王薇
【摘要】數(shù)學實驗是調(diào)動學生積極性、促進學生深度學習、啟發(fā)學生手腦并用的科學學習方法.在傳統(tǒng)的數(shù)學教學中,教師通常以課本為主要教學內(nèi)容,導致學生不會舉一反三,難以串聯(lián)各個部分的知識點.本文利用數(shù)學實驗中的趣味性和挑戰(zhàn)性,提出具體可行的教學方法和策略,旨在通過提高教師的教學方法促進中學學生更好地進行數(shù)學深度學習.
【關鍵詞】數(shù)學實驗;深度學習;教學方法
數(shù)學實驗是初中學生學好數(shù)學的重要學習方式之一,也是促進初中生深度學習的重要途徑.通過教師指導,學生可以投入到具有探索性和趣味性的數(shù)學實驗當中,在解決數(shù)學問題的過程中形成數(shù)學思維,獲得數(shù)學活動經(jīng)驗,積極總結和反思實驗過程中遇到的難點,提升中學生思維能力.
1 數(shù)學實驗引導學生全面投入,在情智互促中積極參與
深度學習是指學習者全身心投入學習過程的一種狀態(tài),是一個充滿創(chuàng)造和興趣的過程.而數(shù)學實驗就是這樣一個過程,它通常通過建立一個富有挑戰(zhàn)性的問題作為深度學習的起點,引導中學生自主探索,合作交流,深度參與到學習過程中.
1.1 增強數(shù)學學習的趣味性,促進思考
為了能夠讓學生全身心投入到學習狀態(tài)中,在開始學習階段,首先應該提升學生對于數(shù)學學習的趣味性,并將趣味性貫穿學習過程.努力將其提升為長遠的、能夠激發(fā)學生學習意識的重要手段.
因為數(shù)學在實驗過程中使用的材料具有直觀性和可操作性,能夠直接刺激到學生的直觀感受,誘導學生對該實驗產(chǎn)生興趣,從而引發(fā)思考.學生在觀察、思考和操作的過程中就會沉浸其中,達到深度學習的效果.
例如 數(shù)學課本里有一章講的是可能性,教師拿出兩個紙箱,告訴學生每個布兜里都有兩支大小、形狀和材質都一樣的紅藍球,隨便選取班級里的兩位同學,讓他們各選擇一個紙箱做摸球游戲;每人每次從各自的布兜里隨意取出一個球,然后再放回,每人摸十次,哪一方摸到紅球的次數(shù)多,哪一方就獲勝.這就是一個數(shù)學實驗中的趣味實驗游戲.在進行數(shù)學實驗的過程中,就會出現(xiàn)“都是藍球”“5次藍球,5次紅球”“6次藍球,4次紅球”等情況.當每一次的實驗所得出的結果都不相同時,就會引發(fā)學生們的深度思考.這個可能性的摸球實驗實際上就是初中所學的概率知識,用一個較為抽象的表達方式展現(xiàn)出來,設立一個有趣的情景實驗,將所需學習的知識融入其中.在學生因好奇心和好勝心交流思考時,教師便可以利用這個機會帶領學生進行進一步的學習和探討,加深學生對于知識的掌握,減少對于學習數(shù)學的偏見.
1.2 凸顯數(shù)學學習的挑戰(zhàn)性,增強信心
初中數(shù)學和小學數(shù)學在在學習難度上存在本質差別,所以對于學習初中數(shù)學的學生來說,應加大對數(shù)學的挑戰(zhàn),增強學習數(shù)學的信心.教師可以把一些具有邏輯性的數(shù)學知識設計成類似于小組闖關比賽的模式.
例如 很多學生無法很好地理解關于數(shù)軸的性質和解題思路,教師就可以根據(jù)數(shù)軸定義,“任何一個有理數(shù)都可以用數(shù)軸上的某一點進行表示,互為相反數(shù)的兩個點關于數(shù)軸原點對稱”設計出這樣一個題目:1+2+3+………+2012=( 1+2012)×2012÷2=?同時,把教室里的學生以中間軸為分界線分成左右兩組,進行PK.兩邊學生就會因為好勝心,積極地參與到解題當中,并且以中間軸分組,不僅可以貼合所提出的問題,從心理學來說,因組內(nèi)人數(shù)多且均衡,可以側面增強學生學習的信心[1].
2 數(shù)學實驗促進學生思維進階,深度學習體驗成果成果
在數(shù)學教育過程中,思維能力占主導地位,深度學習是促進思維能力養(yǎng)成的重要方式,然而深度學習的展開是不能脫離學科內(nèi)容的,其目的是為了保證學生學習過程中能夠更好地汲取教師所傳授的知識,更好地運用到考題中解決問題.
