趙志平,王向宇,賈斌,許應(yīng)星,王昌耀,王英振
[摘要]目的? ? 研究表觀遺傳信號(hào)分子-溴結(jié)構(gòu)域蛋白4(BRD4)在鈦(Ti)顆粒體外誘導(dǎo)破骨細(xì)胞形成和骨吸收功能中的作用。方法? ? 小鼠RAW264.7巨噬細(xì)胞隨機(jī)分為3組,對(duì)照組應(yīng)用細(xì)胞培養(yǎng)液+100 μg/L核因子κB受體活化因子配體(RANKL)+50 μg/L巨噬細(xì)胞集落刺激因子(M-CSF)培養(yǎng),Ti組應(yīng)用細(xì)胞培養(yǎng)液+0.1 g/L Ti+100 μg/L RANKL+50 μg/L M-CSF培養(yǎng),Ti+JQ1組應(yīng)用細(xì)胞培養(yǎng)液+0.1 g/L Ti+100 μg/L RANKL+50 μg/L M-CSF+200 nmol/L JQ1培養(yǎng)。各組細(xì)胞培養(yǎng)48 h后,應(yīng)用CCK8檢測(cè)細(xì)胞活性,熒光定量聚合酶鏈?zhǔn)椒磻?yīng)法檢測(cè)[STBX]BRD4基因和破骨細(xì)胞相關(guān)基因組織蛋白酶K(CK)、抗酒石酸酸性磷酸酶(TRAP)、腫瘤壞死因子受體相關(guān)因子6([STBX]TRAF6)、活化T細(xì)胞核因子1([STBX]NFATc1)等mRNA表達(dá);培養(yǎng)5 d至破骨細(xì)胞形成,用TRAP染色法檢測(cè)各組成熟破骨細(xì)胞數(shù)量,骨吸收培養(yǎng)板(OAP)檢測(cè)各組破骨細(xì)胞骨吸收功能。結(jié)果? ? 各組細(xì)胞活性差異無(wú)顯著性(F=1.629,P>0.05);Ti組[STBX]BRD4基因和破骨細(xì)胞相關(guān)基因mRNA表達(dá)均較對(duì)照組顯著升高,Ti+JQ1組[STBX]BRD4基因和破骨細(xì)胞相關(guān)基因mRNA表達(dá)均較Ti組降低,差異有統(tǒng)計(jì)學(xué)意義(F=24.575~336.704,P<0.05);Ti組TRAP染色陽(yáng)性的破骨細(xì)胞數(shù)目較其他兩組明顯增多,差異有統(tǒng)計(jì)學(xué)意義(F=165.941,P<0.05);Ti組骨吸收面積較對(duì)照組增加,Ti+JQ1組骨吸收面積與Ti組相比明顯減少,差異均有統(tǒng)計(jì)學(xué)意義(F=49.879,P<0.05)。結(jié)論? ? Ti顆粒通過(guò)上調(diào)RAW264.7巨噬細(xì)胞中BRD4蛋白的表達(dá),促進(jìn)破骨細(xì)胞形成和骨吸收功能。
[關(guān)鍵詞]溴結(jié)構(gòu)域蛋白4;鈦顆粒;JQ1;破骨細(xì)胞;骨吸收;基因檢測(cè)
[中圖分類號(hào)]R687.4;R318
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2022)04-0489-05
doi:10.11712/jms.2096-5532.2022.58.108
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版]https://kns.cnki.net/kcms/detail/37.1517.R.20220622.1629.013.html;[JY]2022-06-2414:58:40
ROLE OF BROMODOMAIN-CONTAINING PROTEIN 4 IN TITANIUM PARTICLE-INDUCED OSTEOCLASTOGENESIS AND BONE RESORPTION
ZHAO Zhiping, WANG Xiangyu, JIA Bin, XU Yingxing, WANG Changyao, WANG Yingzhen
(Department of Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective[WTBZ] To investigate the role of the epigenetic signaling molecule bromodomain-containing protein 4 (BRD4) in titanium (Ti) particle-induced osteoclastogenesis and bone resorption in vitro.
