李玉婷, 李香云, 史佳, 李翠, 余劍波
內(nèi)毒素攻擊大鼠肺泡巨噬細(xì)胞時(shí)HO-1對高爾基體應(yīng)激的影響*
李玉婷, 李香云, 史佳, 李翠, 余劍波△
(天津醫(yī)科大學(xué)南開臨床學(xué)院,天津市中西醫(yī)結(jié)合醫(yī)院·南開醫(yī)院麻醉與重癥醫(yī)學(xué)科,天津 300100)
探討內(nèi)毒素誘導(dǎo)大鼠肺泡巨噬細(xì)胞損傷時(shí)血紅素加氧酶1(HO-1)對高爾基體應(yīng)激的影響。體外培養(yǎng)大鼠肺泡巨噬細(xì)胞,采用脂多糖(LPS)誘導(dǎo)大鼠肺泡巨噬細(xì)胞建立細(xì)胞損傷模型。使用CCK-8法檢測細(xì)胞活力;使用DCFH-DA探針檢測細(xì)胞內(nèi)活性氧簇(ROS)的生成;使用生物化學(xué)方法檢測超氧化物歧化酶(SOD)活性和丙二醛(MDA)水平;使用TUNEL染色和凋亡相關(guān)蛋白caspase-3/7活性檢測試劑盒檢測細(xì)胞凋亡;使用RT-qPCR和Western blot法檢測HO-1和高爾基體磷蛋白3(GOLPH3)的表達(dá);使用Western blot法檢測高爾基體結(jié)構(gòu)相關(guān)蛋白GM130、golgin-97和mannosidase II的表達(dá)。使用小干擾RNA(siRNA)沉默后,重復(fù)以上檢測。LPS刺激肺泡巨噬細(xì)胞下調(diào)細(xì)胞活力、SOD活性及GM130、golgin-97和mannosidase II表達(dá)水平,上調(diào)ROS和MDA含量及HO-1和GOLPH3表達(dá)水平,并導(dǎo)致TUNEL標(biāo)記陽性細(xì)胞數(shù)增多,caspase-3/7活性增強(qiáng)(<0.05);基因沉默后,細(xì)胞活力、SOD活性及GM130、golgin-97和mannosidase II表達(dá)顯著下降,ROS和MDA含量及GOLPH3表達(dá)顯著上升,TUNEL標(biāo)記陽性細(xì)胞數(shù)增多,caspase-3/-7活性顯著增強(qiáng)(<0.05)。內(nèi)毒素誘導(dǎo)大鼠肺泡巨噬細(xì)胞損傷時(shí),HO-1可減輕氧化應(yīng)激和高爾基體應(yīng)激反應(yīng),減少細(xì)胞凋亡。
高爾基體應(yīng)激;血紅素加氧酶1;脂多糖;肺泡巨噬細(xì)胞;氧化應(yīng)激
急性肺損傷(acute lung injury, ALI)是臨床常見的危重癥,具有高發(fā)病率和高死亡率。肺泡巨噬細(xì)胞可釋放細(xì)胞因子和趨化因子以招募炎癥細(xì)胞,引發(fā)炎癥風(fēng)暴,在ALI后期可釋放抗炎因子,抑制炎癥細(xì)胞浸潤以介導(dǎo)肺部炎癥消退,并通過誘導(dǎo)增殖信號(hào)傳導(dǎo)以促進(jìn)組織修復(fù)。因此,巨噬細(xì)胞可能是治療ALI的合適靶點(diǎn)之一[1-3]。
高爾基體是細(xì)胞死亡途徑中應(yīng)激的傳感器和下游效應(yīng)器之一[4]。應(yīng)激狀態(tài)下,高爾基體結(jié)構(gòu)和功能被破壞,離子穩(wěn)態(tài)失衡,導(dǎo)致細(xì)胞氧化還原平衡改變,細(xì)胞死亡增加[4-5]。高爾基體磷蛋白3(Golgi phosphoprotein 3, GOLPH3)作為高爾基體應(yīng)激的傳感器,在氧化應(yīng)激過程中迅速上調(diào),并向下游傳遞應(yīng)激信號(hào),誘導(dǎo)細(xì)胞內(nèi)活性氧簇(reactive oxygen species, ROS)產(chǎn)生,促進(jìn)高爾基體解體和細(xì)胞凋亡[4, 6-7]。高爾基體結(jié)構(gòu)相關(guān)蛋白高爾基體基質(zhì)蛋白130(Golgi matrix protein 130, GM130)、高爾基體蛋白97(golgin-97)和II類甘露糖苷酶(mannosidase II)對維持高爾基體結(jié)構(gòu)極為重要,在氧化應(yīng)激期間表達(dá)下降,可致高爾基體結(jié)構(gòu)碎裂及功能受損,最終引起細(xì)胞凋亡[4, 6, 8-10]。因此,是否可通過調(diào)控高爾基體應(yīng)激反應(yīng)減輕LPS誘導(dǎo)的肺泡巨噬細(xì)胞急性損傷值得進(jìn)一步探究。
