国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析

2023-02-03 00:58:22馬治軍黃朝陽滕昊林建平
精密成形工程 2023年1期
關(guān)鍵詞:補(bǔ)丁異質(zhì)輕量化

馬治軍,黃朝陽,滕昊,林建平

復(fù)合材料成形

鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析

馬治軍1,黃朝陽1,滕昊2,林建平2

(1.上海賽科利汽車模具技術(shù)應(yīng)用有限公司,上海 202106;2.同濟(jì)大學(xué) 機(jī)械與能源工程學(xué)院,上海 200092)

為提高B柱的抗彎性能,通常會在B柱上額外焊接補(bǔ)丁板,但同時也增加了B柱的重量。在原始B柱上鋪設(shè)碳纖維增強(qiáng)復(fù)合材料(CFRP),獲得鋼?CFRP異質(zhì)復(fù)合B柱,取消B柱的鋼制加強(qiáng)板,實(shí)現(xiàn)B柱的輕量化。通過熱沖壓制備原始B柱及帶補(bǔ)丁板B柱,并以原始B柱為凹模,采用真空袋壓工藝制備鋼?CFRP異質(zhì)復(fù)合B柱?;?018版C?NCAP側(cè)面碰撞實(shí)驗(yàn)要求,設(shè)計B柱三點(diǎn)彎曲夾具,進(jìn)行原始B柱、帶補(bǔ)丁板B柱及鋼?CFRP異質(zhì)復(fù)合B柱的三點(diǎn)彎曲實(shí)驗(yàn),并對其重量及彎曲性能進(jìn)行分析。原始B柱重量4.1 kg,三點(diǎn)彎曲實(shí)驗(yàn)測得其剛度為0.763 kN/mm,最大載荷為21.59 kN,平均力為14.52 kN;帶補(bǔ)丁板B柱質(zhì)量為5.6 kg,三點(diǎn)彎曲實(shí)驗(yàn)測得其剛度為1.095 kN/mm,最大載荷為31.08 kN,平均力為18.38 kN;鋼?CFRP異質(zhì)復(fù)合B柱總質(zhì)量4.7 kg,三點(diǎn)彎曲試驗(yàn)測得其剛度為1.071 kN/mm,最大載荷為31.76 kN,平均力為19.58 kN。在保持剛度、最大載荷及平均力等彎曲力學(xué)性能不變的前提下,相對于帶補(bǔ)丁板B柱,鋼?CFRP異質(zhì)復(fù)合B柱可以減輕質(zhì)量0.9 kg,并且吸能更優(yōu),實(shí)現(xiàn)了B柱的輕量化。

碳纖維增強(qiáng)復(fù)合材料;真空袋壓工藝;鋼?CFRP異質(zhì)復(fù)合B柱;三點(diǎn)彎曲;輕量化

金屬-碳纖維增強(qiáng)復(fù)合材料(Carbon Fiber Reinforced Plastic,CFRP)異質(zhì)復(fù)合構(gòu)件將金屬與CFRP連接后一起進(jìn)行承載,可提高構(gòu)件的拉伸、彎曲、抗沖擊等力學(xué)性能[1-5],進(jìn)而助力實(shí)現(xiàn)零件的輕量化設(shè)計。根據(jù)金屬和CFRP成形先后順序及連接方式,目前金屬-CFRP異質(zhì)復(fù)合結(jié)構(gòu)成形工藝路線可以分為4類:金屬和CFRP分別制造成形后,再采用膠、鉚、焊等手段進(jìn)行連接[6-9];金屬零件成形后,以金屬零件為模,同時進(jìn)行CFRP成形及金屬和CFRP的連接[10-11];金屬和CFRP同步成形并實(shí)現(xiàn)連接[12-13];先將金屬和CFRP采用熱壓或熱壓罐成形等工藝制備成金屬?CFRP異質(zhì)復(fù)合板,再采用其他成形工藝制備為需要的形狀[14-17]。

