孟憲國,閆靜鍇,雒亞濤,周兵營,崔學(xué)習(xí),吳向東
輕合金成形
基于M?K理論的NbTiAl合金高溫成形極限曲線預(yù)測
孟憲國1,閆靜鍇2,雒亞濤1,周兵營2,崔學(xué)習(xí)2,吳向東2
(1.西安航天發(fā)動(dòng)機(jī)有限公司,西安 710100;2.北京航空航天大學(xué) 機(jī)械工程及自動(dòng)化學(xué)院,北京 100191)
NbTiAl合金在常溫下的塑性較差,針對300 ℃時(shí)NbTiAl合金的成形性能進(jìn)行研究,探究其在高溫環(huán)境下的力學(xué)性能和成形極限,分析理論預(yù)測成形極限的可行性,為進(jìn)一步研究鈮合金性能和擴(kuò)展其工程應(yīng)用提供理論參考。采用高溫單拉和高溫成形極限試驗(yàn),獲得了NbTiAl板材在300 ℃的應(yīng)力應(yīng)變曲線及成形極限曲線,使用Swift硬化模型針對塑性變形段進(jìn)行擬合,并采用M?K失穩(wěn)理論,結(jié)合相應(yīng)的材料本構(gòu)模型,對NbTiAl合金在高溫環(huán)境下的成形極限進(jìn)行了理論預(yù)測,并與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行了對比。NbTiAl合金在300 ℃時(shí)的塑性應(yīng)變階段仍然具有加工硬化效應(yīng),在初始厚度不均度0為0.998時(shí),得到的理論曲線與試驗(yàn)點(diǎn)在左側(cè)拉?壓區(qū)符合得較好,但對右側(cè)拉?拉區(qū)的理論預(yù)測與試驗(yàn)結(jié)果相差較大。NbTiAl合金在300 ℃時(shí)具有較好的成形性,采用合適的不均勻度系數(shù),利用M?K理論可以較好地預(yù)測NbTiAl合金高溫成形極限曲線左側(cè)拉?壓區(qū)的極限應(yīng)變,但對右側(cè)拉?拉區(qū)域極限應(yīng)變的預(yù)測結(jié)果誤差較大。
NbTiAl鈮合金;M?K模型;高溫成形極限;塑性失穩(wěn);理論預(yù)測;本構(gòu)方程
隨著航空航天技術(shù)的迅速發(fā)展,各國將研究的焦點(diǎn)匯聚在新型高溫材料上,傳統(tǒng)的鎳基高溫合金由于其使用溫度極限不超過1 200 ℃,因而無法滿足下一代高性能發(fā)動(dòng)機(jī)的要求,近30 a各國深入研究了鋁系金屬間化合物,但其最高使用溫度同樣低于1 200 ℃。硅基高溫陶瓷材料的使用溫度雖然可以滿足要求(可以達(dá)到1 600 ℃),但其使用時(shí)的可靠性較差,依然不能作為航空結(jié)構(gòu)材料的備選。由此,各國將目光轉(zhuǎn)移到了價(jià)格較為昂貴但非常有發(fā)展前景的鈮合金上[1]。
作為未來發(fā)動(dòng)機(jī)零件的候選材料之一,NbTiAl合金具有低密度、高溫比強(qiáng)度高、高塑性、高韌性、優(yōu)秀的抗腐蝕性能與冷熱成形性能等優(yōu)點(diǎn)[2],通過加工成形狀復(fù)雜的零件,可以應(yīng)用于火箭發(fā)動(dòng)機(jī)、衛(wèi)星姿控發(fā)動(dòng)機(jī)和超髙音速飛機(jī)等領(lǐng)域[3],是非常具有發(fā)展?jié)摿Φ某邷亟Y(jié)構(gòu)材料。在發(fā)動(dòng)機(jī)上,鈮合金零部件主要采用板材毛坯通過旋壓工藝進(jìn)行成形,在成形過程中不可避免會(huì)出現(xiàn)破裂和回彈等缺陷。板材的成形極限能夠反映出在成形過程中板材發(fā)生塑性失穩(wěn)前能夠達(dá)到的最大變形程度[4],是評價(jià)板材成形性能的綜合指標(biāo)。成形極限圖(Forming Limit Diagrams,F(xiàn)LD)是眾多評價(jià)板材成形性能方法中最有效、最直觀、最廣泛的方法,是評估板材成形性和解決板材沖壓問題非常有效的工具[5]。Park[6]比較了常規(guī)成形和增量成形中板料的成形極限曲線,發(fā)現(xiàn)成形極限曲線無法描述增量成形應(yīng)用中的失效,即應(yīng)變超過常規(guī)成形極限曲線而沒有發(fā)生失效。Jain等[7]通過試驗(yàn)確定AA6111?T4板材在頸縮和斷裂處的成形極限曲線。