本研究組前期研究表明,血紅素加氧酶1(heme oxygenase-1, HO-1)是一種潛在的應(yīng)激誘導(dǎo)蛋白,其在急性肺損傷中可通過改善線粒體動(dòng)力學(xué)平衡及抑制內(nèi)質(zhì)網(wǎng)應(yīng)激,以發(fā)揮內(nèi)源性肺保護(hù)作用[11-13]。但HO-1在肺泡巨噬細(xì)胞內(nèi)對高爾基體應(yīng)激的調(diào)控,目前尚不清楚。本項(xiàng)工作擬通過構(gòu)建脂多糖(lipopolysaccharide, LPS)誘導(dǎo)的肺泡巨噬細(xì)胞急性損傷模型,探究HO-1對高爾基體應(yīng)激的調(diào)控作用,為研究其在急性肺損傷中的作用提供參考資料。
大鼠肺泡巨噬細(xì)胞系NR8383購自中國科學(xué)院。F12培養(yǎng)液和青鏈雙抗購自HyClone;胎牛血清購自四季青公司;LPS購自Sigma;-小干擾RNA(small interfering RNA, siRNA)購自GE Dharmacon;轉(zhuǎn)染試劑Lipofectamine 3000購自Invitrogen;qPCR引物由湖北百奧生物科技有限公司合成;逆轉(zhuǎn)錄試劑盒和實(shí)時(shí)熒光定量PCR試劑購自北京艾德萊生物科技有限公司;caspase-3/7試劑盒購自大連美侖生物技術(shù)有限公司;超氧化物歧化酶(superoxide dismutase, SOD)試劑盒和丙二醛(malondialdehyde, MDA)試劑盒購自南京建成生物研究所;細(xì)胞計(jì)數(shù)試劑盒8(Cell Counting Kit-8, CCK8)購自上海生工生物工程公司;TUNEL細(xì)胞檢測試劑盒和DCFH-DA探針購自碧云天生物技術(shù)研究所;BCA蛋白定量試劑盒購自北京艾德萊生物科技有限公司;HO-1抗體、GOLPH3抗體和GM130抗體購自PTG;golgin-97抗體購自CST;mannosidase II抗體購自Santa;β-actin抗體、HRP標(biāo)記的山羊抗兔抗體和HRP標(biāo)記的山羊抗鼠抗體購自三箭生物技術(shù)有限公司。
2.1細(xì)胞培養(yǎng)及分組將NR8383細(xì)胞培養(yǎng)于含10%胎牛血清和1%青鏈雙抗的F12培養(yǎng)液,置于37 ℃、5% CO2飽和濕度的培養(yǎng)箱中。每2 d更換1次培養(yǎng)液。待細(xì)胞密度為80%左右時(shí)離心收集并傳代。將細(xì)胞接種于12孔板,密度為5×107/L的細(xì)胞,采用隨機(jī)數(shù)字表法分為4組(=3):對照(control)組、LPS組、LPS+Scr-siRNA組和LPS+-siRNA組。對照組細(xì)胞正常培養(yǎng),其余3組參考文獻(xiàn)[14]給予10 mg/L LPS制備肺泡巨噬細(xì)胞內(nèi)毒素攻擊模型。
2.2細(xì)胞轉(zhuǎn)染及造模依據(jù)試劑說明,使用Lipofectamine 3000進(jìn)行Scr-siRNA和siRNA轉(zhuǎn)染。LPS+Scr-siRNA組細(xì)胞中加入Scr-siRNA和Lipofectamine 3000轉(zhuǎn)染試劑,LPS+-siRNA組加入-siRNA和Lipofectamine 3000轉(zhuǎn)染試劑,培養(yǎng)24 h后,加入LPS 10 mg/L繼續(xù)培養(yǎng)24 h。
2.3細(xì)胞活力檢測96孔板接種NR8383細(xì)胞,細(xì)胞接種量每孔5 000個(gè)。細(xì)胞貼壁后按照試驗(yàn)分組進(jìn)行處理,再按照CCK-8試劑盒說明書操作,選擇酶標(biāo)儀于450 nm波長檢測吸光度()值并計(jì)算相對細(xì)胞活力。