Methods Mouse RAW264. 7 macrophages were randomly divided into control group, Ti group, and Ti+JQ1 group.? The macrophages in the control group were cultured with cell culture medium+100 μg/L receptor activator of nuclear factor-κB ligand (RANKL)+50 μg/L macrophage colony-stimulating factor (M-CSF), those in the Ti group were cultured with cell culture medium+0.1 g/L Ti+100 μg/L RANKL+50 μg/L M-CSF, and those in the Ti+JQ1 group were cultured with cell culture medium+0.1 g/L Ti+100 μg/L RANKL+50 μg/L M-CSF+200 nmol/L JQ1.? After culture for 48 h, CCK8 assay was used to measure cell viability, and quantitative real-time PCR was used to measure the mRNA expression of [STBX]BRD4 gene and osteoclast-related genes such as cathepsin K (CK), tartrate-resistant acid phosphatase (TRAP), TNF receptor-associated factor 6 ([STBX]TRAF6), and nuclear factor of activated T-cells 1 ([STBX]NFATc1); after culture for 5 d till the formation of osteoclasts, TRAP staining was used to measure the number of mature os-teoclasts in each group, and osteo assay plate (OAP) was used to evaluate osteoclast-mediated bone resorption in each group.
Results There was no significant difference in cell viability between groups (F=1.629,P>0.05).? Compared with the control group, the Ti group had significantly higher mRNA expression levels of [STBX]BRD4 gene and osteoclast-related genes, and compared with the Ti group, the Ti+JQ1 group had significantly lower mRNA expression levels (F=24.575-336.704,P<0.05).? The Ti group had a significantly higher number of TRAP-positive osteoclasts than the other two groups (F=165.941,P<0.05).? The Ti group had a significantly larger area of bone resorption than the control group, and the Ti+JQ1 group had a significantly smaller area of bone resorption than the Ti group (F=49.879,P<0.05).
