国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

表觀遺傳修飾對(duì)脂肪組織產(chǎn)熱的調(diào)控進(jìn)展

2022-11-21 07:49:26趙清雯潘東寧
遺傳 2022年10期
關(guān)鍵詞:米色產(chǎn)熱棕色

趙清雯,潘東寧

綜 述

表觀遺傳修飾對(duì)脂肪組織產(chǎn)熱的調(diào)控進(jìn)展

趙清雯1,潘東寧2

1. 浙江大學(xué)醫(yī)學(xué)院附屬杭州市第一人民醫(yī)院老年醫(yī)學(xué)科,杭州 310006 2. 復(fù)旦大學(xué)基礎(chǔ)醫(yī)學(xué)院代謝分子醫(yī)學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200032

棕色和米色脂肪組織的激活可以增加葡萄糖、脂肪酸等底物的消耗,調(diào)節(jié)全身的能量平衡,改善肥胖病、2型糖尿病等代謝性疾病。研究產(chǎn)熱脂肪組織的調(diào)控機(jī)制,將為代謝性疾病的防治提供新策略。目前研究已表明,表觀遺傳修飾在脂肪組織的分化和產(chǎn)熱等方面發(fā)揮重要的調(diào)控作用。本文從DNA甲基化、組蛋白修飾、染色質(zhì)重塑和非編碼RNA等方面,對(duì)表觀遺傳修飾在脂肪組織的分化和產(chǎn)熱等方面發(fā)揮的調(diào)控作用進(jìn)行綜述,為深入研究脂肪組織的激活提供新思路。

表觀遺傳修飾;棕色脂肪組織;米色脂肪組織;米色化;產(chǎn)熱

由于世界經(jīng)濟(jì)水平的提高以及生活條件的改善,目前全球約有1/3的人群存在不同程度的肥胖,其中近一半肥胖患者是未成年人[1,2],肥胖癥的治療已經(jīng)成為重要公共衛(wèi)生問題。營(yíng)養(yǎng)過剩累積造成脂肪細(xì)胞的肥大以及增生是造成肥胖的主要原因。脂肪組織依據(jù)發(fā)育和功能的不同被分為白色脂肪組織(white adipose tissue)、棕色脂肪組織(brown adipose tissue, BAT)和米色脂肪組織(beige adipose tissue)。白色脂肪組織通過儲(chǔ)存脂質(zhì)以及分泌脂肪因子,調(diào)控機(jī)體的糖脂代謝以及胰島素抵抗等。而棕色脂肪組織通過解耦連蛋白1 (uncoupling protein 1, UCP1)將化學(xué)能轉(zhuǎn)化成熱能,維持體溫。米色脂肪組織可以由前體細(xì)胞從頭分化而來,也可以由白色脂肪組織轉(zhuǎn)變而來,通過UCP1依賴和UCP1非依賴的方式進(jìn)行產(chǎn)熱[3~7]。研究證實(shí)棕色和米色脂肪組織的激活可以改善肥胖、2型糖尿病、動(dòng)脈粥樣硬化等代謝性疾病,所以對(duì)其產(chǎn)熱機(jī)制的研究尤其重要[8~11]。表觀遺傳修飾是一種不涉及改變基因組序列但可以調(diào)控基因表達(dá)的一種方式,可以作為靶向激活產(chǎn)熱脂肪組織的重要手段。本文將從DNA甲基化、組蛋白修飾、染色質(zhì)重塑、非編碼RNA等方面具體闡述表觀遺傳修飾對(duì)脂肪組織的調(diào)控。

1 DNA甲基化修飾對(duì)脂肪組織的調(diào)控

DNA甲基化修飾在脂肪細(xì)胞的分化和產(chǎn)熱方面發(fā)揮著重要作用。最常見的DNA甲基化位點(diǎn)是CpG中的胞嘧啶,主要位于基因的啟動(dòng)子或5′-非翻譯區(qū)(untranslated region, UTR)。DNA甲基轉(zhuǎn)移酶(DNA methyltransferases, DNMTs)分為DNMT1、DNMT3A、DNMT3B三類,通常情況下DNA的高甲基化抑制基因轉(zhuǎn)錄,低甲基化則激活基因轉(zhuǎn)錄(表1)。

表1 DNA修飾和組蛋白修飾對(duì)產(chǎn)熱脂肪組織的調(diào)控

三種DNA甲基轉(zhuǎn)移酶對(duì)脂肪組織的調(diào)控分別涉及不同的分子機(jī)制。在棕色脂肪細(xì)胞中敲除或,可明顯增加肌源性基因的表達(dá),導(dǎo)致細(xì)胞分化障礙;敲除小鼠維持體溫的能力減弱、飲食誘導(dǎo)的肥胖加重[12]。棕色脂肪細(xì)胞敲除會(huì)上調(diào)PI3K-Akt信號(hào),增加敲除雌鼠的產(chǎn)熱、能量消耗以及胰島素敏感性[13]。與前者相反,在前脂肪細(xì)胞中敲除導(dǎo)致肌細(xì)胞增強(qiáng)因子2C (myocyte enhancer factor 2C, MEF2C)的啟動(dòng)子呈現(xiàn)低甲基化水平,后者表達(dá)增加使前脂肪細(xì)胞發(fā)生肌細(xì)胞重塑;敲除小鼠尤其是雌鼠表現(xiàn)出對(duì)冷刺激的敏感、肥胖加重的表型[14]。

棕色脂肪特征性基因受環(huán)境影響存在不同程度的甲基化修飾。棕色脂肪組織中UCP1增強(qiáng)子CpG位點(diǎn)的甲基化水平明顯低于其他組織,使得UCP1在棕色脂肪組織中高度富集[16]。PR結(jié)構(gòu)域蛋白16 (PR domain-containing 16, PRDM16)是決定棕色脂肪細(xì)胞分化命運(yùn)的轉(zhuǎn)錄調(diào)控因子,其轉(zhuǎn)錄起始位點(diǎn)富集CpG位點(diǎn)[54]。去甲基化酶10/11易位蛋白(ten- eleven translocation, TET)隨著棕色脂肪細(xì)胞的分化被誘導(dǎo)增加,對(duì)的啟動(dòng)子進(jìn)行去甲基化,增加PRDM16的表達(dá),推動(dòng)棕色脂肪細(xì)胞的分化[15]。研究表明,TET1也可以通過不依賴去甲基化酶的方式負(fù)調(diào)控白色脂肪組織的米色化。脂肪細(xì)胞敲除小鼠出現(xiàn)能量消耗增加、抵抗冷刺激、飲食誘導(dǎo)的體重減輕以及胰島素敏感性改善的表型。從分子機(jī)制上看,皮下白色脂肪組織中TET1協(xié)同HDAC1對(duì)、過氧化物酶體增殖物激活受體輔激活因子1α (peroxisome proliferators-activated receptor γ co-activator 1 α,Pgc1α)的啟動(dòng)子進(jìn)行H3K27去乙酰化修飾,抑制白色脂肪組織的米色化[17]。臨床試驗(yàn)中發(fā)現(xiàn)非酒精性脂肪肝病患者經(jīng)口服黃連素后,明顯增加棕色脂肪組織的體積(87.9%)和活性水平(121.3%)、降低體重和腹部/皮下脂肪比、改善胰島素敏感性。研究發(fā)現(xiàn)黃連素通過激活脂肪細(xì)胞內(nèi)AMPK信號(hào)通路提高線粒體代謝產(chǎn)物α-酮戊二酸的含量,增加PRDM16啟動(dòng)子的去甲基化水平,促進(jìn)棕色脂肪細(xì)胞的分化。這項(xiàng)研究拓展了黃連素的臨床藥理學(xué)活性,也為靶向激活棕色脂肪提供一個(gè)安全有效的臨床藥物[55]。

2 組蛋白修飾對(duì)脂肪組織的調(diào)控

2.1 組蛋白乙?;揎棇?duì)脂肪組織的調(diào)控

組蛋白乙酰化是由組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferases, HATs)和去乙?;?histone dea-cetylases, HDACs)催化完成。根據(jù)結(jié)構(gòu)域的不同將組蛋白乙酰轉(zhuǎn)移酶分為GCN5相關(guān)的N-乙?;D(zhuǎn)移酶超家族(Gcn5-related N-acetyltransferase, GNAT)、MYST家族和CREB結(jié)合蛋白/E1A結(jié)合蛋白p300復(fù)合物(CREB-binding protein/E1A binding protein p300, CBP/p300) 3個(gè)家族。乙?;饕l(fā)生在組蛋白H3和H4 (H3K9、H3K14、H3K18、H3K23、H3K27、H3K56和H4K5、H4K8、H4K12、H4K26)的相應(yīng)位點(diǎn),激活基因轉(zhuǎn)錄,相反去乙?;种苹蜣D(zhuǎn)錄[56~58](圖1)。