2.4ROS的檢測DCFH-DA用無血清培養(yǎng)液稀釋至10 μmol/L。細(xì)胞收集后懸浮于稀釋的DCFH-DA中30 min,每2~3 min混合一次,最后在無血清培養(yǎng)液中洗滌細(xì)胞3次。以485 nm和535 nm的激發(fā)波長和發(fā)射波長計(jì)算DCF熒光。
2.5SOD活性和MDA含量的測定收集處理后的細(xì)胞,嚴(yán)格按照SOD和MDA試劑盒說明書操作,采用721分光光度儀檢測值。
2.6caspase-3/7活性的檢測收集處理后的細(xì)胞,根據(jù)說明,使用caspase-3/7活性檢測試劑盒對樣本進(jìn)行caspase-3/7活性的測定。
2.7TUNEL染色收集處理后的細(xì)胞,采用4%多聚甲醛固定細(xì)胞,根據(jù)TUNEL凋亡試劑盒說明書進(jìn)行TUNEL染色,再采用DAPI染色液復(fù)染細(xì)胞核。置于熒光顯微鏡下觀察凋亡細(xì)胞,并通過計(jì)算TUNEL陽性細(xì)胞核數(shù)量占DAPI染色核數(shù)量的比例,計(jì)算凋亡細(xì)胞的百分率。
2.8RT-qPCR采用Trizol法[15]提取出NR8383細(xì)胞中的總RNA。逆轉(zhuǎn)錄合成cDNA,置于-20 ℃保存?zhèn)溆?。RT-qPCR擴(kuò)增目的基因mRNA。反應(yīng)條件:95 ℃ 5 min;95 ℃ 10 s,60 ℃ 30 s,40個(gè)循環(huán)。采用熒光定量PCR儀測定Ct值,采用2-ΔΔCt法對目的基因的相對表達(dá)量進(jìn)行分析。相應(yīng)引物序列見表1。
表1 RT-qPCR引物序列
2.9Western blot實(shí)驗(yàn)收集細(xì)胞后,采用全蛋白試劑提取試劑盒提取總蛋白并以BCA法測定蛋白濃度。取40 μg樣品于12% SDS-PAGE分離、轉(zhuǎn)至PVDF膜、5%的脫脂奶粉37 ℃封閉1 h、TBST洗膜后,分別加入抗HO-1(1∶1 000)、GOLPH3(1∶1 000)、GM130(1∶200)、golgin-97(1∶1 000)、mannosidase II(1∶200)和β-actin(1∶8 000)抗體,4 ℃孵育過夜。TBST洗膜4次,加入山羊抗兔或抗鼠Ⅱ抗(1∶10 000),室溫下孵育1 h。TBST洗脫4次后,置于ECL系統(tǒng)中顯影,采用ImageJ軟件分析蛋白條帶灰度值,以目的蛋白條帶灰度值與β-actin條帶灰度值的比值反映目的蛋白相對表達(dá)水平。
采用SPSS 24.0軟件進(jìn)行分析。正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組均數(shù)間比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用Tukey′s事后檢驗(yàn)進(jìn)行比較。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
與對照組相比,LPS誘導(dǎo)肺泡巨噬細(xì)胞活力下降,ROS和MDA含量增加,SOD活性下降(<0.05);沉默-后,與LPS組相比,肺泡巨噬細(xì)胞活力顯著下降,ROS和MDA含量顯著增加,SOD活性顯著下降(<0.05),見圖1。
Figure 1.Cell viability, ROS content, MDA content and SOD activity in alveolar macrophages. A: the viability of alveolar macrophages was detected by CCK-8 assay; B: the level of ROS was analyzed by DCFH-DA probing; C: the change of MDA content was detected by MDA kit; D: the change of SOD activity was analyzed by SOD kit. Mean±SD. n=3. *P<0.05 vs control group; #P<0.05 vs LPS group.