Conclusion[WTBZ] Ti particles promote osteoclast formation and bone resorption by upregulating the expression of BRD4 in RAW264. 7 macrophages.
[KEY WORDS]bromodomain-containing protein 4; titanium particles; JQ1; osteoclasts; bone resorption; genetic testing
人工關(guān)節(jié)置換術(shù)(TJA)被廣泛用于治療晚期關(guān)節(jié)疾病,可顯著緩解病人的疼痛并改善關(guān)節(jié)功能[1]。然而,磨損顆粒引起的假體周圍骨溶解引發(fā)的無(wú)菌性松動(dòng)是導(dǎo)致假體失敗的主要原因[2]。盡管假體周圍骨溶解的病理生理機(jī)制仍不清楚,但越來(lái)越多的證據(jù)表明,從假體表面釋放的聚乙烯和鈦(Ti)等磨損顆粒能誘導(dǎo)破骨細(xì)胞形成和過(guò)度活化,并增強(qiáng)假體周圍的破骨細(xì)胞骨吸收功能,從而導(dǎo)致假體周圍骨溶解和隨后的無(wú)菌性松動(dòng)[3-4]。大量的研究結(jié)果發(fā)現(xiàn),表觀遺傳信號(hào)分子-溴結(jié)構(gòu)域蛋白4(BRD4)通過(guò)調(diào)控破骨細(xì)胞的形成,參與破骨細(xì)胞相關(guān)的溶骨性疾病,如類風(fēng)濕性關(guān)節(jié)炎、骨肉瘤和骨質(zhì)疏松等發(fā)生和發(fā)展[5-7]。有研究結(jié)果表明,BRD4抑制劑JQ1對(duì)破骨細(xì)胞分化有抑制作用,可防止卵巢切除小鼠骨質(zhì)疏松[8]。我們先前的研究結(jié)果顯示,假體周圍骨溶解病人的界膜組織中BRD4蛋白的表達(dá)明顯增加,Ti顆粒處理小鼠RAW264.7巨噬細(xì)胞通過(guò)上調(diào)BRD4表達(dá)誘導(dǎo)溶骨性炎性因子的產(chǎn)生[9]。但是,關(guān)于BRD4蛋白參與調(diào)控磨損顆粒誘導(dǎo)破骨細(xì)胞形成、活化和骨吸收功能的確切機(jī)制不明。本文對(duì)BRD4在磨損顆粒誘導(dǎo)破骨細(xì)胞形成和骨吸收功能中的作用進(jìn)行研究。
1材料和方法
1.1實(shí)驗(yàn)材料
小鼠RAW264.7巨噬細(xì)胞購(gòu)自中國(guó)科學(xué)院(上海)細(xì)胞庫(kù);DMEM高糖培養(yǎng)液和青霉素/鏈霉素混合液購(gòu)自以色列BI公司;胎牛血清購(gòu)自武漢普諾賽生命科學(xué)有限公司;Ti顆粒(平均直徑為4 μm)購(gòu)自美國(guó)Alfa Aesa;CCK8試劑盒和TRAP染色試劑盒購(gòu)自北京索萊寶科技有限公司;Trizol試劑、反轉(zhuǎn)錄試劑盒和SYBR Green試劑盒購(gòu)自日本TaKaRa公司;PCR引物購(gòu)自生工生物工程(上海)股份有限公司;核因子κB受體活化因子配體(RANKL)和巨噬細(xì)胞集落刺激因子(M-CSF)購(gòu)自美國(guó)R&D Systems;JQ1購(gòu)自北京愛必信生物科技有限公司;骨吸收培養(yǎng)板購(gòu)自美國(guó)康寧公司。
1.2實(shí)驗(yàn)方法
1.2.1Ti顆粒的準(zhǔn)備Ti顆粒在180 ℃下烘烤6 h后,在體積分?jǐn)?shù)0.75乙醇中洗滌48 h以去除內(nèi)毒素,然后懸浮在無(wú)菌磷酸鹽緩沖液(PBS)中,使用高壓滅菌器對(duì)Ti顆粒懸液進(jìn)行滅菌,制成0.1 g/L的Ti顆粒懸液4 ℃儲(chǔ)存?zhèn)溆谩?/p>