Arrieux[8]根據(jù)試驗(yàn)中板料失穩(wěn)時(shí)的應(yīng)力狀態(tài)和應(yīng)變路徑無關(guān)的現(xiàn)象,首次提出了成形極限應(yīng)力圖(forming limit stress diagram,F(xiàn)LSD)的概念,并基于Nakazima試驗(yàn)和Mises屈服準(zhǔn)則對成形極限應(yīng)力圖進(jìn)行測定。獲得成形極限曲線(Forming Limit Curves,F(xiàn)LC)的方法主要是實(shí)驗(yàn)與理論模型預(yù)測,試驗(yàn)獲得FLC的成本很高。目前,有關(guān)NbTiAl合金成形極限的試驗(yàn)研究還未見報(bào)道,針對NbTiAl合金的成形極限開展試驗(yàn)和理論研究具有非常重要的實(shí)際工程應(yīng)用價(jià)值和理論意義[9]。
材料為輕質(zhì)鈮鈦鋁合金板材(牌號為NbTiAl),其化學(xué)成分見表1,厚度為1 mm。試驗(yàn)采用配備高溫環(huán)境箱的Zwick Z010材料試驗(yàn)機(jī),應(yīng)變采用視頻引伸計(jì)測量,試樣尺寸(mm)和試驗(yàn)環(huán)境見圖1。
研究目的是初步分析鈮合金的高溫準(zhǔn)靜態(tài)變形行為,暫不考慮應(yīng)變速率影響,故選擇變形條件為溫度300 ℃、應(yīng)變速率0.001/s,最終獲得材料的真實(shí)應(yīng)力?真實(shí)應(yīng)變曲線見圖2。
表1 NbTiAl合金板材化學(xué)成分
Tab.1 Chemical composition of NbTiAl sheet wt.%
圖1 單拉試樣尺寸及試驗(yàn)設(shè)備
圖2 NbTiAl合金材料真實(shí)應(yīng)力?真實(shí)應(yīng)變曲線
高溫成形極限試驗(yàn)是采用剛性凸模對試樣進(jìn)行脹形的方法。根據(jù)試驗(yàn)裝置特點(diǎn)和實(shí)驗(yàn)原理,為了防止窄條矩形試樣在拉深筋處開裂,將試樣確定為中部較窄并向兩端圓弧過渡的尺寸形狀,試樣為厚度規(guī)格1.0 mm的鈮合金鋼板,測試溫度為300 ℃,其尺寸見圖3(單位mm)。試樣用激光切割加工并對邊緣進(jìn)行打磨。
圖3 FLD試驗(yàn)試件及幾何尺寸
試驗(yàn)在中科院沈陽金屬所進(jìn)行,設(shè)備為北京航空航天大學(xué)研制的熱環(huán)境通用板材成形試驗(yàn)機(jī)(圖4),采用真空爐電阻加熱方式,模具和試樣隨爐加熱,試驗(yàn)結(jié)束后采用風(fēng)冷進(jìn)行冷卻。
成形極限試驗(yàn)原理見圖5a,在試樣表面印制網(wǎng)格,將高溫潤滑劑涂抹在試樣和凸模接觸部位,放置好模具和試樣后開始抽真空加熱,加熱到300 ℃并保溫0.5 h,以保證板材溫度均勻。試驗(yàn)過程采用載荷控制,當(dāng)試樣發(fā)生破裂導(dǎo)致凸模載荷下降時(shí)試驗(yàn)終止。獲得的材料FLC曲線見圖5b。
圖5 300 ℃的NbTiAl板材成形極限試驗(yàn)
圖6 M?K理論模型原理
如圖6所示,假設(shè)在均勻的A區(qū)內(nèi)存在一個(gè)凹槽B區(qū),凹槽B區(qū)的存在使得板料有一個(gè)初始厚度不均度0,計(jì)算見式(1)。
式中:A0與B0分別為板材在模型中的均勻區(qū)A區(qū)與凹槽區(qū)B區(qū)的初始厚度。
在初始狀態(tài)時(shí),需要根據(jù)本構(gòu)方程決定A區(qū)和B區(qū)的應(yīng)變,一般存在均為0或者均有一個(gè)相同的預(yù)應(yīng)變等2種情況。
考慮到板材的各向異性,采用的是Hill¢48屈服準(zhǔn)則,見式(2)。
由Levy?Mesis增量理論可得式(6)。
再根據(jù)力平衡條件與式(4)可得式(10)。
將式(11)代入式(10)可得式(12)。
圖7 在300 ℃時(shí)NbTiAl成形極限理論預(yù)測與試驗(yàn)結(jié)果對比
1)采用高溫單向拉伸試驗(yàn)獲得了NbTiAl合金在300 ℃的應(yīng)力應(yīng)變曲線。NbTiAl合金在300 ℃的塑性應(yīng)變階段仍然具有加工硬化效應(yīng),其硬化模型可以采用冪函數(shù)形式來表示。
