡溢出量,并獲得低孔隙率的熔覆層。
現(xiàn)有的研究多集中在激光熔覆成型后的組織分析及熔池表面氣泡的形態(tài)分析上,但熔池內(nèi)部氣泡形態(tài)、分布更能有效揭示熔覆層孔隙產(chǎn)生的原因,且同軸送粉激光熔覆采用氣體送粉,熔池在開(kāi)放環(huán)境中凝固,熔池內(nèi)氣泡行為更為復(fù)雜。對(duì)此,針對(duì)Inconel718合金同軸送粉激光熔覆熔池內(nèi)部氣泡的動(dòng)態(tài)過(guò)程進(jìn)行分析,結(jié)合力學(xué)推導(dǎo)和實(shí)驗(yàn)手段研究了氣泡受力、逸出行為及氣孔分布等情況。
熔池中氣泡的運(yùn)動(dòng)狀態(tài)、逃逸行為和分布與其受力情況緊密相關(guān),直接決定了熔覆層成形后的氣孔分布和孔隙率。熔池中氣泡的受力情況見(jiàn)圖1,氣泡在自身浮力、重力、氣泡與熔液相對(duì)運(yùn)動(dòng)產(chǎn)生的黏滯力,以及熔液對(duì)流導(dǎo)致的拖曳力等力的綜合作用下運(yùn)動(dòng),是決定氣泡分布及逸出熔池表面的關(guān)鍵因素[9, 10, 14-18]。
由于熔液的高黏性,通常氣泡隨著熔池中的流體被動(dòng)運(yùn)動(dòng),氣泡的主動(dòng)運(yùn)動(dòng)主要是浮力作用下的上浮,因此對(duì)受力情況進(jìn)行簡(jiǎn)化,假設(shè)氣泡為規(guī)則球體,黏滯力只考慮氣泡上浮時(shí)在豎直方向上與周圍熔液相對(duì)運(yùn)動(dòng)而產(chǎn)生的。氣泡浮力bb的計(jì)算見(jiàn)式(1)。
氣泡重力bg計(jì)算見(jiàn)式(2)。
式中:b為氣泡內(nèi)部氣體密度。
根據(jù)Stokes定律給出氣泡黏滯力bv,計(jì)算見(jiàn)式(3)。
式中:為熔液動(dòng)力黏度;v為氣泡豎直方向上與熔液的相對(duì)速度。
根據(jù)Schiller-Naumann定律給出氣泡在熔液中受對(duì)流運(yùn)動(dòng)的拖曳力bd,計(jì)算見(jiàn)式(4)。
式中:為氣泡直徑;b為氣泡體積;為熔液流速;為氣泡速度;D為拖曳力系數(shù),與雷諾數(shù)ep有關(guān)。ep計(jì)算見(jiàn)式(5)。
同軸送粉激光熔覆實(shí)驗(yàn)使用高純氣霧化Inconel 718球形粉末,粉末形貌及粒徑統(tǒng)計(jì)見(jiàn)圖2,粉末平均粒徑為60.89 μm,粉末化學(xué)成分見(jiàn)表1。基板為316L不銹鋼,尺寸為60 mm×10 mm×5 mm。實(shí)驗(yàn)前對(duì)粉末進(jìn)行真空干燥處理,去除水分,基體用砂紙打磨后清洗干凈,并吹干表面。
實(shí)驗(yàn)采用IPG?YLS?2000?TR光纖激光器和三路同軸送粉激光熔覆頭,激光光斑直徑為2 mm。采用高純氬氣為保護(hù)氣,氣流密度為15 L/min。搭建“三明治”熔池觀測(cè)平臺(tái)[19-20],用于觀測(cè)熔池壽命及氣泡動(dòng)態(tài)過(guò)程,實(shí)驗(yàn)裝置見(jiàn)圖3—4?!叭髦巍庇^測(cè)法示意圖見(jiàn)圖5??紤]到熔覆過(guò)程中熔覆層在高度上的累積,為了觀測(cè)到熔池內(nèi)部情況,在安裝時(shí),GG17高溫玻璃高出基體大約一個(gè)熔覆層高度(2 mm),通過(guò)平口鉗及夾具將高溫玻璃和基體固定,激光光斑同時(shí)作用于基體和玻璃(光斑作用于基體和玻璃上的比例為1:1),其中GG17高溫玻璃作為觀測(cè)窗口,利用高速相機(jī)從側(cè)面采集熔池內(nèi)部的動(dòng)態(tài)行為。開(kāi)展單因素Inconel718合金單道熔覆實(shí)驗(yàn),并對(duì)熔覆后的熔覆層進(jìn)行切割、磨拋、腐蝕,拍攝截面金相圖,獲取其氣孔缺陷的分布,具體實(shí)驗(yàn)參數(shù)見(jiàn)表2。
圖2 Inconel 718粉末形貌和粒徑統(tǒng)計(jì)