RT-qPCR和Western blot結(jié)果顯示,與對照組相比,LPS誘導(dǎo)的肺泡巨噬細(xì)胞HO-1表達(dá)增加(<0.05),高爾基體應(yīng)激蛋白GOLPH3 mRNA和蛋白表達(dá)增加(<0.05);沉默后,其在肺泡巨噬細(xì)胞中的表達(dá)顯著下調(diào)(<0.05),見圖2、3,GOLPH3表達(dá)高于LPS組(<0.05),見圖4。
Figure2.The transfection efficiency of HO-1 siRNA in alveolar macrophages. The HO-1 protein level was detected by Western blot. Mean±SD. n=3. *P<0.05 vs control group.
Figure 3.HO-1 expression levels in alveolar macrophages. A: HO-1 mRNA level in each group was measured by RT-qPCR; B: HO-1 protein expression in each group was measured by Western blot. Mean±SD. n=3. *P<0.05 vs control group; #P<0.05 vs LPS group.
Figure 4.GOLPH3 expression levels in alveolar macrophages. A: GOLPH3 mRNA expression of each group was measured by RT-qPCR; B: GOLPH3 protein expression of each group was measured by western blot. Mean±SD. n=3. *P<0.05 vs control group; #P<0.05 vs LPS group.
LPS誘導(dǎo)的肺泡巨噬細(xì)胞中,高爾基體結(jié)構(gòu)相關(guān)蛋白GM130、golgin-97及mannosidase II表達(dá)水平下降(<0.05);沉默-后,與LPS組相比,GM130、golgin-97及mannosidase II表達(dá)水平顯著下降(<0.05),見圖5。
Figure 5.The expression of Golgi structure-related proteins (GM130, golgin-97 and mannosidase II) in alveolar macrophages measured by Western blot. Mean±SD. n=3. *P<0.05 vs control group; #P<0.05 vs LPS group.
與對照組相比,LPS誘導(dǎo)的肺泡巨噬細(xì)胞中TUNEL標(biāo)記陽性細(xì)胞數(shù)增多,caspase-3/7活性增強(qiáng)(<0.05);沉默-后,與LPS組相比,TUNEL標(biāo)記陽性細(xì)胞顯著增多,caspase-3/7活性顯著增強(qiáng)(<0.05),見圖6。
Figure 6.The apoptosis of alveolar macrophages in each group. A: the apoptosis of alveolar macrophages was detected by caspase-3/7 activity determination; B: the apoptosis of alveolar macrophages was detected by TUNEL assay (green: TUNEL-positive nuclei; blue: DAPI-stained nuclei; scale bar=50 μm). Mean±SD. n=3. *P<0.05 vs control group; #P<0.05 vs LPS group.