2)采用M?K理論對NbTiAl合金高溫成形極限曲線進(jìn)行了預(yù)測,并與試驗(yàn)結(jié)果進(jìn)行了對比分析。采用合適的不均勻度系數(shù),M?K理論可以較好地預(yù)測NbTiAl合金高溫成形極限曲線左側(cè)拉?壓區(qū)的極限應(yīng)變,但是對右側(cè)拉?拉區(qū)極限應(yīng)變的預(yù)測結(jié)果誤差較大。
[1] 余宸旭. Nb?Ti?Al高溫合金的制備與研究[D]. 長沙: 中南大學(xué), 2013: 1-10.
YU Chen-xu. Preparation and research of Nb-Ti-Al superalloy[D]. Changsha: Central South University, 2013: 1-10.
[2] 史志武, 張洪宇, 韋華, 等. Nb?Ti?Al基超高溫合金研究進(jìn)展[J]. 稀有金屬, 2016, 40(2): 172-181.
SHI Zhi-wu, ZHANG Hong-yu, WEI Hua, et al. Progress in Investigation of Nb-Ti-Al Based Ultrahign-Temperature Alloys[J]. Chinese journal of rare metals, 2016, 40(2): 172-181.
[3] 朱寶輝, 吳向東, 萬敏, 等. 航天用高溫鈮基合金進(jìn)展[J/OL]. 中國有色金屬學(xué)報(bào): 1-33[2022-05-18]. http://kns.cnki.net/kcms/detail/43.1238.tg.20220419.1028.002.html.
ZHU Bao-hui, WU Xiang-dong, WAN Min,et al. Development of High temperature niobium based alloys for aerospace applications[J/OL]. The Chinese Journal of Nonferrous Metals: 1-33[2022-05-18]. http://kns.cnki. net/kcms/detail/43.1238.tg.20220419.1028.002.html.
[4] 楊希英, 郎利輝, 劉康寧, 等. 基于修正M?K模型的鋁合金板材成形極限圖預(yù)測[J]. 北京航空航天大學(xué)學(xué)報(bào), 2015, 41(4): 675-679.
Yang Xi-ying, Lang Li-hui, LIU Kang-ning, et al. Prediction of Forming Limit Diagram of AA7075-O Aluminum Alloy Sheet Based on Modified M-K Model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 675-679.
[5] Da-Rocha A B, Santos A D, Teixeira P, et al. Analysis of Plastic Flow Localization Under Strain Paths Changes and Its Coupling With Finite Element Simulation in Sheet Metal Forming[J]. Mater Process Technol, 2009, 209(11): 5097.
[6] Park J J, Kim Y H. Fundamental Studies on the Incremental Sheet Metal Forming Technique[J]. Mater Process Technol, 2003, 140(1/2/3): 447.
[7] Jain M, Allin J, Lloyd D J. Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet[J]. Int J Mech Sci, 1999, 41: 1273.
[8] Arrieux R. Determination and Use of the Forming Limit Stress Diagrams in Sheet Metal Forming[J]. Mater Process Technol, 1995, 53: 47.