金屬-FRP異質(zhì)構(gòu)件被廣泛應(yīng)用于航空領(lǐng)域及汽車領(lǐng)域,如機(jī)翼、機(jī)身蒙皮、車身等[18-21]。2015年,寶馬公司首先在其7系車上應(yīng)用了金屬-CFRP異質(zhì)復(fù)合構(gòu)件,如車頂橫梁、B柱、C柱、門檻梁及中央通道上,使整車重量減輕了130 kg[22]。陸冉[23]基于成形加膠接的成形工藝制造了鋼-CFRP異質(zhì)復(fù)合B柱,對制造的CFRP B柱補(bǔ)丁板進(jìn)行了三點(diǎn)彎曲仿真與實(shí)驗(yàn),在剛度不變情況下,實(shí)現(xiàn)了補(bǔ)丁板質(zhì)量減輕31%。熊長麗[24]先采用單向碳纖維布和樹脂傳遞模塑工藝制造了CFRP補(bǔ)丁板,再將補(bǔ)丁板和鋼質(zhì)B柱膠粘在一起,在總剛度不變的情況下,補(bǔ)丁板減重70%。

文中以某汽車帶補(bǔ)丁板B柱為研究對象,在保持剛度、強(qiáng)度、平均力等指標(biāo)不變的情況下,以鋼制B柱構(gòu)件為模,制作了鋼-CFRP異質(zhì)復(fù)合B柱,并通過三點(diǎn)彎曲實(shí)驗(yàn)與分析,為鋼-CFRP異質(zhì)復(fù)合B柱的應(yīng)用提供技術(shù)參考。

1 鋼-CFRP異質(zhì)復(fù)合B柱的成形工藝與三點(diǎn)彎曲實(shí)驗(yàn)

1.1 鋼-CFRP異質(zhì)復(fù)合B柱的真空袋壓成形制造

本研究中的鋼-CFRP異質(zhì)復(fù)合B柱是在已經(jīng)成形的原始B柱上鋪設(shè)碳纖維增強(qiáng)復(fù)合材料,采用真空袋壓工藝制成。具體成形制造工藝流程:采用熱沖壓成形工藝制備原始B柱;對鋼板進(jìn)行表面處理,主要目的是提高鋼與CFRP之間的結(jié)合性能,故對鋼板表面進(jìn)行噴砂處理;在原加強(qiáng)板位置鋪設(shè)復(fù)合材料預(yù)浸料,共鋪設(shè)5層12K雙向預(yù)浸料,其單向拉伸強(qiáng)度為983 MPa;將鋪設(shè)好CFRP預(yù)浸料的B柱依次用隔離膜、透氣氈、真空袋等進(jìn)行包裹;將真空袋打包好的鋼-CFRP異質(zhì)復(fù)合B柱放進(jìn)熱壓罐中,并通過真空快速接頭與真空泵連接,固化成形,完成鋼- CFRP異質(zhì)復(fù)合B柱的制作。

1.2 鋼-CFRP異質(zhì)復(fù)合B柱三點(diǎn)彎曲實(shí)驗(yàn)

根據(jù)2018版C-NCAP側(cè)面碰撞實(shí)驗(yàn)要求[25],研究設(shè)計了三點(diǎn)彎曲夾具。其中,沖頭半徑為125 mm,2個支撐腳架半徑為10 mm,如圖1所示。B柱根據(jù)側(cè)面碰撞實(shí)驗(yàn)中沖擊位置放置于2個支撐上,三點(diǎn)彎曲實(shí)驗(yàn)在MTS萬能實(shí)驗(yàn)機(jī)上進(jìn)行,沖頭下壓速率為15 mm/min。實(shí)驗(yàn)在室溫下共進(jìn)行3組,分別是原始B柱(無補(bǔ)丁板)、帶補(bǔ)丁板B柱及鋼-CFRP異質(zhì)復(fù)合B柱。以沖頭與B柱接觸開始的時刻為實(shí)驗(yàn)起始點(diǎn),沖頭下壓80 mm時實(shí)驗(yàn)停止。