在棕色脂肪細(xì)胞中同時(shí)敲低GCN5和它的同源蛋白PCAF,明顯抑制H3K9的乙?;?,導(dǎo)致細(xì)胞分化障礙;體內(nèi)雙敲(Gcn5;PCAF;-)小鼠的棕色脂肪組織表現(xiàn)出發(fā)育缺陷。研究發(fā)現(xiàn),GCN5/PCAF調(diào)控啟動(dòng)子上H3K9的乙酰化,同時(shí)招募RNA聚合酶Ⅱ至啟動(dòng)子,共同推動(dòng)棕色脂肪細(xì)胞的分化[18,59]。CBP/p300與組蛋白甲基轉(zhuǎn)移酶混合連鎖白血病因子3/4(mixed lineage leukemia factor, MLL3/MLL4)結(jié)合在過氧化物酶體增殖物激活受體因子γ (peroxisome proliferator- activated receptor γ, Pparγ)、CCAAT/增強(qiáng)子結(jié)合蛋白α (CCAAT/enhancer-binding protein α, C/ebpα)、脂肪酸結(jié)合蛋白4 (fatty acid binding protein 4, Fabp4)的增強(qiáng)子區(qū)域催化H3K27乙?;虷3K4me1/me2甲基化修飾,組成超級(jí)增強(qiáng)子,共同調(diào)控棕色脂肪細(xì)胞的分化[20]。以上研究表明GCN5/PCAF、CBP/p300介導(dǎo)的乙?;揎棇?duì)細(xì)胞分化的重要推動(dòng)作用,可以作為激活棕色脂肪細(xì)胞分化的潛在靶點(diǎn)。

2.2 組蛋白去乙?;揎棇?duì)脂肪組織的調(diào)控

HDACs根據(jù)序列的同源性分為5種:I類HDACs (HDAC1-3、HDAC8)、IIa類HDACs (HDAC4-7、HDAC9)、IIb類HDACs(HDAC6、HDAC10)、III類Sirtuins (SIRT1-7)、IV類HDACs (HDAC11)。I類HDACs主要分布在細(xì)胞核;II類HDACs除HDAC10以外主要分布在細(xì)胞質(zhì),也可以在核質(zhì)之間穿梭;III類Sirtuins分布在線粒體或者細(xì)胞質(zhì);IV類HDACs和HDAC10分布在細(xì)胞核。四種HDACs具有不同的組織分布和細(xì)胞定位,執(zhí)行不同的功能[56,60],其中I、III類HDACs主要參與脂肪組織的調(diào)控(表1,圖1)。

圖1 表觀修飾酶的分類

標(biāo)紅表示已被報(bào)道參與脂肪組織調(diào)控。

2.2.1 I類HDACs

使用I類HDACs抑制劑處理原代棕色脂肪細(xì)胞,會(huì)增加細(xì)胞的線粒體生成以及耗氧量。同樣地,對(duì)肥胖小鼠注射I類HDACs抑制劑,脂肪組織中PPARγ/Pgc1α信號(hào)通路被激活,增加小鼠的能量消耗、減輕體重、改善葡萄糖和胰島素的敏感性[61],表明Ⅰ類HDACs在改善全身能量代謝方面的重要作用。盡管白色脂肪組織中HDAC1的水平高于棕色脂肪組織,在冷暴露或β3腎上腺素激動(dòng)劑處理下,棕色脂肪組織中Hdac1的表達(dá)反而被抑制。進(jìn)一步研究發(fā)現(xiàn),棕色脂肪細(xì)胞敲低明顯增加H3K27乙?;?,并且抑制H3K27me3水平,上調(diào)棕色脂肪特征性基因、、、碘甲狀腺素脫碘酶2 (iodothyronine deiodinase 2, Dio2)的表達(dá)[21]。在急性冷暴露條件下,棕色脂肪組織HDAC3能夠特異性啟動(dòng)等產(chǎn)熱基因的表達(dá),以維持棕色脂肪組織的快速產(chǎn)熱。從機(jī)制上分析,HDAC3可以作為雌激素相關(guān)受體α (estrogen-related receptor α, ERRα)的輔激活因子,通過ERRα靶向Pgc1α蛋白進(jìn)行去乙?;黾覲gc1α的表達(dá),介導(dǎo)線粒體的氧化磷酸化[25]。而在脂肪組織中敲除Hdac3增加白色脂肪組織中脂肪酸的從頭合成和脂肪酸β氧化過程,兩者形成一個(gè)無效循環(huán),造成乙酰-CoA的累積,后者增加基因增強(qiáng)子、基因增強(qiáng)子、調(diào)控區(qū)域的乙?;剑苿?dòng)白色脂肪組織米色化過程[23]。I類HDACs參與調(diào)控棕色脂肪組織的產(chǎn)熱以及白色脂肪組織的米色化過程,可以為產(chǎn)熱脂肪組織的激活提供新思路。

2.2.2 III類SIRTs

Ⅲ類SIRTs分為7種,即SIRT1-7,即是NAD+依賴的蛋白去乙?;?,也是ADP核糖基轉(zhuǎn)移酶,在染色質(zhì)沉默、細(xì)胞周期調(diào)控、細(xì)胞分化、細(xì)胞代謝方面均有調(diào)控作用[62]。

SIRT1對(duì)分泌型卷曲相關(guān)蛋白1 (secreted frizzled- related protein 1, Sfrp1)、、β環(huán)連蛋白抑制基因1 (dishevelled binding antagonist of β-catenin 1, Dact1)啟動(dòng)子上進(jìn)行H3K9、H4K16去乙?;揎?,同時(shí)去乙?;?catenin蛋白使其累積在細(xì)胞核內(nèi),共同激活Wnt信號(hào)通路,抑制間充質(zhì)干細(xì)胞的分化[29]。敲除乳腺癌缺失基因1 (deleted in breast cancer 1, DBC1)持續(xù)激活SIRT1,SIRT1通過去乙?;疨PARγ蛋白的Lys268、Lys293位點(diǎn),增加其與PRDM16的相互作用,促進(jìn)冷刺激誘導(dǎo)的白色脂肪組織米色化進(jìn)程[28]。

不同于SIRT1,SIRT2去乙?;骖^框蛋白(forkhead box protein O1, FOXO1)增加其與PPARγ的結(jié)合,抑制PPARγ的轉(zhuǎn)錄活性[30]。SIRT3是位于線粒體內(nèi)膜的蛋白,棕色脂肪細(xì)胞內(nèi)過表達(dá)增加Pgc1α的表達(dá)以及細(xì)胞的耗氧量[63]。不同于細(xì)胞的表型,脂肪組織敲除小鼠無論是在正常喂養(yǎng)還是高脂喂養(yǎng)的條件下,沒有表現(xiàn)出線粒體相關(guān)能量代謝的改變,暗示SIRT3對(duì)脂肪組織線粒體的功能和全身的能量代謝是非必需的[64]。牛皮下白色脂肪細(xì)胞敲低抑制細(xì)胞分化,研究發(fā)現(xiàn)SIRT4結(jié)合在E2F轉(zhuǎn)錄因子1 (E2F transcription factor-1, E2F1)、、cAMP反應(yīng)元件結(jié)合蛋白(cAMP- response element binding protein 1, Creb1)的啟動(dòng)子區(qū)域進(jìn)行去乙?;揎梉65]。棕色脂肪細(xì)胞敲低抑制α-酮戊二酸的含量,導(dǎo)致啟動(dòng)子區(qū)域上的H3K9me2/me3的水平升高,阻礙細(xì)胞分化;缺失小鼠的皮下脂肪組織發(fā)生“白色化”,表現(xiàn)出對(duì)冷刺激的不耐受[31]。