1.2.2細(xì)胞培養(yǎng)和誘導(dǎo)小鼠RAW264.7巨噬細(xì)胞以每孔1×104的密度接種于96孔板中,隨機(jī)分為3組培養(yǎng):對(duì)照組中加入破骨誘導(dǎo)培養(yǎng)液(含有體積分?jǐn)?shù)0.10胎牛血清和體積分?jǐn)?shù)0.01青霉素/鏈霉素混合液DMEM高糖培養(yǎng)液+100 μg/L RANKL+50 μg/L的M-CSF),Ti組中加入破骨誘導(dǎo)培養(yǎng)液+0.1 g/L Ti顆粒,Ti+JQ1組中加入破骨誘導(dǎo)培養(yǎng)液+0.1 g/L Ti顆粒+200 nmol/L JQ1。3組細(xì)胞均培養(yǎng)于含體積分?jǐn)?shù)0.05 CO2、95%濕度和37 ℃的環(huán)境中,每2 d更新1次培養(yǎng)液。
1.2.3CCK8方法檢測(cè)細(xì)胞活力小鼠RAW264.7巨噬細(xì)胞以每孔1×104的密度接種到96孔板中過(guò)夜,根據(jù)分組加入相應(yīng)試劑后培養(yǎng)48 h。然后按照CCK8試劑盒說(shuō)明書將CCK8添加到96孔板中,每組設(shè)5個(gè)復(fù)孔,培養(yǎng)2 h,酶標(biāo)儀測(cè)定各孔吸光度。
1.2.4熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(Q-PCR)方法檢測(cè)基因表達(dá)Trizol試劑盒提取各組細(xì)胞總RNA,參照說(shuō)明書進(jìn)行操作。反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)為cDNA,將獲得的cDNA稀釋并用作PCR模板,使用SYBR Green PCR預(yù)混液配制反應(yīng)體系,反應(yīng)條件為:預(yù)變性95 ℃、10 min,變性95 ℃、10 s,退火60 ℃、10 s,延伸72 ℃、15 s,共進(jìn)行40個(gè)循環(huán)。以GAPDH為內(nèi)參照基因,采用2-ΔΔCt法分別計(jì)算[STBX]BRD4、組織蛋白酶K(CK)、抗酒石酸酸性磷酸酶(TRAP)、活化T細(xì)胞核因子1([STBX]NFATc1)、腫瘤壞死因子受體相關(guān)因子6([STBX]TRAF6)等目的基因的mRNA表達(dá)。上述每個(gè)樣本均設(shè)置3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次。
1.2.5TRAP染色法檢測(cè)破骨細(xì)胞形成將小鼠RAW264.7巨噬細(xì)胞以每孔1×104的密度接種到96孔板中過(guò)夜,根據(jù)分組加入相應(yīng)試劑。每2 d更換1次培養(yǎng)液,直到第5天觀察到成熟的破骨細(xì)胞。然后將各組細(xì)胞用PBS洗滌3次,用40 g/L多聚甲醛固定20 min,并根據(jù)TRAP試劑盒說(shuō)明書進(jìn)行TRAP染色。具有≥3個(gè)核TRAP染色陽(yáng)性的細(xì)胞為破骨細(xì)胞,并使用Image Pro-Plus 6.0軟件進(jìn)行計(jì)數(shù)。
1.2.6骨吸收培養(yǎng)板(OAP)檢測(cè)破骨細(xì)胞骨吸收功能將小鼠RAW264.7巨噬細(xì)胞以每孔1×105的密度接種到24孔OAP中,根據(jù)分組加入相應(yīng)試劑。每2 d更換1次培養(yǎng)液培養(yǎng)5 d,然后超聲處理直至細(xì)胞完全從OAP中移出。使用倒置顯微鏡拍攝骨吸收凹坑的圖像,并使用Image Pro-Plus 6.0軟件量化骨吸收的面積。
1.3統(tǒng)計(jì)學(xué)分析
[CM(20]使用SPSS 21.0軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料[CM)]
以[AKx-D]±s形式表示,多組比較采用單因素方差分析,組間兩兩比較采用LSD檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1各組細(xì)胞存活率比較
對(duì)照組、Ti組和Ti+JQ1組的細(xì)胞存活率分別為1.01±0.02、1.04±0.04、0.99±0.05,3組比較差異無(wú)統(tǒng)計(jì)學(xué)意義(F=1.629,P>0.05)。表明加入Ti顆粒、RANKL和M-CSF以及JQ1對(duì)細(xì)胞生長(zhǎng)活性無(wú)影響。