圖1 B柱三點(diǎn)彎曲實(shí)驗(yàn)

2 鋼-CFRP異質(zhì)復(fù)合B柱三點(diǎn)彎曲實(shí)驗(yàn)結(jié)果與分析

在MTS萬能實(shí)驗(yàn)機(jī)上獲得B柱三點(diǎn)彎曲實(shí)驗(yàn)的載荷-位移曲線,如圖2所示,各個B柱的失效形式如圖3所示,可見原始B柱(無補(bǔ)丁板)的失效形式為壓潰失效;帶補(bǔ)丁板的B柱主要失效形式為補(bǔ)丁板焊點(diǎn)失效之后的壓潰失效;鋼-CFRP異質(zhì)復(fù)合B柱沒有出現(xiàn)整體CFRP脫粘的現(xiàn)象,主要的失效形式為中間位置CFRP的斷裂及斷裂處附近界面脫粘,表明真空袋壓工藝可以較好實(shí)現(xiàn)CFRP的成形與鋼?CFRP界面的連接。

圖2 B柱三點(diǎn)彎曲實(shí)驗(yàn)的載荷-位移曲線

由圖2可知,當(dāng)沖頭位移小于9.8 mm時,原始B柱和鋼-CFRP異質(zhì)復(fù)合B柱的承載小于帶補(bǔ)丁板B柱;當(dāng)沖頭加載到14.5 mm左右時,鋼-CFRP異質(zhì)復(fù)合B柱的載荷已經(jīng)達(dá)到了補(bǔ)丁板B柱的強(qiáng)度;當(dāng)沖頭加載到16.9 mm時,由于發(fā)生了焊點(diǎn)失效,補(bǔ)丁板B柱載荷出現(xiàn)突然下降,隨著載荷增大,越來越多焊點(diǎn)出現(xiàn)失效;鋼-CFRP異質(zhì)復(fù)合B柱在沖頭分別加載到20.2 mm時,CFRP開始斷裂,載荷出現(xiàn)突然下降;原始B柱、帶補(bǔ)丁板B柱和鋼?CFRP異質(zhì)復(fù)合B柱分別在沖頭加載到34.5、33.8、40.1 mm處時載荷達(dá)到峰值。此外,鋼?CFRP異質(zhì)復(fù)合B柱達(dá)到峰值后,其對抗侵入量與吸能效應(yīng)明顯優(yōu)于帶補(bǔ)丁板B柱。

所有B柱的剛度、最大載荷、平均力的具體數(shù)值如表1和圖4所示。通過補(bǔ)丁板和CFRP對鋼板進(jìn)行補(bǔ)強(qiáng),均可提高B柱的剛度、最大載荷、平均力等指標(biāo),但兩者增強(qiáng)方式存在一定區(qū)別。鋼-CFRP異質(zhì)復(fù)合B柱質(zhì)量相對于帶補(bǔ)丁板B柱減少了0.9 kg,剛度、最大載荷、平均力分別達(dá)到了帶補(bǔ)丁板B柱的98%、102%、107%,表明鋼-CFRP異質(zhì)復(fù)合B柱吸能效果優(yōu)于帶補(bǔ)丁板B柱,實(shí)現(xiàn)了B柱的輕量化設(shè)計。

圖3 B柱失效圖

表1 B柱力學(xué)性能對比

Tab.1 Comparison of mechanical properties of B-pillar

圖4 B柱力學(xué)性能對比

3 結(jié)論

通過CFRP替代鋼制補(bǔ)丁板,實(shí)現(xiàn)了B柱輕量化設(shè)計?;?018版C-NCAP側(cè)面碰撞實(shí)驗(yàn)要求設(shè)計了B柱三點(diǎn)彎曲夾具,并進(jìn)行了原始B柱、帶補(bǔ)丁板B柱及鋼?CFRP異質(zhì)復(fù)合B柱的三點(diǎn)彎曲實(shí)驗(yàn),通過對比各個B柱的質(zhì)量、剛度、最大載荷、平均力,可以得出以下主要結(jié)論。