表1 Inconel 718粉末成分
Tab.1 Inconel 718 powder composition
圖3 “三明治”熔池內(nèi)部觀測(cè)系統(tǒng)
圖4 夾具
圖5 “三明治”觀測(cè)法示意圖
表2 實(shí)驗(yàn)參數(shù)
Tab.2 Experiment parameters
熔覆層縱截面金相圖見(jiàn)圖6。由圖6可知,Inconel 718合金熔覆層中存在明顯圓形氣孔。“三明治”觀測(cè)圖與熔覆層縱截面金相圖比對(duì)見(jiàn)圖7。由圖7可知,熔池氣泡大小及位置分布與熔覆層氣孔缺陷大小及位置分布一致性較好,可用于熔池中氣泡動(dòng)態(tài)行為觀測(cè)。單因素實(shí)驗(yàn)中熔覆層熔高與熔深之和分布在1.3~2.4 mm之間,熔寬在1.5~3 mm(圖8)。
當(dāng)熔池對(duì)流不明顯時(shí),氣泡逃逸主要受自身浮力與黏滯力的影響。與氣泡在金屬溶液中受到的浮力相比,氣泡自身重力較小可以忽略,因此結(jié)合式(1)和(3),當(dāng)浮力和黏滯力平衡時(shí)獲得氣泡上浮速度。Inconel 718合金液相線為1 608.15 K,在熔覆過(guò)程中熔池溫度分布在1 600~2 400 K之間。為了方便討論,統(tǒng)一取熔液溫度為1 900 K,在此溫度下熔液的動(dòng)力黏度為0.000 52 Pa·s,熔液密度為7 200 kg/m3(熱物性參數(shù)來(lái)源于JmatPro數(shù)據(jù)庫(kù))。將氣泡半徑20 μm代入式(1)中,得出氣泡所受浮力為2.367×10–9N。聯(lián)立式(1)和(3),當(dāng)氣泡自身浮力與黏滯力平衡時(shí),得到上浮速度約為1.207×10–3m/s,當(dāng)氣泡距離熔池表面1 mm時(shí),對(duì)應(yīng)的逃逸時(shí)間約為0.828 s。熔池壽命與內(nèi)部氣泡固化情況見(jiàn)圖9。由圖9可知,從熔池前沿到后端的固化通常在800幀左右完成(拍攝幀率為3 000幀/s),對(duì)應(yīng)時(shí)間0.2~0.4 s,因而半徑較小的氣泡難以通過(guò)自身浮力在熔池凝固前逸出表面。
在熔液平均溫度1 900 K、氣泡豎直方向距離熔池表面1 mm的條件下,氣泡半徑與逃逸時(shí)間的關(guān)系見(jiàn)圖10。由圖10可知,隨著氣泡半徑變大,氣泡逃逸時(shí)間快速下降,當(dāng)氣泡半徑達(dá)到30 μm以上時(shí),對(duì)應(yīng)的逃逸時(shí)間小于0.4 s,小于熔池固化時(shí)間,因而有較大概率憑自身浮力逸出。利用ImageJ-Pro plus軟件對(duì)熔覆層金相圖進(jìn)行處理,獲得了熔覆層中氣孔分布圖(圖8)與氣孔直徑統(tǒng)計(jì)數(shù)據(jù),熔覆層氣孔缺陷直徑統(tǒng)計(jì)見(jiàn)圖11。由圖11可知,96.94%的金相截面氣孔直徑小于60 μm。
氣泡在熔池中的上浮情況見(jiàn)圖12,可見(jiàn)氣泡位置靠近熔池邊緣,此處對(duì)流較弱,氣泡隨對(duì)流運(yùn)動(dòng)不明顯。由圖12可知,直徑為60 μm的氣泡受浮力作用不斷上浮,在0.1 s內(nèi),氣泡上浮了約112 μm,同時(shí)氣泡直徑也在上浮過(guò)程中擴(kuò)大到100 μm左右,上浮速度為0.001 12 m/s,與計(jì)算結(jié)果0.002 72 m/s相差約2.4倍。該結(jié)果一方面原因是觀測(cè)位置靠近熔池邊緣,熔池溫度低于1 900 K,熔池動(dòng)力黏度較高,上浮阻力較大;另一方面,由于觀測(cè)手段的限制,氣泡易吸附在玻璃壁面上,阻礙了氣泡運(yùn)動(dòng)。
圖6 熔覆層縱截面金相圖
圖7 “三明治”熔池動(dòng)態(tài)觀測(cè)圖與熔覆層縱截面金相圖對(duì)比
圖8 不同工藝參數(shù)下熔覆層氣孔分布
圖9 “三明治”實(shí)驗(yàn)觀測(cè)熔池壽命與內(nèi)部氣泡固化