與其他SIRTs成員相比,SIRT6蛋白定位在染色體。在脂肪細(xì)胞分化階段尤其是有絲分裂擴(kuò)增階段,SIRT6可以抑制驅(qū)動(dòng)蛋白家族成員KIF5C (kinesin family member 5C)的表達(dá),后者與CK2的亞基CK2α′相互作用,阻礙CK2的入核,促進(jìn)細(xì)胞分化[33]。另外SIRT6可以通過與磷酸化的激活轉(zhuǎn)錄因子2 (activating transcription factor 2, ATF2)相互作用,增加ATF2與啟動(dòng)子的結(jié)合,實(shí)現(xiàn)對(duì)脂肪組織的產(chǎn)熱調(diào)控。脂肪組織缺失小鼠的皮下白色脂肪組織的產(chǎn)熱基因下調(diào)、棕色脂肪組織發(fā)生“白色化”、經(jīng)高脂喂養(yǎng)后的代謝紊亂加劇(包括血糖升高、嚴(yán)重的胰島素抵抗和肝臟的脂肪變性)[32]。–/–小鼠的白色脂肪組織重量較野生型相比明顯減輕,但通過抑制SIRT1酶活可以恢復(fù)其白色脂肪組織重量。進(jìn)一步研究證實(shí)SIRT7可以通過抑制SIRT1的自我去乙?;瘉硐拗破浠钚訹33]。

除SIRT3、SIRT4僅局限在細(xì)胞水平的探索,其余5種SIRTs均是體內(nèi)外的研究。綜合來看,SIRTs通過直接或間接調(diào)節(jié)脂肪細(xì)胞特征蛋白(PPARγ、Pgc1α)的表達(dá)或者轉(zhuǎn)錄活性,調(diào)控脂肪細(xì)胞的分化,進(jìn)而調(diào)控棕色脂肪細(xì)胞的產(chǎn)熱和白色脂肪細(xì)胞的米色化過程。不同SIRTs可以作用于同一靶蛋白,產(chǎn)生截然相反的作用,所以在開發(fā)靶向SIRTs藥劑就需要考慮藥劑本身的特異性,這些研究為臨床靶向藥的開發(fā)提供理論支持。

2.3 組蛋白甲基化修飾對(duì)脂肪組織的調(diào)控

組蛋白甲基轉(zhuǎn)移酶分為賴氨酸甲基轉(zhuǎn)移酶(histone-lysine N-methyltransferases, KMTs)和精氨酸甲基轉(zhuǎn)移酶。KMTs分為KMT1-8總共8個(gè)亞家族,分別催化H3K9、H3K4、H3K36、H3K79、H4K20、H3K27位點(diǎn),行使不同的功能[66]。目前KMT1、KMT2、KMT3、KMT5、KMT6均被報(bào)道參與脂肪組織的分化和產(chǎn)熱過程(表1,圖1)。

2.3.1 KMT1

KMT1亞家族分為色斑3-9抑制因子同源物1 (suppressor of variegation 3-9 homolog 1, SUV39H1)、SUV39H2、常染色質(zhì)組蛋白賴氨酸N甲基轉(zhuǎn)移酶2 (euchromatic histone-lysine N-methyltransferase 2, EHMT2,也被稱為G9a)與EHMT1 (也叫G9A樣蛋白,G9A-like protein, GLP)形成的二聚體、SETDB1、PRDM家族,分別催化生成不同程度H3K9me1/ me2/me3,起到不同程度的基因沉默[67]。SUV39H1和SUV39H2負(fù)責(zé)催化結(jié)構(gòu)型異染色質(zhì)區(qū)域生成H3K9me2/me3;SETDB1負(fù)責(zé)催化中心體區(qū)域生成H3K9me1;二聚體EMHT2-EHMT1負(fù)責(zé)常染色質(zhì)區(qū)域催化H3K9生成H3K9me1/me2,是主要調(diào)控脂肪組織的一類酶[67]。

EHMT1在棕色脂肪組織中高度表達(dá),是棕色脂肪細(xì)胞定向分化的分子開關(guān)。EHMT1與PRDM16相互作用穩(wěn)定PRDM16,同時(shí)通過結(jié)合PRDM16對(duì)肌肉分化特征基因進(jìn)行H3K9me1/me2修飾,抑制前體細(xì)胞向肌肉細(xì)胞分化,促進(jìn)其向棕色脂肪細(xì)胞分化[38]。激活轉(zhuǎn)錄因子7 (activating transcription factor 7, ATF7)與EHMT2協(xié)同作用,通過EHMT2對(duì)/和的啟動(dòng)子區(qū)域進(jìn)行H3K9me2修飾,阻止脂肪細(xì)胞的分化,相反缺失小鼠的皮下白色脂肪細(xì)胞的米色化進(jìn)程加劇[39,40]。EHMT1/2對(duì)脂肪組織的調(diào)控可以為靶向激活棕色脂肪組織提供潛在靶點(diǎn)。

2.3.2 KMT2

鼠源KMT2 (KMT2A-KMT2G)分為KMT2A/ MLL1、KMT2B/MLL2、KMT2C/MLL3、KMT2D/ MLL4、KMT2E/MLL5、KMT2F/SETD1A、KMT2G/ SETD1B,其中MLL3/4對(duì)脂肪細(xì)胞的分化是必需的。在棕色脂肪組織中,MLL3/4對(duì)細(xì)胞分化相關(guān)基因的增強(qiáng)子區(qū)域催化生成H3K4me1/me2[67],同時(shí)也會(huì)結(jié)合CBP/p300復(fù)合體對(duì)同一區(qū)域進(jìn)行H3K27乙?;?,共同推動(dòng)棕色脂肪細(xì)胞的分化[68,69]。另外激活信號(hào)整合素蛋白2 (activating signal cointegrator-2, ASC-2)作為PPARγ和C/EBPα的輔激活因子,聯(lián)合MLL3/4形成復(fù)合體招募到的啟動(dòng)子上,同時(shí)也對(duì)PPARγ的靶基因進(jìn)行H3K4甲基化修飾,推動(dòng)脂肪細(xì)胞的分化[37]。研究發(fā)現(xiàn)在脂肪細(xì)胞分化的不同階段抑制H3K4甲基化會(huì)對(duì)細(xì)胞的分化產(chǎn)生不同的影響。攜帶e的H3.3 K4M (該突變體抑制H3K4甲基化)轉(zhuǎn)基因小鼠,表現(xiàn)出脂肪組織發(fā)育障礙;但攜帶的H3.3 K4M轉(zhuǎn)基因小鼠表現(xiàn)出正常的脂肪細(xì)胞分化和調(diào)控功能[35]。以上研究表明H3K4甲基化對(duì)前體細(xì)胞的分化是必須的,可以為激活機(jī)體前體脂肪細(xì)胞的分化提供新思路。

2.3.3 KMT3

KMT3 (KMT3A-KMT3G)分為KMT3A (SETD2)、KMT3B (NSD1)、KMT3C (SMYD2)、KMT3D (SMYD1)、KMT3E (SMYD3)、KMT3F (NSD3)、KMT3G (NSD2) 7個(gè)成員,主要催化生成H3K36me1/me2/me3,激活基因轉(zhuǎn)錄[67]。

在前體脂肪細(xì)胞中過表達(dá)H3.3 K36M突變體,明顯減少H3K36me2水平,并伴隨著H3K27me3水平的升高,抑制細(xì)胞分化特征基因、的表達(dá),這與脂肪細(xì)胞缺失的表型相類似。突變體小鼠的棕色脂肪組織出現(xiàn)“白色化”、白色脂肪組織的營(yíng)養(yǎng)不良加重、胰島素抵抗加劇[43]。KMT3家族各個(gè)成員在脂肪組織中的調(diào)控還未完全被闡明,需要進(jìn)一步探索。

2.3.4 KMT5

KMT5包括KMT5A (也叫PR-Set7)、KMT5B (SUV420H1)、KMT5C (SUV420H2)三類,依次催化生成H4K20me1、H4K20me2、H4K20me3,其中KMT5B與KMT5C的催化功能重合。雙敲(-Cre)和(全身敲除)小鼠的脂肪細(xì)胞內(nèi)啟動(dòng)子的H4K20me3標(biāo)記減少,PPARγ的表達(dá)被激活,增加小鼠棕色脂肪組織線粒體的氧化呼吸、改善葡萄糖耐受以及抵抗高脂喂養(yǎng)的肥胖[45]。不同于前者的小鼠表型,脂肪細(xì)胞內(nèi)單獨(dú)缺失()小鼠變得冷不耐受、容易導(dǎo)致高脂飲食誘發(fā)的肥胖。從機(jī)制上分析,缺失細(xì)胞內(nèi)H4K20me3水平降低,導(dǎo)致靶基因水平的上調(diào),抑制棕色和米色脂肪細(xì)胞的產(chǎn)熱作用[44]。盡管是同一基因,但在細(xì)胞分化的不同階段啟動(dòng)不同的機(jī)制,提示通過靶向脂肪細(xì)胞的特定階段的方式可以達(dá)到激活脂肪組織產(chǎn)熱的目的。