1)通過真空袋壓工藝可較好地同時實(shí)現(xiàn)CFRP成形與鋼-CFRP的界面連接。

2)在保持剛度、最大載荷及平均力等彎曲力學(xué)性能不變的前提下,鋼-CFRP異質(zhì)復(fù)合B柱相對帶補(bǔ)丁板B柱可以減輕質(zhì)量0.9 kg,實(shí)現(xiàn)B柱的輕量化。

[1] VASUDEVAN A, KUMAR B N, Depoures M V, et al. Tensile and Flexural Behaviour of Glass Fibre Reinforced Plastic - Aluminium Hybrid Laminate Manufactured by Vacuum Resin Transfer Moulding Technique (VARTM)[J]. Materials Today: Proceedings, 2021, 37: 2132-2140.

[2] ZHENG Zi-han, DU Yan-sheng, CHEN Zhi-hua, et al. Experimental and Theoretical Studies of FRP-Steel Composite Plate under Static Tensile Loading[J]. Construction and Building Materials, 2021, 271: 121501.

[3] DHALIWAL G S, NEWAZ G M. Experimental and Numerical Investigation of Flexural Behavior of Carbon Fiber Reinforced Aluminum Laminates[J]. Journal of Reinforced Plastics and Composites, 2016, 35(12): 945-956.

[4] YAO Lu, SUN Guang-yong, HE Wen-tao. Investigation on Impact Behavior of FMLS under Multiple Impacts with the Same Total Energy: Experimental Characterization and Numerical Simulation[J]. Composite Structures, 2019, 226: 111218.

[5] TAHERZADEH-FARD A, LIAGHAT G, AHMADI H, et al. Experimental and Numerical Investigation of the Impact Response of Elastomer Layered Fiber Metal Laminates (EFMLs)[J]. Composite Structures, 2020, 245: 112264.

[6] WANG Zhen, LI Cheng-gao, SUI Li-li, et al. Effects of Adhesive Property and Thickness on the Bond Performance between Carbon Fiber Reinforced Polymer Laminate and Steel[J]. Thin-Walled Structures, 2021, 158: 107176.

[7] RAO H M, KANG Ji-dong, HUFF G, et al. Impact of Specimen Configuration on Fatigue Properties of Self-Piercing Riveted Aluminum to Carbon Fiber Reinforced Polymer Composite[J]. International Journal of Fatigue, 2018, 113: 11-22.

[8] NAGATSUKA K, XIAO B, WU L, et al. Dissimilar Materials Joining of Metal/Carbon Fibre Reinforced Plastic by Resistance Spot Welding[J]. Welding International, 2018, 32(7): 505-512.

[9] 蔣浩, 廖宇軒, 李光耀, 等. 碳纖維-鋁合金電磁鉚接工藝及性能研究[J]. 精密成形工程, 2021, 13(4): 37-44.

JIANG Hao, LIAO Yu-xuan, LI Guang-yao, et al. Study on Process and Mechanical Properties of CFRP/Al Electromagnetic Riveted Structures[J]. Journal of Netshape Forming Engineering, 2021, 13(4): 37-44.

[10] ALABTAH F G, MAHDI E. The Effect of Sizing Optimization on the Interface between High Strength Steel and Fiber Reinforced Composite[J]. Composite Structures, 2021, 266: 113740.

[11] TAYLOR T, PENNEY D, YANAGIMOTO J. One-Step Process for Press Hardened Steel-Carbon Fiber Reinforced Thermoset Polymer Hybrid Parts[J]. Steel Research International, 2020, 91(10): 2000085.

[12] GUO Yu-qin, ZHAI Chang-pan, LI Fu-zhu, et al. Formability, Defects and Strengthening Effect of Steel/CFRP Structures Fabricated by Using the Differential Temperature Forming Process[J]. Composite Structures, 2019, 216: 32-38.