2.2各組[STBX]BRD4基因和破骨細(xì)胞相關(guān)基因mRNA表達(dá)比較
Ti組[STBX]BRD4 mRNA表達(dá)明顯高于對(duì)照組,而Ti+JQ1組[STBX]BRD4 mRNA表達(dá)與Ti組相比顯著降低(F=128.241,P<0.05)。與對(duì)照組相比較,Ti組破骨細(xì)胞相關(guān)基因[STBX]CK、TRAP、TRAF6、NFATc1、c-Fos的mRNA
表達(dá)均明顯升高;與Ti組相比,Ti+JQ1組破骨細(xì)胞相關(guān)基因[STBX]CK、NFATc1、TRAF6、TRAP和c-Fos的mRNA表達(dá)均明顯下降,差異均具有統(tǒng)計(jì)學(xué)意義(F=24.575~336.704,P<0.05)。見表1。
2.3各組破骨細(xì)胞形成比較
小鼠RAW264.7巨噬細(xì)胞可以分化為特征性TRAP陽(yáng)性多核破骨細(xì)胞,與對(duì)照組相比,Ti組破骨細(xì)胞數(shù)增多;與Ti組相比,Ti+JQ1組TRAP陽(yáng)性破骨細(xì)胞數(shù)量明顯減少,差異有統(tǒng)計(jì)學(xué)意義(F=165.941,P<0.05)。見圖1A~C和表2。
2.4各組破骨細(xì)胞骨吸收功能比較
在RANKL和M-CSF誘導(dǎo)下,3組均可觀察到骨吸收凹坑。與對(duì)照組相比,Ti組的骨吸收面積顯著增加;與Ti組相比,Ti+JQ1組的骨吸收面積顯著減少,差異均有統(tǒng)計(jì)學(xué)意義(F=49.879,P<0.05)。見圖1D~F和表2。
3討論
TJA可以明顯緩解晚期關(guān)節(jié)疾病病人的疼痛、改善關(guān)節(jié)功能、提高生活質(zhì)量,曾被評(píng)為“世紀(jì)性的手術(shù)”[1]。但是隨著TJA手術(shù)的廣泛開展以及假體使用年限的延長(zhǎng),越來(lái)越多的病人需要進(jìn)行關(guān)節(jié)翻修手術(shù),這給病人造成了極大的心理壓力和經(jīng)濟(jì)負(fù)擔(dān)。DOBZYNIAK等[10]對(duì)關(guān)節(jié)翻修手術(shù)的原因分析發(fā)現(xiàn),75%的翻修手術(shù)是由假體的無(wú)菌性松動(dòng)引起。而磨損顆粒誘導(dǎo)的假體周圍骨溶解是假體無(wú)菌性松動(dòng)的病理基礎(chǔ)[11]。因此,預(yù)防和治療假體無(wú)菌性松動(dòng)的關(guān)鍵在于對(duì)磨損顆粒誘導(dǎo)的假體周圍骨溶解進(jìn)行防治。這就要求我們了解磨損顆粒誘導(dǎo)假體周圍骨溶解的發(fā)病機(jī)制。
隨著表觀遺傳學(xué)的興起,BRD4作為表觀遺傳信號(hào)分子逐漸被人們所熟知。BRD4蛋白主要與乙酰化的組蛋白發(fā)生特異性的結(jié)合,然后募集其他轉(zhuǎn)錄因子,繼而形成轉(zhuǎn)錄復(fù)合體,促進(jìn)下游基因的轉(zhuǎn)錄和表達(dá),進(jìn)而參與細(xì)胞周期、細(xì)胞生長(zhǎng)、炎癥和癌癥等調(diào)節(jié)[12-13]。有研究結(jié)果表明,磨損顆粒主要通過(guò)激活破骨細(xì)胞形成和骨吸收功能誘導(dǎo)假體周圍骨溶解[14-17]。大量研究顯示,表觀遺傳信號(hào)分子BRD4與破骨細(xì)胞相關(guān)的溶骨性疾病有關(guān)[7,18-19],而抑制BRD4可以顯著抑制破骨細(xì)胞的形成以及破骨細(xì)胞的骨吸收功能[20]。BRD4選擇性抑制劑JQ1可通過(guò)阻斷BRD4蛋白與乙酰化組蛋白之間的相互作用,競(jìng)爭(zhēng)性地占據(jù)溴結(jié)構(gòu)域的識(shí)別口袋,并取代染色質(zhì)的BRD4蛋白,發(fā)揮針對(duì)靶基因治療劑的作用。LAMOUREUX等[7]的研究顯示,JQ1可抑制成骨細(xì)胞和破骨細(xì)胞分化,延緩骨腫瘤的發(fā)展。