圖10 氣泡逃逸時(shí)間與半徑關(guān)系
圖11 氣孔直徑統(tǒng)計(jì)
圖12 氣泡上浮過(guò)程
在同軸送粉熔覆過(guò)程中,由于氣流及粉末顆粒的影響,熔液流速通常在1~6 m/s[21-22]。在熔液溫度1 900 K時(shí),當(dāng)氣泡半徑為20 μm、自身速度0 m/s、熔液流速為1 m/s時(shí),代入式(4)得出氣泡受到的拖曳力為2.451×10-6N,在同半徑下較浮力大出3個(gè)數(shù)量級(jí)。當(dāng)熔液速度低于0.008 7 m/s時(shí),氣泡受到的浮力將大于拖曳力。因此,氣泡在熔液中的運(yùn)動(dòng)主要受熔液對(duì)流產(chǎn)生的拖曳力影響。當(dāng)熔液平均溫度1 900 K、熔池平均流速0.5 m/s時(shí),浮力、拖曳力與氣泡半徑的關(guān)系曲線見(jiàn)圖13,可以看出,當(dāng)氣泡受到的浮力超過(guò)拖曳力時(shí),其半徑將大于129 μm,已經(jīng)達(dá)到Inconel 718合金熔覆層中最大氣孔缺陷半徑的2倍以上。因此,在熔覆過(guò)程中,相比于氣泡浮力,熔池內(nèi)氣泡受到的拖曳力占主導(dǎo)作用。
圖13 浮力和拖曳力與半徑的關(guān)系
熔池表面受溫度變化而產(chǎn)生的張力梯度,導(dǎo)致了Marangoni效應(yīng)[23],在Marangoni效應(yīng)和自然對(duì)流的作用下,熔池在縱、橫界面中通常會(huì)產(chǎn)生2個(gè)對(duì)流方向相反的環(huán)形對(duì)流(圖1)。同時(shí),在同軸送粉激光熔覆過(guò)程中,由于粉末顆粒的添加,會(huì)導(dǎo)致熔池表面的劇烈波動(dòng)[21, 24]。遠(yuǎn)離熔池中心區(qū)域的氣泡,由于該區(qū)域熔池對(duì)流較弱,拖曳力小,氣泡受對(duì)流影響,會(huì)小幅度向熔池邊緣和底部的待凝固區(qū)流動(dòng),同時(shí)該區(qū)域凝固速度快,熔液黏滯力大,氣泡的運(yùn)動(dòng)阻力較大,難以在浮力作用下上浮到熔池表面逸出,因而被待凝固的熔池捕獲形成氣孔缺陷。對(duì)于靠近熔池中心區(qū)域的氣泡,由于熔池內(nèi)部溫度梯度較小,凝固速率小,因而大氣泡更容易受浮力、環(huán)形對(duì)流的影響而向上方及徑向擴(kuò)散[7]。在橫截面上大氣泡更容易分布在頂端和兩側(cè)位置。氣孔在熔覆層中的分布位置見(jiàn)圖8,其中,箭頭為對(duì)流軌跡,圓圈為熔覆層底部流線的對(duì)流痕跡[8, 25-26],除c1組外,其余8組氣孔缺陷大多分布在對(duì)流路徑上,直徑較大的氣泡受浮力和拖曳力影響大,更容易分布在熔覆層頂端及兩側(cè),c1組由于掃描速度過(guò)低,熔覆層在高度上過(guò)度累積導(dǎo)致變形,對(duì)流失穩(wěn),但仍可以看出氣孔多位于熔覆層上端。
1)建立了氣泡運(yùn)動(dòng)力學(xué)模型。在Inconel 718同軸送粉激光熔覆層中存在明顯的規(guī)則圓形氣孔缺陷,在熔池中氣泡主要受重力、浮力、黏滯力、拖曳力等幾種力的綜合作用。
2)通過(guò)“三明治”動(dòng)態(tài)觀測(cè)發(fā)現(xiàn)熔池壽命通常在0.2~0.4 s之間;結(jié)合力學(xué)分析,直徑60 μm以上的氣泡在熔池固化前大概率可以憑借自身浮力逸出,對(duì)熔覆層氣孔缺陷進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),96.94%的氣孔缺陷直徑小于60 μm。
3)基于力學(xué)分析與單因素實(shí)驗(yàn)發(fā)現(xiàn),氣泡的運(yùn)動(dòng)行為主要受拖曳力影響,隨著熔池對(duì)流向熔池上方及由熔池中心徑向向外運(yùn)動(dòng),熔覆層內(nèi)氣孔缺陷更容易分布在對(duì)流路徑上。