[13] MENNECART T, HIEGEMANN L, KHALIFA N B. Analysis of the Forming Behaviour of In-Situ Drawn Sandwich Sheets[J]. Procedia Engineering, 2017, 207: 890-895.

[14] SINKE J. Forming Technology for Composite/Metal Hybrids[M]// Composites Forming Technologies. Amsterdam: Elsevier, 2007: 197-219.

[15] RUSSIG C, BAMBACH M, HIRT G, et al. Shot Peen Forming of Fiber Metal Laminates on the Example of GLARE?[J]. International Journal of Material Forming, 2014, 7(4): 425-438.

[16] CAREY C, CANTWELL W J, DEARDEN G, et al. Towards a Rapid, Non-Contact Shaping Method for Fibre Metal Laminates Using a Laser Source[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(5): 557-565.

[17] 韓奇鋼, 孫延標(biāo), 楊文珂, 等. 纖維/金屬層狀復(fù)合材料的研究及應(yīng)用進(jìn)展[J]. 精密成形工程, 2019, 11(1): 17-24.

HAN Qi-gang, SUN Yan-biao, YANG Wen-ke, et al. The Development in Research and Application of Fiber Metal Laminated Composites[J]. Journal of Netshape Forming Engineering, 2019, 11(1): 17-24.

[18] CHEN Yi-zhe, WANG Yi-chun, WANG Hui. Research Progress on Interlaminar Failure Behavior of Fiber Metal Laminates[J]. Advances in Polymer Technology, 2020, 2020: 1-20.

[19] VLOT A, GUNNINK J W. Fibre Metal Laminates: An Introduction[M]. Dordrecht: Kluwer Academic Publishers, 2001.

[20] ALDERLIESTEN R. On the Development of Hybrid Material Concepts for Aircraft Structures[J]. Recent Patents on Engineering, 2009, 3(1): 25-38.

[21] B?TTCHER A, OPDEMOM H. Series-Production Adhesive Process for Hybrid Components[J]. Lightweight Design Worldwide, 2019, 12(6): 48-53.

[22] NICO D M. BMW 7 Series' Carbon Core more important that you might think[EB/OL]. (2015-09-01) [2021-07-01].https://www.bmwblog.com/2015/09/01/bmw-7-series-carbon-core-more-important-that-you-might-think/.

[23] 陸冉. 面向輕量化的CFRP汽車B柱逆向設(shè)計與仿真分析[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2020: 56-66.

LU Ran. Reverse Design and Simulation Analysis for Lightweight CFRP Vehicle B-Column[D]. Yangzhou: Yangzhou University, 2020: 56-66.

[24] 熊長麗. 碳纖維復(fù)合材料汽車B柱加強(qiáng)板的輕量化設(shè)計研究[D]. 長春: 吉林大學(xué), 2018: 54-57.

XIONG Chang-li. Study on Lightweight Design of Automotive B-Pillar Reinforced Plate with Carbon Fiber Reinforced Plastic Material[D]. Changchun: Jilin University, 2018: 54-57.

[25] C?NCAP 管理規(guī)則[S]. 天津:中國汽車技術(shù)研究中心有限公司, 2018.

C-NCAP Management Regulation Official[S]. Tianjin: China Automotive Technology & Research Center Co., Ltd., 2018.

Bending Test Analysis of Steel-CFRP Hybrid Composite B-Pillar

MA Zhi-jun1, HUANG Zhao-yang1, TENG Hao2, LIN Jian-ping2

(1. Shanghai Superior Die Technology Co., Ltd., Shanghai 202106, China; 2. College of Mechanical Engineering, Tongji University, Shanghai 200092, China)