學習心理學研究成果表明,成功感是學生進行內(nèi)部學習的主要動機,數(shù)學實驗作為初中生學習數(shù)學的一種方式,使學生能夠充分參與到數(shù)學知識的思考和發(fā)展過程中,且在這過程里,學生可以運用發(fā)展高階思維,在解決問題中主動構建思維框架,實現(xiàn)深度學習,體驗學習成果帶來的成功感受.
2.1 任務驅動,引發(fā)高階思維
高階思維是指發(fā)生在較高認知水平層次上的心智活動或認知能力[2].許多具有吸引力和挑戰(zhàn)力的數(shù)學實驗旨在讓學生解決問題,讓學生在觀察、思考、實驗的過程中保持注意力的高度集中,從而進行分析、創(chuàng)造等高階思維活動.很多初中生在小學階段都學過“多邊形面積”.
例如 用一條直線,把平行四邊形分割成兩個完全一樣的部分.學生通常想到的都是平行四邊形的對角線.如果教師進行更深層次的啟發(fā)誘導,利用對角線交點,即平行四邊形的中心畫出的直線會不會都符合要求呢?這樣不僅開拓了學生的思維,也讓學生學會換位思考.在這一任務驅動下,學生會試圖順著這一思維完成實驗,引發(fā)高階思維,在經(jīng)歷審題、討論、反復試驗和改正中找到正確的解題方法[2].
2.2 自主探索,運用高階思維
自主探索與任務驅動不同,任務驅動一般是在教師指導下,學生根據(jù)教師的提示完成任務,而自主探索顧名思義,更多是依靠學生的主觀能動性開展數(shù)學實驗,主動地發(fā)現(xiàn)問題、提出問題、解決問題.根據(jù)提出的問題設計數(shù)學實驗,運用高階思維,通過一系列的認證猜想解決問題并得出結論.
例如 學生首先發(fā)現(xiàn)問題“正六邊形被分割后能出現(xiàn)相同圖案嗎?”然后提出問題“如何把一個正六邊形分割成六個完全一樣的圖形?”接下來開始解決問題,部分學生可能會先進行嘗試,畫出六邊形的各個對角線,形成中心點,得出的結論成立后,學生會討論新的想法,將被六條對角線分割后形成的六個正三角形合成三個平行四邊形,每個平行四邊形再連接長對角線,得出的結果似乎也符合題意.經(jīng)過一次次的實驗論證,同學們會對圖形有更深的認識,學生借助實驗手段,對思維成果進行驗證,得出變革式新結論,這一過程就是學生利用高階思維自主探索得出的創(chuàng)新成果[3].
3 數(shù)學實驗推動學生自我反思,感悟內(nèi)化實現(xiàn)多方面發(fā)展
學生根據(jù)了解的事實、對事情的認知、對事件的充分體驗建立有效的自我反思,可以強化在數(shù)學實驗過程中積極的情緒和態(tài)度,實現(xiàn)能力與狀態(tài)的全面提升和發(fā)展.
3.1 充分積累、感悟數(shù)學思想
《義務教育數(shù)學課程標準(2011 年版)》曾寫道,學生在積極參與教學活動過程中,通過學生間的交流協(xié)作和個人的獨立思考可以逐步感悟出數(shù)學思想.學生需要親身參與到數(shù)學實驗的過程中去,了解在實驗過程中每個公式、了每幅圖案是怎么變化發(fā)展的,這樣才能開拓學生對于數(shù)學實驗課的認知.
在這一過程中,學生可以大膽說出自己的猜想,然后同教師及其他同學一起進行論證,在享受成果喜悅的同時也能感知到數(shù)學思想的形成和發(fā)展.例如在運用數(shù)學轉化解決問題時,便可以通過轉化發(fā)現(xiàn)解題規(guī)律,掌握許多數(shù)學題間的邏輯關系.還有一些動手的數(shù)學實驗.
例如“多邊形求面積”中的等邊三角形、六邊形、鈍角三角形、平行四邊形.老師會先教學生學習三角形的面積算法,然后利用三角形求平行四邊形面積,利用三角形求梯形面積,在推理演算的過程中會得到新的面積公式,這時再引導學生回顧怎樣利用三角形求出其他多邊形的面積和怎樣通過一個三角形面積公式推理出其他公式,經(jīng)過多次的交流和討論,學生會對轉化思想達到一個新的高度,不僅能讓學生了解到什么是轉化,也可以讓學生在轉化中學習知識,獲得認識,增強對數(shù)學科目的喜愛[4].