[1] 王東生, 田宗軍, 沈理達(dá), 等. 激光熔覆技術(shù)研究現(xiàn)狀及其發(fā)展[J]. 應(yīng)用激光, 2012, 32(6): 538-44.
WANG Dong-sheng, TIAN Zong-jun, SHEN Li-da, et al. Research Status and Development of Laser Cladding Technology[J]. Apply Laser, 2012, 32(6): 538-44.
[2] 楊膠溪, 柯華, 崔哲, 等. 激光金屬沉積技術(shù)研究現(xiàn)狀與應(yīng)用進(jìn)展[J]. 航空制造技術(shù), 2020, 63(10): 14-22.
YANG Jiao-xi, KE Hua, CUI Zhe, et al. Laser Metal Deposition Technology Research Status and Application Progress[J]. Aeronautical Manufacturing Technology, 2020, 63(10): 14-22.
[3] 魯彥志, 于瑞東, 王靜. 激光熔覆技術(shù)在大型裝備修復(fù)中的應(yīng)用綜述[J]. 現(xiàn)代制造技術(shù)與裝備, 2019(10): 163-164.
LU Yan-zhi, YU Rui-dong, WANG Jing. Review of the Application of Laser Cladding Technology in the Repair of Large Equipment [J]. Modern Manufacturing Technology and Equipment, 2019(10): 163-164.
[4] 朱忠良, 趙凱, 郭立杰, 等. 大型金屬構(gòu)件增材制造技術(shù)在航空航天制造中的應(yīng)用及其發(fā)展趨勢(shì)[J]. 電焊機(jī), 2020, 50(1): 1-14.
ZHU Zhong-liang, ZHAO Kai, GUO Li-jie, et al. Application and Development Trend of Additive Manufacturing Technology for Large Metal Components in Aerospace Manufacturing[J]. Electric Welding Machine, 2020, 50(1): 1-14.
[5] 李克彬, 肖輝東, 劉宇, 等. 激光熔覆層的缺陷成因及控制方法[J]. 機(jī)電技術(shù), 2019(6): 50-51.
LI Ke-bin, XIAO Hui-dong, LIU Yu, et al. Causes and Control Methods of Defects in Laser Cladding Layer[J]. Mechanical & Electrical Technology, 2019(6): 50-51.
[6] 呂曉仁, 馬孝威, 董麗虹, 等. 激光熔覆層中孔隙、裂紋缺陷的形成機(jī)制及抑制方法研究進(jìn)展[J]. 功能材料, 2020, 51(6): 6034-6043.
LYU Xiao-ren, MA Xiao-wei, DONG Li-hong, et al. Research Progress on the Formation Mechanism and Suppression Method of Pore and Crack Defects in Laser Cladding Layer[J]. Jorunal of Functional Materials, 2020, 51(6): 6034-6043.
[7] NG G, JARFORS A, BI G, et al. Porosity Formation and Gas Bubble Retention in Laser Metal Deposition[J]. Applied Physics A, 2009, 97(3): 641-649.