[9] 傅壘, 李利, 劉成, 等. 基于M?K理論的5182鋁合金汽車板成形極限預(yù)測[J]. 輕合金加工技術(shù), 2020, 48(7): 58-62.
FU Lei, LI Li, LIU Cheng, et al. Prediction of Forming Limit of 5182 Aluminum Alloy Sheet for Automobile Based on M-K Theory[J]. Light Alloy Fabrication Technology, 2020, 48(7): 58-62.
[10] Swift H W. Plastic Instability Under Plane Stress[J]. Journal of the Mechanics and Physics of Solid, 1952, 1(1): 1-18.
[11] Hill R. On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets [J]. Journal of Mechanics and Physics of Solids, 1952, 1(1): 19-31.
[12] ST?REN S, Rice J.Localized Necking in Thin Sheets[J]. Journal of the Mechanics and Physics of Solid, 1975, 23(6): 421-441.
[13] Zhu X H, Weinmann K, Chandra A. A Unified Bifurcation Analysis of Sheet Metal Forming Limits [J]. Journal of Engineering Materials and Technology. 2001, 123(3): 329-333.
[14] MARCINIAK Z, KUCZYNSKI K. Limit Strains in the Processes of Stretch-Forming Sheet Metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.
[15] GANJIANI M, ASSEMPOUR A. An Improved Analytical Approach for Determination of Forming Limit Diagrams Considering the Effects of Yield Functions[J]. Journal of Materials Processing Technology, 2007, 182(1/2/3): 598-607.
[16] Allwood J M, Shouler D R. Generalised Forming Limit Diagrams Showing Increased Forming Limits with Non-Planar Stress States[J]. International Journal of Plasticity, 2009, 25(7): 1207-1230.
[17] 楊曉明, 王寶雨, 校文超, 等. 基于M-K理論的6016鋁合金成形極限曲線預(yù)測[J].工程科學(xué)學(xué)報(bào), 2018,40(4): 485-491.
YANG Xiao-ming, WANG Bao-yu, XIAO Wen-chao, et al. Prediction of Forming Limit Curve of 6016 Aluminum Alloy Based on M-K Theory[J]. Chinese Journal of Engineering, 2018, 40(4): 485-491.
[18] 馬高山, 萬敏, 吳向東. 5A90鋁鋰合金熱態(tài)下的成形極限圖及其計(jì)算模型[J]. 中國有色金屬學(xué)報(bào), 2008(4): 717-721.
MA Gao-shan, WAN Min, WU Xiang-dong. Theoretical prediction of FLDs for Al-Li alloy at elevated temperature based on M-K model [J]. The Chinese Journal of Nonferrous Metals, 2008(4): 717-721.
[19] 畢靜, 馬博林, 張艷苓, 等. 基于M?K模型的TA15鈦合金高溫成形極限[J]. 北京航空航天大學(xué)學(xué)報(bào), 2020, 46(5): 893—899.
BI Jing, MA Bo-lin, ZHANG Yan-ling, et al. Hot Forming Limit of TA15 Titanium Alloy Based on M-K Model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(0): 893-899.
[20] 余海燕, 高云凱. 基于M?K模型的相變誘發(fā)塑性鋼板的成形極限研究[J]. 中國機(jī)械工程, 2007(1): 109-113.
YU Hai-yan, GAO Yun-kai. Study on Forming Limit Diagram for Transformation-induced Plasticity Sheet Steel Based on M-K Model[J]. China Mechanical engineering, 2007(1): 109-113.
[21] LI Xiao-qiang, DONG Hong-rui, WANG Hai-bo, et al. Effect of Strain Rate Difference Between Inside and Outside Groove in M-K Model in Prediction of Forming Limit Curve of Ti6Al4V at Elevated Temperatures[J]. Transactions of Nonferrous Metals Society of China, 2022, 30(2): 405-416.
[22] Dong Guo-jiang, CHEN Zhi-wei, YANG Zhuo-yun,et al. Domparative Study on Forming Limit Prediction of AA7075-T6 Sheet with M-K Model and Lou-Huh Criterion[J]. Transactions of Nonferrous Metals Society of China,2020,30(6): 1463-1477.