2.3.5 KMT6

KMT6分為果蠅基因增強(qiáng)子的人類同源物1/2 (enhancer of zeste homolog 1/2, EZH1/2),單獨(dú)EZH1/2不具有催化活性,需要與果蠅基因抑制因子(suppressor of zeste, SUZ12)、胚胎外胚層發(fā)育因子(embryonic ectoderm development, EED)、視網(wǎng)膜細(xì)胞瘤抑制因子相關(guān)蛋白46/48(retinoblastoma suppressor associated protein 46/48, RbAp46/48)、脂肪細(xì)胞增強(qiáng)子結(jié)合蛋白2 (adipocyte enhancer binding protein 2, AEBP2)組成多梳抑制復(fù)合體(polycomb repressive complex 2, PRC2),催化H3K27甲基化,抑制基因轉(zhuǎn)錄[67]。棕色脂肪細(xì)胞分化過程中,EZH2會(huì)對(duì)原癌基因(proto-oncogene Wnt1)、、、的啟動(dòng)子進(jìn)行H3K27me3修飾,抑制Wnt/β-catenin信號(hào)通路,推動(dòng)脂肪細(xì)胞的分化;而在缺失的細(xì)胞中回補(bǔ)轉(zhuǎn)錄因子、或者加入Wnt/β-catenin信號(hào)的抑制劑,細(xì)胞的分化得以恢復(fù)[41]。缺失小鼠的白色脂肪組織重量減少,但其棕色脂肪組織的產(chǎn)熱和白色脂肪組織的米色化程度增加,使敲除小鼠更加耐受冷刺激。研究發(fā)現(xiàn)EZH2的抑制劑GSK126處理胚胎成纖維細(xì)胞會(huì)抑制其向白色脂肪細(xì)胞分化,促進(jìn)其向米色脂肪細(xì)胞分化[42]。鑒于EZH2在脂肪細(xì)胞分化方面的重要調(diào)控功能,為臨床利用EZH2抑制劑增加產(chǎn)熱脂肪細(xì)胞的基數(shù)提供新思路。

2.4 組蛋白去甲基化修飾對(duì)脂肪組織的調(diào)控

組蛋白去甲基化酶包括KDM1-6、PHF、JMJD6多個(gè)亞家族,催化不同位點(diǎn)的去甲基化,并且多種去甲基化酶的催化功能存在重疊。目前關(guān)于在脂肪組織中的調(diào)控功能報(bào)道主要集中在KDM1、KDM3、KDM6這3個(gè)亞家族(表1,圖1)。

2.4.1 KDM1

KDM1分為賴氨酸特異性組蛋白去甲基化酶1 (lysine-specific demethylase 1, LSD1,也叫KDM1A)、LSD2/KDM1B。KDM1根據(jù)結(jié)合的轉(zhuǎn)錄因子,依賴FAD (flavin adenosine dinucleotide)的氧化既可以去甲基化H3K4me1/me2,也可以去甲基化H3K9me1/ me2。LSD1已在多篇文章中報(bào)道其產(chǎn)熱調(diào)控功能。

轉(zhuǎn)基因小鼠通過細(xì)胞核呼吸因子1 (nuclear respiratory factor 1, Nrf1)增加白色脂肪組織中氧化磷酸化(oxidative phosphorylation, OXPHOS)相關(guān)基因的表達(dá),促進(jìn)其米色化,抑制高脂喂養(yǎng)引發(fā)的小鼠肥胖[47]。相反棕色脂肪內(nèi)的缺失,通過REST抑制因子1 (REST corepressor 1, CoREST)復(fù)合體上調(diào)白色化的特征基因,導(dǎo)致甘油三酯累積[49]。此外在棕色脂肪細(xì)胞中LSD1與鋅指蛋白516 (zinc finger protein 516, ZFP516)相互作用被其招募到、啟動(dòng)子區(qū)域去甲基化H3K9me1/me2,促進(jìn)產(chǎn)熱;棕色脂肪組織缺失小鼠表現(xiàn)出對(duì)冷刺激的不耐受以及誘發(fā)高脂喂養(yǎng)引起的肥胖[70]。另外LSD1證實(shí)可以協(xié)同PRDM16對(duì)抵抗素(resistin, Retn)、血管緊張素(angiotensin, Agt)啟動(dòng)子進(jìn)行H3K4me1/me2去甲基化,抑制白色化特征基因的表達(dá);LSD1抑制糖皮質(zhì)激素合成的限速酶11-β-羥基類固醇脫氫酶1 (11β-hydroxysteroid dehydrogenase type 1, HSD11B1)的表達(dá),增加線粒體內(nèi)脂肪酸的β-氧化過程,加快能量代謝[46,71]。總的來看,LSD1涉及脂肪組織的線粒體氧化磷酸化、棕色脂肪組織的產(chǎn)熱以及白色脂肪組織的米色化等多個(gè)過程,目前也有利用LSD抑制劑治療癌癥的多項(xiàng)臨床研究,還未應(yīng)用在代謝領(lǐng)域,這些研究也為代謝性疾病的治療提供新思路。

2.4.2 KDM3

KDM3分為KDM3A (也叫JMJD1A)、KDM3B (JMJD1B)、KDM3C (JMJD1C)三類,負(fù)責(zé)去甲基化H3K9me1/me2[67]。棕色脂肪組織經(jīng)急性冷暴露激活β腎上腺素信號(hào)通路,PKA磷酸化KDM3A的S265位點(diǎn),磷酸化后的KDM3A增強(qiáng)與染色質(zhì)重塑復(fù)合物即酵母交配型轉(zhuǎn)換/蔗糖不發(fā)酵復(fù)合物(SWItch/ sucrose nonfermentable, SWI/SNF)的結(jié)合,便于遠(yuǎn)程染色質(zhì)間的相互作用,激活產(chǎn)熱特征基因的轉(zhuǎn)錄,此過程是不依賴KDM3A的去甲基化酶活性[50,51]。而在長(zhǎng)期的冷暴露條件下,皮下白色脂肪組織KDM3A不僅被PKA磷酸化,而且協(xié)同結(jié)合PPARγ、PRDM16形成復(fù)合體,對(duì)產(chǎn)熱基因的啟動(dòng)子進(jìn)行H3K9me1/me2去甲基化修飾,推動(dòng)米色化進(jìn)程。所以KDM3A在急性以及長(zhǎng)期冷暴露的過程中存在一種動(dòng)態(tài)的改變[51],可以作為激活產(chǎn)熱脂肪組織的潛在靶點(diǎn)。

2.4.3 KDM6

KDM6分為KDM6A (也叫UTX)、KDM6B (也叫JMJD3)、KDM6C (也叫UTY),分別催化H3K27me3去甲基化,但UTY的催化活性很低。當(dāng)激活β腎上腺素信號(hào),KDM6A被誘導(dǎo)招募至、的啟動(dòng)子進(jìn)行H3K27me3去甲基化修飾,同時(shí)與乙?;D(zhuǎn)移酶CBP相互作用招募CBP至、的啟動(dòng)子進(jìn)行H3K27乙?;揎?,雙重修飾增加產(chǎn)熱基因的表達(dá)[52]。棕色脂肪組織內(nèi)信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子5A (signal transducer and activator of trans-cription 5A, STAT5A)被產(chǎn)熱信號(hào)誘導(dǎo)表達(dá),結(jié)合啟動(dòng)子促進(jìn)其轉(zhuǎn)錄,通過KDM6A介導(dǎo)的H3K27去甲基化修飾增加產(chǎn)熱[72]。另外在成熟的棕色脂肪細(xì)胞中,KDM6A對(duì)啟動(dòng)子去甲基化修飾,維持PRDM16的高度表達(dá)。PRDM16可以招募DNA甲基轉(zhuǎn)移酶DNMT1對(duì)肌源分化1 (myogenic differentiation 1, Myod1)的啟動(dòng)子進(jìn)行DNA甲基化修飾,阻止棕色脂肪細(xì)胞向肌細(xì)胞的重塑,維持棕色脂肪細(xì)胞的產(chǎn)熱功能[12]。KDM6B部分依賴腦Ras同源蛋白1 (ras homolog enriched in brain 1, Rheb1)招募至棕色脂肪特征性基因啟動(dòng)子進(jìn)行H3K27me3去甲基化修飾,促進(jìn)棕色以及米色脂肪組織的分化[53]。這些研究可以為激活棕/米色脂肪細(xì)胞的提供新的潛在靶點(diǎn)。