[8] YANG Z, WANG A, WENG Z, et al. Porosity Elimination and Heat Treatment of Diode Laser-Clad Homogeneous Coating on Cast Aluminum-Copper Alloy[J]. Surface and Coatings Technology, 2017, 321: 26-35.
[9] HOJJATZADEH S M H, PARAB N D, YAN W, et al. Pore Elimination Mechanisms during 3D Printing of Metals[J]. Nature communications, 2019, 10(1): 1-8.
[10] ZHANG P, ZHOU X, CHENG X, et al. Elucidation of Bubble Evolution and Defect Formation in Directed Energy Deposition based on Direct Observation[J]. Additive Manufacturing, 2020, 32: 101026.
[11] 胡勇, 王梁, 李玨輝, 等. 定向洛倫茲力對(duì)激光熔覆熔池排氣的影響[J]. 中國(guó)激光, 2018, 45(8): 62-71.
HU Yong, WANG Liang, LI Yu-hui, et al. Effect of Directional Lorentz Force on Molten Pool Exhaust in Laser Cladding[J]. Chinese Journal of Lasers, 2018, 45(8):62-71.
[12] HU Y, WANG L, YAO J, et al. Effects of Electromagnetic Compound Field on the Escape Behavior of Pores in Molten Pool during Laser Cladding[J]. Surface and Coatings Technology, 2020, 383: 125198.
[13] WU Z, LI T, LI Q, et al. Process Optimization of Laser Cladding Ni60A Alloy Coating in Remanufacturing[J]. Optics & Laser Technology, 2019, 120: 105718.
[14] REDDY L, PRESTON S P, SHIPWAY P, et al. Process Parameter Optimisation of Laser Clad iron based Alloy: Predictive Models of Deposition Efficiency, Porosity and Dilution[J]. Surface and Coatings Technology, 2018, 349: 198-207.
[15] FEDINA T, SUNDQVIST J, KAPLAN A F. The Role of Powder Morphology in Particle Movement Behavior in Laser Powder Bed Fusion with an Emphasis on Fluid Drag [J]. Powder Technology, 2022, 395: 720-31.
[16] WANG H, GOULD B, HADDAD M, et al. In Situ High-Speed Synchrotron X-ray Imaging of Laser-Based Directed Energy Deposition of the Alloying Process with Dissimilar Powders [J]. Journal of Manufacturing Processes, 2022, 75: 1003-1011.
[17] WANG L, YAO J, HU Y, et al. Influence of Electric-Magnetic Compound Field on the WC Particles Distribution in Laser Melt Injection [J]. Surface and Coatings Technology, 2017, 315: 32-43.
[18] ZHANG C, GAO M, WANG D, et al. Relationship between Pool Characteristic and Weld Porosity in Laser Arc Hybrid Welding of AA6082 Aluminum Alloy [J]. Journal of Materials Processing Technology, 2017, 240(2222): 217-222.
[19] 陳根余, 夏海龍, 周聰, 等. 高功率光纖激光焊接底部駝峰的機(jī)理研究[J]. 中國(guó)激光, 2015, 42(2): 94-100.
CHEN Gen-yu, XIA Hai-long, ZHOU Cong, et al. Study on the Mechanism of Root Humping of Laser Welding with High Power Fiber Laser [J]. Chinese Journal of Lasers, 2015, 42(2): 94-100.
[20] 史平安, 萬(wàn)強(qiáng), 顏怡霞, 等焊接熔池流體動(dòng)力學(xué)行為的數(shù)值模擬和實(shí)驗(yàn)研究[J]. 材料熱處理學(xué)報(bào), 2017, 38(8): 134-144.
SHI Ping-an, WANG Qiang, YAN Yi-xia, et al. Simulation and Experimental Study on Fluid Dynamics Behavior of Welding Pool and Keyhole in Laser Welding Process [J]. Transactions of Materials and Heat Treatment, 2017, 38(8): 134-144.
[21] AGGARWAL A, PATEL S, VINOD A, et al. An Integrated Eulerian-Lagrangian-Eulerian Investigation of Coaxial Gas-Powder Flow and Intensified Particle-Melt Interaction in Directed Energy Deposition Process[J]. International Journal of Thermal Sciences, 2021, 166: 106963.
[22] AGGARWAL A, CHOUHAN A, PATEL S, et al. Role of Impinging Powder Particles on Melt Pool Hydrodynamics, Thermal Behaviour and Microstructure in Laser-Assisted DED Process: A Particle-Scale DEM – CFD – CA Approach[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119989.