KLEIN等[21]研究表明,在類風(fēng)濕關(guān)節(jié)炎滑膜組織中可檢測(cè)到BRD4蛋白,類風(fēng)濕關(guān)節(jié)炎滑膜成纖維細(xì)胞和巨噬細(xì)胞中均有BRD4表達(dá),抑制BRD4可抑制破骨細(xì)胞的形成和活化而緩解類風(fēng)濕關(guān)節(jié)炎的病理過(guò)程。我們之前的研究結(jié)果也表明,BRD4在假體周圍骨溶解病人界膜組織中的表達(dá)上調(diào);當(dāng)用Ti顆粒處理小鼠RAW264.7巨噬細(xì)胞時(shí),BRD4表達(dá)上調(diào)并且促進(jìn)溶骨性炎癥因子的產(chǎn)生;在JQ1存在時(shí),BRD4和溶骨性炎癥因子產(chǎn)生顯著減少,表明BRD4可能在Ti顆粒誘導(dǎo)溶骨性炎癥因子產(chǎn)生的機(jī)制中起作用[9]。本研究旨在進(jìn)一步探討B(tài)RD4在Ti顆粒體外誘導(dǎo)破骨細(xì)胞生成和破骨細(xì)胞骨吸收功能中的作用。
本文研究Q-PCR結(jié)果顯示,在Ti顆粒誘導(dǎo)的RAW264.7巨噬細(xì)胞中[STBX]BRD4表達(dá)上調(diào),與相關(guān)研究結(jié)果一致[9];并且伴隨著破骨細(xì)胞相關(guān)基因CK、TRAP、[STBX]TRAF6、NFATc1以及c-Fos mRNA表達(dá)升高,而BRD4抑制劑JQ1可以顯著降低Ti顆粒誘導(dǎo)的RAW264.7巨噬細(xì)胞中破骨細(xì)胞相關(guān)基因CK、TRAP、[STBX]TRAF6、NFATc1和c-Fos mRNA的表達(dá),說(shuō)明[STBX]BRD4參與了Ti顆粒誘導(dǎo)破骨細(xì)胞相關(guān)基因的表達(dá)。本文進(jìn)一步探討了BRD4對(duì)Ti顆粒誘導(dǎo)破骨細(xì)胞形成和骨吸收功能的影響,TRAP染色結(jié)果顯示,Ti顆??纱龠M(jìn)破骨細(xì)胞生成和分化,而抑制BRD4則減弱了Ti顆粒誘導(dǎo)的破骨細(xì)胞形成和分化;此外,OAP結(jié)果表明,Ti顆??纱龠M(jìn)破骨細(xì)胞骨吸收功能,而JQ1能顯著抑制Ti顆粒體外誘導(dǎo)的破骨細(xì)胞骨吸收功能。
綜上所述,Ti顆粒處理RAW264.7巨噬細(xì)胞可通過(guò)上調(diào)BRD4的表達(dá),促進(jìn)破骨細(xì)胞生成和破骨細(xì)胞骨吸收功能,抑制BRD4表達(dá)可抑制Ti顆粒誘導(dǎo)的破骨細(xì)胞的形成和破骨細(xì)胞骨吸收的功能,但其具體分子調(diào)控機(jī)制仍有待研究。應(yīng)用動(dòng)物模型進(jìn)一步研究BRD4在Ti顆粒誘導(dǎo)骨溶解中的作用,從表觀遺傳學(xué)的角度對(duì)磨損顆粒誘導(dǎo)假體周圍骨溶解的發(fā)病機(jī)制提供了新的補(bǔ)充,同時(shí)也為預(yù)防和治療磨損顆粒誘導(dǎo)假體周圍骨溶解和假體無(wú)菌性松動(dòng)找到了新的治療靶點(diǎn)和理論依據(jù)。
[參考文獻(xiàn)]
[1]LEARMONTH I D, YOUNG C, RORABECK C.? The operation of the century: total hip replacement[J].? ?Lancet (London, England), 2007,370(9597):1508-1519.
[2]WANG Q, GE G R, LIANG X L, et al.? Punicalagin ameliorates wear-particle-induced inflammatory bone destruction by bi-directional regulation of osteoblastic formation and os-teoclastic resorption[J].? ?Biomaterials Science, 2020,8(18):5157-5171.