3 染色質(zhì)重塑

染色質(zhì)重塑是表觀遺傳修飾的一種重要調(diào)控方式。當(dāng)基因被啟動(dòng)轉(zhuǎn)錄時(shí),染色質(zhì)結(jié)構(gòu)在染色質(zhì)重塑復(fù)合體的作用下被打開,核小體的構(gòu)象被改變(包括核小體重定位、核小體滑動(dòng)和核小體替換等),轉(zhuǎn)錄因子、轉(zhuǎn)錄調(diào)控輔因子或者表觀修飾酶被招募結(jié)合至基因的順式作用元件/啟動(dòng)子區(qū)域,激活轉(zhuǎn)錄。ATP依賴的染色質(zhì)重塑復(fù)合體分為5個(gè)家族:核小體重塑馬達(dá)(imitation switch, ISWI)、Mi-2蛋白復(fù)合體NuRD/Mi2/CHD、INO80、SWR1、SWI/SNF,其中SWI/SNF復(fù)合體與脂肪組織的關(guān)系比較密切。

哺乳動(dòng)物SWI/SNF復(fù)合體由具有一個(gè)ATPase的催化亞基Brg1/Brm和4-12個(gè)Brg1/Brm相關(guān)因子亞基(Brg/Brm associated factors, BAFs)組成。BAF47、BAF179、BAF155與Brg1/Brm1組成核心復(fù)合體,其他BAF成員根據(jù)不同的組織分布具有多樣性。在所有的BAF成員中,BAF60作為唯一一個(gè)連接SWI/SNF復(fù)合體和轉(zhuǎn)錄因子的銜接蛋白,通過識(shí)別轉(zhuǎn)錄因子招募SWI/SNF至染色質(zhì)特定位置,調(diào)控靶基因的表達(dá)。BAF60分為3個(gè)成員,分別是BAF60a、BAF60b、BAF60c,具有不同的組織分布,但脂肪組織中主要表達(dá)BAF60a。在適應(yīng)性產(chǎn)熱刺激下,棕色脂肪組織BAF60a對(duì)和早期B細(xì)胞因子2 (early B cell factor 2, Ebf2)結(jié)合的啟動(dòng)子區(qū)域保持染色質(zhì)結(jié)構(gòu)的開放,啟動(dòng)產(chǎn)熱特征基因的轉(zhuǎn)錄。反過來EBF2轉(zhuǎn)錄,后者是BAF復(fù)合體的組成成分,并通過DPF3將BAF復(fù)合體招募至產(chǎn)熱特征基因的開放染色質(zhì)區(qū)域,啟動(dòng)轉(zhuǎn)錄[73]。但脂肪組織缺失BAF60a小鼠的皮下白色脂肪組織更容易發(fā)生冷誘導(dǎo)的米色化,基因表達(dá)分析發(fā)現(xiàn)敲除小鼠的皮下白色脂肪組織中的促腎上腺皮質(zhì)激素受體——黑素皮質(zhì)素受體(melanocortin 2 receptor, MC2R)的表達(dá)增加,上調(diào)米色脂肪細(xì)胞的產(chǎn)熱[74]。這些研究證實(shí)BAF60a在棕色脂肪組織和皮下白色脂肪組織中存在雙重調(diào)控機(jī)制,可能是由于兩者細(xì)胞的起源不同,涉及不同的代謝機(jī)制,這進(jìn)一步反映機(jī)體的復(fù)雜性,也為靶向激活產(chǎn)熱脂肪組織提供新思路。

4 非編碼RNA

非編碼RNA (non-coding RNA, ncRNA)是由基因組轉(zhuǎn)錄而不編碼蛋白的RNA分子。主要分為轉(zhuǎn)運(yùn)RNA (transfer RNAs, tRNAs)、核糖體RNA (ribosomalRNAs)、microRNAs、長(zhǎng)鏈非編碼RNA (long non-coding RNAs, LncRNAs)、與Piwi相互作用的RNA(PIWI interacting RNAs, piRNAs)。其中microRNAs通過轉(zhuǎn)錄后水平調(diào)控基因表達(dá),是目前調(diào)控脂肪組織功能最主要的一類非編碼RNA (圖2)。

多種microRNAs被報(bào)道參與脂肪細(xì)胞的分化過程[75]。比如miR-133、miR-27、miR-150,通過直接靶向抑制PRDM16的表達(dá),既能抑制前棕色脂肪細(xì)胞的分化也能抑制米色脂肪細(xì)胞的分化[76~79]。過表達(dá)miR-196a抑制同源框基因C8 (homeobox C8, hoxc8)的表達(dá),解除對(duì)的轉(zhuǎn)錄抑制作用,促進(jìn)米色脂肪細(xì)胞的分化;轉(zhuǎn)基因小鼠表現(xiàn)出能量消耗增加、胰島素敏感性改善、肥胖減輕的表型[80]。不僅miR-196a,miR-155也通過抑制C/EBPβ的轉(zhuǎn)錄來負(fù)調(diào)控棕/米色脂肪細(xì)胞的分化[79,81]。miR- 455抑制低氧誘導(dǎo)因子1α亞基抑制因子(hypoxia- inducible factor 1α inhibitor, HIF1an)的表達(dá),解除對(duì)AMPKα1羥基化修飾,增加Pgc1α的表達(dá);miR-455也能抑制Runx1t1 (RUNX1 partner transcriptional co- repressor 1)、Necdin的表達(dá),下調(diào)E2F、C/EBPβ的表達(dá),協(xié)同調(diào)控棕色脂肪細(xì)胞的分化和米色化[82]。

多種microRNAs既能調(diào)控棕色脂肪細(xì)胞的產(chǎn)熱也能推動(dòng)白色脂肪細(xì)胞的米色化。MiR-32在棕色脂肪組織中高度富集,并且與棕色脂肪組織特異性超級(jí)增強(qiáng)子高度關(guān)聯(lián)。研究發(fā)現(xiàn)miR-32明顯抑制ErbB2轉(zhuǎn)錄因子的表達(dá),反過來激活p38 MAPK信號(hào)通路,后者一方面通過上調(diào)、的表達(dá)促進(jìn)棕色脂肪組織的產(chǎn)熱,另一方面通過增加FGF21分泌推動(dòng)白色脂肪組織的米色化[83]。過表達(dá)miR-34a明顯抑制FGF21的受體FGFR/βKL的水平,促進(jìn)小鼠的棕色脂肪組織的產(chǎn)熱和白色脂肪組織的米色化;miR-34a也可以通過抑制SIRT1的水平增加Pgc1α的乙酰化修飾,介導(dǎo)脂肪組織的產(chǎn)熱和米色化過程[84]。

圖2 MicroRNAs對(duì)產(chǎn)熱脂肪組織的調(diào)控

紅色符號(hào)表示調(diào)控因子。

還有幾類比如Let-7i-5p、miR-30b/c、miR-125b,調(diào)控脂肪細(xì)胞的產(chǎn)熱過程[82,85~87]。米色脂肪細(xì)胞中Let-7i-5p與UCP1的表達(dá)水平呈現(xiàn)負(fù)相關(guān),小鼠皮下白色脂肪組織過表達(dá)Let-7i-5p明顯阻斷β腎上腺素誘導(dǎo)的UCP1的水平;miR-30b/c抑制受體相互作用蛋白140 (receptor-interacting protein 140, Rip140)的表達(dá),后者是脂肪組織產(chǎn)熱的負(fù)調(diào)控因子;小鼠皮下白色脂肪組織過表達(dá)增加線粒體基因的表達(dá)、增加氧耗、推動(dòng)米色脂肪細(xì)胞的產(chǎn)熱。

總體來看,microRNAs對(duì)脂肪組織的分化和產(chǎn)熱具有多方面的調(diào)控作用,但其自身表達(dá)受多種條件影響,比如環(huán)境、激素、藥物等,很難利用一種因素調(diào)控多種microRNAs表達(dá),達(dá)到激活脂肪細(xì)胞的目的。目前發(fā)現(xiàn)第三代的氟喹諾酮類抗生素——依諾沙星可能作為一種潛在的新型抗肥胖藥。研究發(fā)現(xiàn)依諾沙星抑制miR-34a的表達(dá),通過增加能量消耗并促進(jìn)脂肪細(xì)胞和肌管中的氧化代謝和非耦聯(lián)呼吸作用,治療小鼠飲食引起的肥胖[88]。當(dāng)然科學(xué)家們一直也尋找與依諾沙星相似且不具有抗菌效果的分子,同時(shí)也在挖掘新的靶向藥劑。