[23] 任麗梅, 張瑞昭, 孔博煒, 等. 基于修正M?K模型的AZ31B鎂合金板材預(yù)變形前后成形極限預(yù)測[J]. 塑性工程學(xué)報(bào), 2022, 29(10): 98-105.
Ren Li-mei, Zhang Rui-zhao, Kong Bo-wei, et al. Prediction of Forming Limit of AZ31B Magnesium Alloy Sheet Before and after Pre-deformation Based on Modified M-K Model[J]. Journal of Plasticity Engineering , 2022, 29(10): 98-105.
[24] 王玉寶. 基于M?K理論的金屬板料成形極限預(yù)測模型的修正及其試驗(yàn)驗(yàn)證與應(yīng)用[D]. 濟(jì)南: 山東大學(xué), 2021: 87-88.
Wang Yu-bao. Correction of Sheet Metal Forming Limit Prediction Model Based on M-K Theory and Its Experimental Verification and Application[D]. Ji'nan: Shandong University, 2021: 87-88.
[25] 鄭興悅, 陳劼實(shí). 基于M?K理論的高溫成形極限預(yù)測及影響因素分析[J]. 模具技術(shù), 2017(6): 1-6.
Zheng Xing-yue, Chen Jie-shi. Prediction of High Temperature Forming Limit and Analysis of Influencing Factors Based on M-K Theory[J].Die and Mould Technology, 2017(6): 1-6.
Prediction of High Temperature forming limit curve of NbTiAl alloy based on M-K theory
MENG Xian-guo1, YAN Jing-kai2, LUO Ya-tao1, ZHOU Bing-ying2, CUI Xue-xi2, WU Xiang-dong2
(1. Xi'an Space Engine Factory, Xi'an 710100, China;2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)
The work aims to study the formability of NbTiA alloy at 300 ℃ aiming at the poor plasticity of NbTiAl alloy at room temperature, so as to explore its mechanical properties and forming limit at high temperature, analyze the feasibility of theoretical prediction of forming limit, and provide theoretical reference for further research on the properties of niobium alloy and expansion of its engineering application. The stress-strain curve and forming limit curve of NbTiAl sheet at 300 ℃ were obtained by high temperature single tension test and high temperature forming limit test. The plastic deformation section was fitted by Swift hardening model. The forming limit of NbTiAl alloy at high temperature was theoretically predicted by M-K instability theory and corresponding material constitutive model, and was compared with the test data. NbTiAl alloy still had work hardening effect in the plastic strain stage at 300 ℃. The theoretical curve obtained at the initial thickness non-uniformity0=0.998 was in good agreement with the test point in the left tension-compression zone, but the theoretical prediction results of the tension-tension zone were quite different from the test results. The NbTiAl alloy has good formability at 300 ℃, and the appropriate non-uniformity coefficient combined with M-K theory can predict the limit strain of NbTiAl alloy in the left tension-compression zone of the high temperature forming limit curve, but the prediction error of the limit strain in the right tension-tension zone is large.
NbTiAl alloy; M-K model; high temperature forming limit; plastic instability; theoretical prediction; constitutive equations
10.3969/j.issn.1674-6457.2023.01.001
V261.3+3;TG386.3+2
A
1674-6457(2023)01-0001-07
2022?05?31
2022-05-31
國家自然科學(xué)基金面上項(xiàng)目(51875027)
National Natural Science Found Face Items (51875027)
孟憲國(1973—),男,高級工程師,主要研究方向?yàn)殁k金沖壓工藝技術(shù)。
MENG Xian-guo (1973-), Male, Senior engineer, Research focus: sheet metal stamping technology.
吳向東(1970—),男,博士,副教授,主要研究方向?yàn)橄冗M(jìn)塑性成形理論與技術(shù)。
WU Xiang-dong (1970-), Male, Doctor, Associate professor, Research focus: advanced plastic forming theory and technology.
孟憲國, 閆靜鍇, 雒亞濤, 等. 基于M?K理論的NbTiAl合金高溫成形極限曲線預(yù)測[J]. 精密成形工程, 2023, 15(1): 1-7.
MENG Xian-guo, YAN Jing-kai, LUO Ya-tao, et al. Prediction of High Temperature forming limit curve of NbTiAl alloy based on M-K theory[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 1-7.