[3]LIAO S J, FENG W, LIU Y, et al.? Inhibitory effects of biochanin A on titanium particle-induced osteoclast activation and inflammatory bone resorption via NF-κB and MAPK pathways[J].? ?Journal of Cellular Physiology, 2021,236(2):1432-1444.
[4]HU X Y, PING Z C, GAN M F, et al.? Theaflavin-3,3-digallate represses osteoclastogenesis and prevents wear debris-in-duced osteolysis via suppression of ERK pathway[J].? Acta Biomaterialia, 2017,48:479-488.
[5]XIAO Y J, LIANG L Q, HUANG M C, et al.? Bromodomain and extra-terminaldomainbromodomaininhibitionprevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes[J].? ?Rheumatology (Oxford, England), 2016,55(1):173-184.
[6]JACQUES C, LAVAUD M, GEORGES S, et al.? BET bromodomains functions in bone-related pathologies[J].? ?Epi-genomics, 2020,12(2):127-144.
[7]LAMOUREUX F, BAUDHUIN M, RODRIGUEZ CALLEJA L, et al.? Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle[J].? ?Nature Communications, 2014,5:3511.
[8]BAUDHUIN M, LAMOUREUX F, JACQUES C, et al.? Inhibition of BET proteins and epigenetic signaling as a potential treatment for osteoporosis[J].? ?Bone, 2017,94:10-21.
[9]REN Y Z, ZHANG Y T, WANG Z, et al.? Role of Brd4 in the production of inflammatory cytokines in mouse macrophages treated with titanium particles[J].? ?Canadian Journal of Phy-siology and Pharmacology, 2019,97(11):1028-1034.
[10]DOBZYNIAK M, FEHRING T K, ODUM S.? Early failure in total hip arthroplasty[J].? ?Clinical Orthopaedics and Related Research, 2006,447:76-78.
[11]KANDAHARI A M, YANG X L, LAROCHE K A, et al.? A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response[J].? ?Bone Research, 2016,4:16014.
[12]TANIGUCHI Y.? The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins[J].? ?International Journal of Molecular Sciences, 2016,17(11): E1849.
[13]FILIPPAKOPOULOS P, QI J, PICAUD S, et al.? Selective inhibition of BET bromodomains[J].? ?Nature, 2010,468(7327):1067-1073.
[14]JIANG Y P, JIA T H, WOOLEY P H, et al.? Current research in the pathogenesis of aseptic implant loosening asso-ciated with particulate wear debris[J].? ?Acta Orthopaedica Belgica, 2013,79(1):1-9.
[15]GALLO J, GOODMAN S B, KONTTINEN Y T, et al.? Os-teolysis around total knee arthroplasty: a review of pathogenetic mechanisms[J].? ?Acta Biomaterialia, 2013,9(9):8046-8058.
[16]JIANG Y P, JIA T H, GONG W M, et al.? Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis[J].? ?Acta Biomaterialia, 2013,9(7):7564-7572.
[17]LONGHOFER L K, CHONG A, STRONG N M, et al.? Specific material effects of wear-particle-induced inflammation and osteolysis at the bone-implant interface: a rat model[J].? ?Journal of Orthopaedic Translation, 2017,8:5-11.
[18]ZHANG Q G, QIAN J, ZHU Y C.? Targeting bromodomain-containing protein 4 (BRD4) benefits rheumatoid arthritis[J].? ?Immunology Letters, 2015,166(2):103-108.
[19]MENG S, ZHANG L, TANG Y, et al.? BET inhibitor JQ1 blocks inflammation and bone destruction[J].? ?Journal of Den-tal Research, 2014,93(7):657-662.
[20]GUO N H, ZHENG J F, ZI F M, et al.? I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma[J].? ?Bioscience Reports, 2019,39(5): BSR20181245.
[21]KLEIN K, KABALA P A, GRABIEC A M, et al.? The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts[J].? ?Annals of the Rheumatic Diseases, 2016,75(2):422-429.
(本文編輯黃建鄉(xiāng))