5 結(jié)語與展望

不論是棕色還是米色脂肪細(xì)胞,產(chǎn)熱脂肪細(xì)胞的分化先由多潛能干細(xì)胞定向分化成前體細(xì)胞、再經(jīng)終末分化成為成熟的脂肪細(xì)胞,分別具有特定組蛋白的標(biāo)記以及染色質(zhì)構(gòu)象。綜合多種表觀修飾酶調(diào)控功能來看,表觀修飾酶可以通過直接或間接影響關(guān)鍵分化轉(zhuǎn)錄因子(PPARs、C/EBPs、PRDM16等)的表達(dá)或活性調(diào)控前體棕色/米色脂肪細(xì)胞的分化[89];還可以通過直接或間接調(diào)控產(chǎn)熱特征因子(Pgc1α、Ucp1等)來調(diào)控成熟棕色脂肪細(xì)胞的產(chǎn)熱以及白色脂肪組織的米色化進(jìn)程。這些表觀修飾酶的研究為靶向激活脂肪組織提供新思路,可以用作代謝性疾病防治的潛在藥物靶點(diǎn)。另外表觀遺傳修飾酶需要代謝分子,如甲基供體S-腺苷甲硫氨酸、乙?;w乙酰CoA、III類去乙?;篙o基NAD+/NADH,來完成催化反應(yīng)。在外界環(huán)境刺激下,細(xì)胞代謝的改變直接影響代謝分子的水平,進(jìn)而改變修飾酶的活性,起到間接調(diào)控基因表達(dá)的目的。這些代謝物可以作為調(diào)節(jié)因子,將細(xì)胞代謝與基因表達(dá)調(diào)控直接關(guān)聯(lián),通過這些代謝物設(shè)計(jì)類似小分子藥物可以實(shí)現(xiàn)對(duì)表觀修飾酶的調(diào)節(jié),起到治療肥胖和2型糖尿病的目的。

當(dāng)然利用藥物靶向表觀修飾酶還存在諸多挑戰(zhàn)。表觀修飾酶通常與多個(gè)轉(zhuǎn)錄因子/輔因子形成大型調(diào)控復(fù)合體,針對(duì)藥物的開發(fā),需要探究藥物是通過改變修飾酶的酶活還是通過調(diào)節(jié)復(fù)合物的結(jié)構(gòu)等方式來調(diào)控脂肪細(xì)胞,衡量比較不同方式對(duì)能量代謝的影響。另外棕色脂肪細(xì)胞和米色脂肪細(xì)胞分屬于不同的細(xì)胞起源,兩者的表觀遺傳機(jī)制不同導(dǎo)致細(xì)胞的產(chǎn)熱表型也不盡相同,利用藥物靶向表觀修飾酶需要考慮同一修飾酶在兩種細(xì)胞中的調(diào)控機(jī)制。近年來發(fā)現(xiàn)米色脂肪細(xì)胞的來源具有多樣性,那么表觀遺傳修飾調(diào)控每種前體細(xì)胞的分化也是具有臨床轉(zhuǎn)化潛力的研究。盡管面臨諸多挑戰(zhàn),但基于表觀遺傳修飾對(duì)機(jī)體產(chǎn)熱的重要調(diào)控作用,其仍會(huì)是治療肥胖病、2型糖尿病的新契機(jī)。

[1] Smith KB, Smith MS. Obesity statistics., 2016, 43(1): 121–135.

[2] Kitzinger H, Karle B. The epidemiology of obesity., 2013, 45(2): 80–82.

[3] Kajimura S, Spiegelman BM, Seale P. Brown and beige fat: physiological roles beyond heat generation., 2015, 22(4): 546–559.

[4] Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik- Bogoslavski D, Hasenfuss SC, Kajimura S, Gygi SP, Spiegelman BM. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat., 2015, 163(3): 643–655.

[5] Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, Brack A, Kajimura S. Thermal stress induces glycolytic beige fat formation via a myogenic state., 2019, 565(7738): 180–185.

[6] Ikeda K, Kang QQ, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu XD, Maretich P, Tajima K, Ajuwon KM, Soga T, Kajimura S. UCP1- independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis., 2017, 23(12): 1454–1465.

[7] Jung SM, Doxsey WG, Le J, Haley JA, Mazuecos L, Luciano AK, Li H, Jang C, Guertin DA. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate., 2021, 36(4): 109459.

[8] Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerb?ck S, Nuutila P. Functional brown adipose tissue in healthy adults., 2009, 360(15): 1518–1525.

[9] Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, Goodyear LJ. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity., 2012, 123(1): 215–223.

[10] Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans., 2014, 38(6): 812–817.

[11] Berbée JF, Boon MR, Khedoe PSJ, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, Jung C, Vazirpanah N, Brouwers LPJ, Gordts PLSM, Esko JD, Hiemstra PS, Havekes LM, Scheja L, Heeren J, Rensen PCN. Brown fat activation reduces hypercho-lesterolaemia and protects from atherosclerosis develop-ment., 2015, 6: 6356.

[12] Li FF, Jing J, Movahed M, Cui X, Cao Q, Wu R, Chen ZY, Yu LQ, Pan Y, Shi HD, Shi H, Xue BZ. Epigenetic interaction between UTX and DNMT1 regulates diet- induced myogenic remodeling in brown fat., 2021, 12(1):6838.

[13] Li FF, Cui X, Jing J, Wang SR, Shi HD, Xue BZ, Shi H. Brown Fat Dnmt3b Deficiency Ameliorates Obesity in Female Mice., 2021, 11(12): 1325.

[14] Wang SR, Cao Q, Cui X, Jing J, Li FF, Shi HD, Xue BZ, Shi H. Dnmt3b deficiency in Myf5+-brown fat precursor cells promotes obesity in female mice., 2021, 11(8): 1087.

[15] Yang QY, Liang XW, Sun XF, Zhang LP, Fu X, Rogers CJ, Berim A, Zhang SM, Wang SB, Wang B, Foretz M, Viollet B, Gang DR, Rodgers BD, Zhu MJ, Du M. AMPK/ α-ketoglutarate axis dynamically mediates DNA demethy-lation in the Prdm16 promoter and brown adipogenesis., 2016, 24(4): 542–554.

[16] Shore A, Karamitri A, Kemp P, Speakman JR, Lomax MA. Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue., 2010, 53(6): 1164–1173.

[17] Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin P-JH, Oguri Y, Amin P, Kang S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermoge-nesis., 2020, 11(1): 313.

[18] Jin QH, Wang CC, Kuang XH, Feng XS, Sartorelli V, Ying H, Ge K, Dent SYR. Gcn5 and PCAF regulate PPAR γ and Prdm16 expression to facilitate brown adipogenesis., 2014, 34(19): 3746–3753.

[19] Kawabe Y, Mori J, Morimoto H, Yamaguchi M, Miyagaki S, Ota T, Tsuma Y, Fukuhara S, Nakajima H, Oudit GY, Hosoi H. ACE2 exerts anti-obesity effect via stimulating brown adipose tissue and induction of browning in white adipose tissue., 2019, 317(6): E1140–E1149.

[20] Lai BB, Lee J-E, Jang Y, Wang LF, Peng WQ, Ge K. MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipo-genesis., 2017, 45(11): 6388–6403.

[21] Li FF, Wu R, Cui X, Zha LQ, Yu L, Shi H, Xue BZ. Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation., 2016, 291(9): 4523–4536.

[22] Shinoda K, Ohyama K, Hasegawa Y, Chang H-Y, Ogura M, Sato A, Hong H, Hosono T, Sharp LZ, Scheel DW, Graham M, Ishihama Y, Kajimura S. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure., 2015, 22(6): 997–1008.

[23] Ferrari A, Longo R, Fiorino E, Silva R, Mitro N, Cermenati G, Gilardi F, Desvergne B, Andolfo A, Magagnotti C, Caruso D, De Fabiani E, Hiebert SW, Crestani M. HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning., 2017, 8(1): 93.

[24] Liao JL, Jiang J, Jun HJ, Qiao XN, Emont MP, Kim D-I, Wu J. HDAC3-selective inhibition activates brown and beige fat through PRDM16., 2018, 159(7): 2520–2527.

[25] Emmett MJ, Lim H-W, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA, Baur JA, Pei LM, Won K-J, Seale P, Gerhart-Hines Z, Lazar MA. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge., 2017, 546(7659): 544–548.

[26] Chatterjee TK, Basford JE, Knoll E, Tong WS, Blanco V, Blomkalns AL, Rudich S, Lentsch AB, Hui DY, Weintraub NL. HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high-fat feeding., 2014, 63(1): 176–187.

[27] Mayoral R, Osborn O, Mcnelis J, Johnson AM, Izquierdo CL, Chung H, Li PP, Traves PG, Bandyopadhyay G, Pessentheiner AR, Ofrecio JM, Cook JR, Qiang L, Accili D, Olefsky JM. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity.2015, 4(5): 378– 391.