[23] JIANG Y, CHENG Y, ZHANG X, et al. Simulation and Experimental Investigations on the Effect of Marangoni Convection on Thermal Field during Laser Cladding Process [J]. Optik, 2020, 203(2222): 164044.
[24] SONG B, YU T, JIANG X, et al. Effect of Laser Power on Molten Pool Evolution and Convection[J]. Numerical Heat Transfer, Part A: Applications, 2020, 78(2): 48-59.
[25] CUI C, WU M, MIAO X, et al. The Effect of Laser Energy Density on the Geometric Characteristics, Microstructure and Corrosion Resistance of Co-Based Coatings by Laser Cladding[J]. Journal of Materials Research and Technology, 2021, 15: 2405-2418.
[26] 閆世興, 董世運(yùn), 徐濱士, 等. 激光熔覆過(guò)程中熔池對(duì)流運(yùn)動(dòng)對(duì)熔覆層氣孔和元素分布的影響[J]. 紅外與激光工程, 2014, 43(9): 2832-2839.
YAN Shi-xing, DONG Shi-yun, XU Bin-shi, et al. Effect of Molten Pool Convection on Pores and Elements Distribution in the Process of Laser Cladding[J]. Infrared and Laser Engineering, 2014, 43(9): 2832-2839.
Analysis of Bubble Escape Behavior and Distribution of the Coaxial Powder Feeding Laser Cladding
XU Lei, WANG Yun, XU Zhen-ying, NI Wang, YAN Jin-jin
(School of Mechanical Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China)
The work aims to obtain the dynamic behavior of bubbles inside the melt pool and the distribution law of porosity defects in the cladding layer during the coaxial powder feeding laser cladding of Inconel 718 alloy. Mechanics model and equation were established for bubbles in melt pool to study the effect of buoyancy and drag force on the bubble escape behavior and calculate the bubble escape time under different conditions by considering the combined effects of bubble buoyancy, gravity, viscous force and drag force. A "sandwich" observation platform was built to observe the dynamic behavior of bubbles in the melt pool in situ and obtain the service life of the melt pool. Single-factor experiment was carried out on coaxial powder feeding laser cladding of Inconel 718 alloy to investigate the distribution law of porosity defects in the cladding layer. The service life of the melt pool was usually 0.2~0.4 s, and the critical value of bubble diameter in the melt pool was about 60 μm. When the diameter was larger than 60 μm, the bubble was easier to escape through its own buoyancy, and 96.94% of the porosity defects in the cladding layer obtained from the single-factor experiments were smaller than 60 μm in diameter, which showed good consistency with the calculation results. From the characterization of porosity defects in cladding layer, buoyancy generally had smaller effect than drag force on movement of bubbles with diameter below critical value. During the laser cladding of Inconel 718 alloy,there is a critical value for bubble size in the melt pool. Bubbles mainly move upward by buoyancy and drag force with the convection of the melt pool and porosity defects in the cladding layer tend to be distributed in the convection path.
coaxial powder feeding laser cladding; Inconel718; bubble escape; force analysis; pore distribution
10.3969/j.issn.1674-6457.2023.01.018
TN249
A
1674-6457(2023)01-0137-09
2022?04?01
2022-04-01
國(guó)家自然科學(xué)基金面上項(xiàng)目(51679112);揚(yáng)州市廣陵區(qū)科技計(jì)劃(GL202016)
National Natural Science Fund Face Items (51679112); Science and Technology project of Yangzhou Guangling District (GL202016)
徐磊(1997—),男,碩士生,主要研究方向?yàn)榧す馊鄹蚕嚓P(guān)機(jī)理。
XU Lei (1997-), Male, Postgraduate, Research focus: laser cladding related mechanism.
王勻(1975—),男,博士,教授,主要研究方向?yàn)榧す獬尚图夹g(shù)。
WANG Yun (1975-), Male, Doctor, Professor, Research focus: laser forming technology.
徐磊, 王勻, 許楨英, 等. 同軸送粉激光熔覆氣泡逃逸行為及分布研究[J]. 精密成形工程, 2023, 15(1): 137-145.
XU Lei, WANG Yun, XU Zhen-ying, et al. Analysis of Bubble Escape Behavior and Distribution of the Coaxial Powder Feeding Laser Cladding[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 137-145.