3.2 深度品味、升華理性精神
數(shù)學實驗其實是一種可以幫助學生豐富感性思維、提高理性思維、強化直接經(jīng)驗、引導間接思維的實驗,它不僅能夠充分調(diào)動人的各個感官,刺激大腦活躍度,引發(fā)學生積極思考,還可以用來創(chuàng)新.比如手機研發(fā)、電腦軟件制作等.學生通過學習數(shù)學,掌握基礎知識和必備技能,開拓抽象思維和創(chuàng)新推理能力,得到全面發(fā)展,同時也升華了其理性精神.
例如 “小數(shù)的意義”學生應該都有學過,之前在聽一位老師講這個知識點時,她提出了關于小數(shù)的三個問題:①用一根1米長的紙條如何測量一棵0.8米的小樹?② 0.83米的長度如何在這張紙條上表示出來呢?③那0.822米呢?學生通過和同桌合作,把紙條平均分成10個1分米的小紙條,然后取其中8個1分米的紙條,完成了老師的第一個問題;接著學生又把其中0.8到0.9米之間的距離分成10小份,相當于將1米分成100份,然后得出了第二個問題的答案.直到第三個問題,老師讓大家停止了實驗,通過提問的方式,讓舉手的學生為大家解釋第三題的解題方法.
經(jīng)過這一過程的探索,學生對于小數(shù)點的多元性,例如人民幣中的小數(shù)、被切割物體的幾等分等有了更深的理解.最后老師會讓同學進行自我總結,比如這節(jié)課學到了什么、還有哪里不是很清楚、是否喜歡這樣的學習方式等.這種由具體到抽象,感性到理性思維的過渡讓學生的理性精神得到了升華,促進學生對于數(shù)學的深度學習.
4 初中數(shù)學實驗引發(fā)深度學習的策略
4.1 驗證假設,促進主動探究
推理假設是改變傳統(tǒng)被動式學習的方式之一,讓學生由淺入深探討答案,解決問題.教師根據(jù)學生的主觀能動性和提出的猜想進行充分的發(fā)揮,通過實驗進行推理驗證.
例如在“角平分線的性質”討論上,可以要求學生提前預習,通過觀察,判斷實驗結果并進行論證,然后加深學習印象,要求學生通過手動實驗的方式,折疊出一張三角形圖案的紙張,然后根據(jù)所得到的三角形紙張進行再次折疊,研究出三角形中∠ABD與∠CBD、PE與PF之間的數(shù)量關系.在此基礎上,強調(diào)學生推理過程中要嚴謹,促進學生通過表象學習到數(shù)學的本質規(guī)律.
4.2 數(shù)學應用,提升數(shù)學能力
激發(fā)學生的創(chuàng)造力是引導學生由淺入深學習數(shù)學的高級表現(xiàn),教師應基于學生深度學習的重要性,合理地將數(shù)學知識和數(shù)學實驗相結合,引導學生深入學習.
例如在學習完角平分線性質后,教師可以設計一個數(shù)學實驗活動,即根據(jù)當天所學的角平分線性質,利用生活中常見的材料,制作一個屬于自己的角平分儀器,教師可以把制作方法記錄下來,制作成視頻,發(fā)送給學生家長,讓學生和家長都能參與到數(shù)學實驗過程中來.可以看出,這個環(huán)節(jié)突破了傳統(tǒng)的教學模式,讓教學變得多樣化,通過結合日常生活中常見的物品進行創(chuàng)造式的數(shù)學實驗,不僅激發(fā)了學生深度學習的興趣,還讓學生在數(shù)學應用中提升數(shù)學能力,讓研究變得更有意義.
5 結語
總而言之,運用數(shù)學實驗促進學生深度學習,可以幫助教師在教學過程中的主導作用同學生的主體地位更好地協(xié)調(diào)起來,讓學生注意到感性與理性結合、想法和實踐結合、交流和探討結合對學習數(shù)學的重要性.在今后面對學習難度更高的數(shù)學問題時,學生的感悟性會更強,更容易投身到問題的解決中進行深入思考,為人才的培養(yǎng)奠定了基礎,促進學生全面發(fā)展.
參考文獻:
[1]顧丹丹.數(shù)學實驗:讓數(shù)學學習深度發(fā)生——以“探索角平分線的性質”數(shù)學實驗為例[J].中學數(shù)學,2021,2(18):10.
[2]林宇杰,張海東,唐劍嵐.以皓駿設計“祖暅原理及其應用”的積件及教學應用[J].數(shù)學之友,2020(04):92+94.
[3]任振華,周松林,唐劍嵐.以皓駿設計“正方體的截面”的積件及教學應用[J].數(shù)學之友,2020(06):98-99.
[4]鄭毓信.“數(shù)學深度教學”十講之一——從“數(shù)學教育目標”講起[J].小學數(shù)學教師,2019(7/8):10.