[28] Qiang L, Wang LH, Kon N, Zhao WH, Lee S, Zhang YY, Rosenbaum M, Zhao YM, Gu W, Farmer SR, Accili D. Brown remodeling of white adipose tissue by SirT1- dependent deacetylation of Pparγ., 2012, 150(3): 620–632.

[29] Zhou YF, Song TX, Peng J, Zhou Z, Wei HK, Zhou R, Jiang SW, Peng J. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro., 2016, 7(47): 77707–77720.

[30] Wang F, Tong Q. SIRT2 suppresses adipocyte differentia-tion by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ., 2009, 20(3): 801–808.

[31] Shuai L, Zhang L-N, Li B-H, Tang C-L, Wu L-Y, Li J, Li J-Y. SIRT5 regulates brown adipocyte differentiation and browning of subcutaneous white adipose tissue., 2019, 68(7): 1449–1461.

[32] Yao L, Cui XN, Chen Q, Yang XY, Fang FD, Zhang J, Liu GQ, Jin WZ, Chang YS. Cold-inducible SIRT6 regulates thermogenesis of brown and beige fat., 2017, 20(3): 641–654.

[33] Chen Q, Hao WH, Xiao CY, Wang RH, Xu XL, Lu HY, Chen WP, Deng C-X. SIRT6 is essential for adipocyte differentiation by regulating mitotic clonal expansion., 2017, 18(13): 3155–3166.

[34] Fang J, Ianni A, Smolka C, Vakhrusheva O, Nolte H, Krüger M, Wietelmann A, Simonet NG, Adrian-Segarra JM, Vaquero A, Braun T, Bober E. Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1., 2017, 114(40): E8352–E8361.

[35] Jang Y, Broun A, Wang CC, Park Y-K, Zhuang LN, Lee J-E, Froimchuk E, Liu CY, Ge K. H3.3K4M destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs adipose tissue development., 2019, 47(2): 607–620.

[36] Lee J-E, Wang CC, Xu SLY, Cho Y-W, Wang LF, Feng XR, Baldridge A, Sartorelli V, Zhuang LN, Peng WQ, Ge K. H3K4 mono-and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation., 2013, 2(1): e01503.

[37] Lee J, Saha PK, Yang Q-H, Lee S, Park JY, Suh Y, Lee S-K, Chan L, Roeder RG, Lee JW. Targeted inactivation of MLL3 histone H3–Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis., 2008, 105(49): 19229–19234.

[38] Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S. EHMT1 controls brown adipose cell fate and thermo-genesis through the PRDM16 complex., 2013, 504(7478): 163–167.

[39] Wang LF, Xu SLY, Lee JE, Baldridge A, Grullon S, Peng WQ, Ge K. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis., 2013, 32(1): 45–59.

[40] Liu Y, Maekawa T, Yoshida K, Muratani M, Chatton B, Ishii S. The transcription factor ATF7 controls adipocyte differentiation and thermogenic gene programming., 2019, 13(3): 98–112.

[41] Wang LF, Jin QH, Lee J-E, Su I-H, Ge K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis., 2010, 107(16): 7317–7322.

[42] Wu XH, Li JQ, Chang KX, Yang F, Jia Z, Sun C, Li Q, Xu YQ. Histone H3 methyltransferase Ezh2 promotes white adipocytes but inhibits brown and beige adipocyte differentiation in mice., 2021, 1866(6): 158901.

[43] Zhuang LN, Jang Y, Park Y-K, Lee J-E, Jain S, Froimchuk E, Broun A, Liu CY, Gavrilova O, Ge K. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function., 2018, 9(1): 1796.

[44] Zhao QW, Zhang Z, Rong WQ, Jin WW, Yan LU, Jin WF, Xu YJ, Cui X, Tang Q-Q, Pan DN. KMT5c modulates adipocyte thermogenesis by regulating Trp53 expression., 2020, 117(36): 22413–22422.

[45] Pedrotti S, Caccia R, Neguembor MV, Garcia-Manteiga JM, Ferri G, De Palma C, Canu T, Giovarelli M, Marra P, Fiocchi A, Molineris I, Raso M, Sanvito F, Doglioni C, Esposito A, Clementi E, Gabellini D. The Suv420h histone methyltransferases regulate PPAR-γ and energy expenditure in response to environmental stimuli., 2019, 5(4): eaav1472.

[46] Zeng X, Jedrychowski MP, Chen Y, Serag S, Lavery GG, Gygi SP, Spiegelman BM. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation., 2016, 30(16): 1822–36.

[47] Duteil D, Metzger E, Willmann D, Karagianni P, Friedrichs N, Greschik H, Günther T, Buettner R, Talianidis I, Metzger D, Schüle R. LSD1 promotes oxidative metabolism of white adipose tissue., 2014, 5(1): 4093.

[48] Duteil D, Tosic M, Willmann D, Georgiadi A, Kanouni T, Schüle R. Lsd1 prevents age-programed loss of beige adipocytes., 2017, 114(20): 5265–5270.

[49] Duteil D, Tosic M, Lausecker F, Nenseth HZ, Müller JM, Urban S, Willmann D, Petroll K, Messaddeq N, Arrigoni L, Manke T, Kornfeld JW, Brüning JC, Zagoriy V, Meret M, Dengjel J, Kanouni T, Schüle R. Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue., 2016, 17(4): 1008–1021.

[50] Abe Y, Rozqie R, Matsumura Y, Kawamura T, Nakaki R, Tsurutani Y, Tanimura-Inagaki K, Shiono A, Magoori K, Nakamura K, Ogi S, Kajimura S, Kimura H, Tanaka T, Fukami K, Osborne TF, Kodama T, Aburatani H, Inagaki T, Sakai J. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis., 2015, 6(1): 7052.

[51] Abe Y, Fujiwara Y, Takahashi H, Matsumura Y, Sawada T, Jiang S, Nakaki R, Uchida A, Nagao N, Naito M, Kajimura S, Kimura H, Osborne TF, Aburatani H, Kodama T, Inagaki T, Sakai J. Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch., 2018, 9(1): 1–16.

[52] Zha L, Li FF, Wu R, Artinian L, Rehder V, Yu LQ, Liang HJ, Xue BZ, Shi H. The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation., 2015, 290(41): 25151–25163.

[53] Pan DN, Huang L, Zhu LJ, Zou T, Ou JH, Zhou W, Wang Y-X. Jmjd3-mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity., 2015, 35(5): 568–583.

[54] Huang X, Chen YQ, Xu GL, Peng SH. DNA methylation in adipose tissue and the development of diabetes and obesity., 2018, 41(2):98–110.

黃鑫, 陳永強(qiáng), 徐國(guó)良, 彭淑紅. 脂肪組織 DNA 甲基化與糖尿病和肥胖的發(fā)生發(fā)展. 遺傳, 2018, 41(2): 98–110.

[55] Wu LY, Xia MF, Duan YN, Zhang LN, Jiang HW, Hu XB, Yan HM, Zhang YQ, Gu YS, Shi HC, Li J, Gao X, Li JY. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans., 2019, 10(6): 468.

[56] Zhou YF, Peng J, Jiang SW. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis., 2014, 93(4): 170–177.

[57] Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control., 2016, 17(8): 487–500.

[58] Trisciuoglio D, Di Martile M, Del Bufalo D. Emerging role of histone acetyltransferase in stem cells and cancer., 2018, 2018(2): 8908751.

[59] Jin QH, Yu LR, Wang LF, Zhang ZJ, Kasper LH, Lee JE, Wang CC, Brindle PK, Dent SYR, Ge K. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation., 2011, 30(2): 249–262.

[60] Ong BX, Brunmeir R, Zhang QY, Peng X, Idris M, Liu CG, Xu F. Regulation of thermogenic adipocyte differentiation and adaptive thermogenesis through histone acetylation., 2020, 2020(11): 95.

[61] Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, Valente S, Guerrini U, Caruso D, Mai A, Saez E, De Fabiani E, Crestani M. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue., 2013, 62(3): 732–742.

[62] Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins., 2009, 460(7255): 587–591.

[63] Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes., 2005, 280(14): 13560–13567.

[64] Porter LC, Franczyk MP, Pietka T, Yamaguchi S, Lin JB, Sasaki Y, Verdin E, Apte RS, Yoshino J. NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism., 2018, 315(4): E520–E530.