In order to improve the bending resistance of B-pillar, additional patch plates are usually welded to the B-pillar, which increases the weight of the B-pillar at the same time. The work aims to lay carbon fiber reinforced composite (CFRP) on the original B-pillar to obtain the steel-CFRP hybrid composite B-pillar, and eliminate the steel reinforced plate to realize the lightweight of B-pillar.The original B-pillar and B-pillar with patch plate were prepared by hot stamping. The steel-CFRP hybrid composite B-pillar was fabricated by vacuum bag pressure molding with the original B-pillar as the die. Based on the requirements of C-NCAP side impact test (2018 Edition), a three-point bending fixture for B-pillar was designed, and three-point bending test was carried out to original B-pillar, B-pillar with patch plate and steel-CFRP hybrid composite B-pillar. The original B-pillar had the weight of 4.1 kg, stiffness of 0.763 kN/mm measured by three-point bending test, maximum load of 21.59 kN and average force of 14.52 kN. The B-pillar with patch plate had the weight of 5.6 kg, stiffness of 1.095 kN/mm measured by three-point bending test, maximum load of 31.08 kN and average force of 18.38 kN. The steel-CFRP hybrid composite B-pillar had the total weight of 4.7 kg, stiffness of 1.071 kN/mm measured by three-point bending test, maximum load of 31.76 kN and average force of 19.58 kN. Under the premise of maintaining the bending mechanical properties such as stiffness, maximum load and average force, the weight of steel-CFRP hybrid B-pillar can be reduced by 0.9 kg compared with that of B-pillar with patch plate, and the energy absorption is better, which realizes the lightweight design of B-pillar.

carbon fiber reinforced plastic; vacuum bag pressure molding; steel-CFRP hybrid composite B-pillar; three-point bending; lightweight

10.3969/j.issn.1674-6457.2023.01.013

TD406

A

1674-6457(2023)01-0101-05

2022?01?17

2022-01-17

馬治軍(1988—),男,博士,主要研究方向?yàn)闊岢尚武摴に嚰捌漭p量化。

MA Zhi-jun (1988-), Male, Doctor, Research focus: hot forming steel process and its lightweight.

滕昊(1996—),男,博士研究生,主要研究方向?yàn)殇?CFRP異質(zhì)復(fù)合構(gòu)件力學(xué)性能及界面結(jié)合性能。

TENG Hao (1996-), Male, Doctoral candidate, Research focus: mechanical properties and interface bonding properties of steel-CFRP hybrid composite structures.

馬治軍, 黃朝陽, 滕昊, 等. 鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析[J]. 精密成形工程, 2023, 15(1): 101-105.

MA Zhi-jun, HUANG Zhao-yang, TENG Hao, et al. Bending Test Analysis of Steel-CFRP Hybrid Composite B-Pillar[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 101-105.

猜你喜歡
補(bǔ)丁異質(zhì)輕量化
汽車輕量化集成制造專題主編
一種輕量化自卸半掛車結(jié)構(gòu)設(shè)計
智富時代(2019年2期)2019-04-18 07:44:42
健胃補(bǔ)丁
學(xué)與玩(2018年5期)2019-01-21 02:13:06
繡朵花兒當(dāng)補(bǔ)丁
文苑(2018年18期)2018-11-08 11:12:30
補(bǔ)丁奶奶
幼兒畫刊(2018年7期)2018-07-24 08:25:56
瞄準(zhǔn)掛車輕量化 鑼響掛車正式掛牌成立
專用汽車(2016年1期)2016-03-01 04:13:19
隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見光光催化性能
用戶:輕量化掛車的使用體驗(yàn)
專用汽車(2015年4期)2015-03-01 04:09:07
MoS2/ZnO異質(zhì)結(jié)的光電特性
土默特右旗| 甘南县| 灌云县| 剑川县| 汾阳市| 多伦县| 涪陵区| 乐安县| 平顺县| 岳池县| 根河市| 高青县| 施甸县| 裕民县| 郎溪县| 哈巴河县| 横峰县| 水富县| 兴海县| 沁源县| 绥滨县| 平乡县| 汾西县| 侯马市| 桑日县| 娱乐| 隆德县| 昌都县| 水城县| 马公市| 温州市| 南郑县| 抚州市| 合江县| 文化| 闻喜县| 永福县| 牟定县| 太仓市| 盐山县| 青岛市|