[65] Hong JY, Li SJ, Wang XY, Mei CG, Zan LS. Study of expression analysis of SIRT4 and the coordinate regulation of bovine adipocyte differentiation by SIRT4 and its transcription factors., 2018, 38(6): BSR20181705.

[66] Zhao ZB, Shilatifard A. Epigenetic modifications of histones in cancer., 2019, 20(1): 245.

[67] Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations., 2017, 49(4): e324.

[68] Peng X, Zhang QY, Liao C, Han WP, Xu F. Epigenomic control of thermogenic adipocyte differentiation and function., 2018, 19(6): 1793.

[69] Wang CC, Lee J-E, Lai BB, Macfarlan TS, Xu SLY, Zhuang LN, Liu CY, Peng WQ, Ge K. Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition., 2016, 113(42): 11871–11876.

[70] Sambeat A, Gulyaeva O, Dempersmier J, Tharp KM, Stahl A, Paul SM, Sul HS. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program., 2016, 15(11): 2536–2549.

[71] Lin JZ, Farmer SR. LSD1—a pivotal epigenetic regulator of brown and beige fat differentiation and homeostasis., 2016, 30(16): 1793–1795.

[72] Liu WH, Ji YQ, Zhang BN, Chu HP, Yin CY, Xiao YF. Stat5a promotes brown adipocyte differentiation and thermogenic program through binding and transactivating the Kdm6a promoter., 2020, 19(8): 895–905.

[73] Shapira SN, Lim H-W, Rajakumari S, Sakers AP, Ishibashi J, Harms MJ, Won K-J, Seale P. EBF2 transcriptionally regulates brown adipogenesis via the histone reader DPF3 and the BAF chromatin remodeling complex., 2017, 31(7): 660–673.

[74] Liu TY, Mi L, Xiong J, Orchard P, Yu Q, Yu L, Zhao X-Y, Meng Z-X, Parker SCJ, Lin JD, Li SM. BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning., 2020, 11(1): 2379.

[75] Guo YT, Miao XY. MicroRNAs in the regulation of brown adipocyte differentiation.2015, 37(3): 240–249.

郭云濤, 苗向陽. 調(diào)控褐色脂肪細(xì)胞分化的microRNAs.遺傳, 2015, 37(3): 240–249.

[76] Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16., 2012, 14(12): 1330–1335.

[77] Sun L, Trajkovski M. MiR-27 orchestrates the trans-criptional regulation of brown adipogenesis., 2014, 63(2): 272–282.

[78] Chou C-F, Lin Y-Y, Wang H-K, Zhu XL, Giovarelli M, Briata P, Gherzi R, Garvey WT, Chen C-Y. KSRP ablation enhances brown fat gene program in white adipose tissue through reduced miR-150 expression., 2014, 63(9): 2949–2961.

[79] Zhang JW, Luo Y, WangYH, He LJ, Li MY, Wang X. MicroRNA regulates animal adipocyte differentiation., 2015, 37(12): 1175–1184.

張進(jìn)威, 羅毅, 王宇豪, 何劉軍, 李明洲, 王訊. MicroRNA調(diào)控動(dòng)物脂肪細(xì)胞分化研究進(jìn)展. 遺傳, 2015, 37(12): 1175–1184.

[80] Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells., 2012, 10(4): 1001314.

[81] Chen Y, Siegel F, Kipschull S, Haas B, Fr?hlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit., 2013, 4(1): 1769.

[82] Zhang HB, Guan MP, Townsend KL, Huang TL, An D, Yan X, Xue RD, Schulz TJ, Winnay J, Mori M, Hirshman MF, Kristiansen K, Tsang JS, White AP, Cypess AM, Goodyear LJ, Tseng Y-H. Micro RNA-455 regulates brown adipogenesis via a novel HIF 1an-AMPK-PGC 1α signaling network., 2015, 16(10): 1378–1393.

[83] Ng R, Hussain NA, Zhang QY, Chang CW, Li HY, Fu YY, Cao L, Han WP, Stunkel W, Xu F. miRNA-32 drives brown fat thermogenesis and trans-activates subcutaneous white fat browning in mice., 2017, 19(6): 1229–1246.

[84] Fu T, Seok S, Choi S, Huang Z, Suino-Powell K, Xu HE, Kemper B, Kemper JK. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function., 2014, 34(22): 4130–4142.

[85] Giroud M, Karbiener M, Pisani DF, Ghandour RA, Beranger GE, Niemi T, Taittonen M, Nuutila P, Virtanen KA, Langin D, Scheideler M, Amri E-Z. Let-7i-5p represses brite adipocyte function in mice and humans., 2016, 6(1): 28613.

[86] Hu F, Wang M, Xiao T, Yin BQ, He LY, Meng W, Dong MJ, Liu F. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140., 2015, 64(6): 2056–2068.

[87] Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard J-C, Knippschild U, Niemi T, Taittonen M, Nuutila P, Wabitsch M, Herzig S, Virtanen KA, Langin D, Scheideler M, Amri E-Z. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function., 2016, 5(8): 615–625.

[88] Rocha AL, De Lima TI, De Souza GP, Corrêa RO, Ferrucci DL, Rodrigues B, Lopes-Ramos C, Nilsson D, Knittel TL, Castro PR, Fernandes MF, Martins FDS, Parmigiani RB, Silveira LR, Carvalho HF, Auwerx J, Vinolo MAR, Boucher J, Mori MA. Enoxacin induces oxidative metabolism and mitigates obesity by regulating adipose tissue miRNA expression., 2020, 6(49): 1–15.

[89] Cui TT, Xing TY, Chu YK, Li H, Wang N. Genetic and epigenetic regulation of PPARγ during adipogenesis., 2017, 39(11):1066–1077.

崔婷婷, 邢天宇, 褚衍凱, 李輝, 王寧. PPARγ 在脂肪生成中的遺傳和表觀遺傳調(diào)控. 遺傳, 2017, 39(11): 1066–1077.

Progress on the epigenetic regulation of adipose tissue thermogenesis

Qingwen Zhao1, Dongning Pan2

The activation of brown adipose tissues and beige adipose tissues can utilize more substrates, including glucose and fatty acids, regulate the energy balance of the whole body and improve metabolic diseases such as obesity and type Ⅱ diabetes. Elucidating the regulatory mechanisms underlying the thermogenic adipose program may provide excellent targets for therapeutics against metabolic diseases. The current studies have indicated that epigenetic modifications are vital for regulating differentiation and thermogenesis of adipose tissues. In this review, we summarize the recent progress of epigenetic modifications in adipose tissue development and thermogenesis from the aspects of DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs in order to provide new ideas for further studying the activation of adipose tissues.

epigenetic modifications; brown adipose tissues; beige adipose tissues; browning; thermogenesis

2022-05-09;

2022-07-22;

2022-08-11

中國(guó)博士后科學(xué)基金(編號(hào):2020M680053),國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31970710)[Supported by the Fellowship of China Postdoctoral Science Foundation (No. 2020M680053) and the National Natural Science Foundation of China (No. 31970710)]

趙清雯,博士,助理研究員,研究方向:棕色脂肪的代謝調(diào)控。E-mail: 17111010048@fudan.edu.cn

潘東寧,博士,研究員,研究方向:棕色脂肪代謝的轉(zhuǎn)錄調(diào)控機(jī)制。E-mail: dongning.pan@fudan.edu.cn

10.16288/j.yczz.22-151

(責(zé)任編委: 孟卓賢)

猜你喜歡
米色產(chǎn)熱棕色
大象
又香又甜的棕色方塊
鋰動(dòng)力電池電化學(xué)-熱特性建模及仿真研究
森林工程(2020年6期)2020-12-14 04:26:52
小氣候環(huán)境對(duì)肉雞能量代謝的影響研究進(jìn)展
熱力早秋
睿士(2020年5期)2020-05-21 09:56:35
無論什么顏色和棕色
云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
鋰離子電池在充放電過程中的產(chǎn)熱研究
萌彩打敗蕭瑟秋
女友·花園(2013年9期)2013-04-29 00:44:03
棕色
尉犁县| 丘北县| 富平县| 皋兰县| 云梦县| 兴城市| 三亚市| 正镶白旗| 简阳市| 晋中市| 宾阳县| 青浦区| 宁乡县| 德令哈市| 南京市| 灵宝市| 涟源市| 获嘉县| 宝兴县| 大渡口区| 临夏县| 江华| 昆明市| 监利县| 修水县| 云和县| 温宿县| 南木林县| 连城县| 平遥县| 合川市| 达拉特旗| 水城县| 黄骅市| 灵宝市| 毕节市| 三都| 乳源| 琼结县| 丽江市| 筠连县|