ALI是以彌漫性肺泡損傷、肺水腫、免疫細(xì)胞浸潤和肺順應(yīng)性下降為特征的臨床綜合征,嚴(yán)重時(shí)可致患者死亡[16]。內(nèi)毒素是ALI的常見原因,可激活巨噬細(xì)胞引發(fā)炎癥[17]。正常情況下,肺泡巨噬細(xì)胞具有維持肺免疫穩(wěn)態(tài)和抑制固有免疫的雙重作用[2]。在ALI病程中,肺泡巨噬細(xì)胞主要通過早期啟動(dòng)炎癥和晚期抑制炎癥免疫反應(yīng)以發(fā)揮關(guān)鍵作用[16, 18]。研究表明,肺泡巨噬細(xì)胞功能障礙和凋亡增加會(huì)抑制肺部中性粒細(xì)胞清除,導(dǎo)致炎癥消退延遲和組織損傷[1, 18]。因此,肺泡巨噬細(xì)胞在ALI中的重要作用表明肺泡巨噬細(xì)胞可能是治療ALI的潛在靶點(diǎn)。
高爾基體是細(xì)胞內(nèi)重要的信號(hào)中樞,具有重要生物合成和加工、運(yùn)輸、分選等功能[19]。在氧化應(yīng)激、DNA損傷和營養(yǎng)缺乏等應(yīng)激條件下,高爾基體通過表達(dá)GOLPH3感知并啟動(dòng)應(yīng)激反應(yīng),高爾基體結(jié)構(gòu)相關(guān)蛋白GM130、golgin-97等被切割降解,導(dǎo)致高爾基體結(jié)構(gòu)碎裂和功能受損,引起細(xì)胞凋亡[4, 6, 10]。高爾基體應(yīng)激也可向下游傳遞應(yīng)激信號(hào),促進(jìn)細(xì)胞凋亡[4]。此外,許多位于高爾基體的促凋亡因子半胱天冬酶-2等可反向誘導(dǎo)高爾基體結(jié)構(gòu)相關(guān)蛋白GM130、golgin-97和golgin-160等裂解[4,20-21]。研究表明,一些神經(jīng)退行性疾病和神經(jīng)發(fā)育疾病與高爾基體應(yīng)激蛋白GOLPH3表達(dá)增加和高爾基體結(jié)構(gòu)相關(guān)蛋白裂解密切相關(guān)[22-23]。本研究組前期研究表明,高爾基體應(yīng)激在急性肺損傷中發(fā)揮重要作用[24],但在LPS刺激的肺泡巨噬細(xì)胞模型中的作用尚不清楚。因此,本實(shí)驗(yàn)選擇LPS誘導(dǎo)NR838細(xì)胞以制備肺泡巨噬細(xì)胞急性損傷模型進(jìn)行實(shí)驗(yàn),以探究高爾基體應(yīng)激在LPS誘導(dǎo)急性肺損傷的作用機(jī)制提供研究依據(jù)。結(jié)果顯示,LPS攻擊肺泡巨噬細(xì)胞時(shí),細(xì)胞氧化應(yīng)激和高爾基體應(yīng)激增加,高爾基體結(jié)構(gòu)相關(guān)蛋白表達(dá)下降,細(xì)胞凋亡增加。
HO-1是一種重要的抗氧化酶,在LPS誘導(dǎo)的肺損傷、心肌損傷和腎損傷等多組織損傷中發(fā)揮保護(hù)性作用[25-27]。本課題組前期研究表明,HO-1可通過促進(jìn)線粒體融合蛋白1、線粒體融合蛋白2和視神經(jīng)萎縮蛋白1的表達(dá),抑制線粒體分裂蛋白1和線粒體動(dòng)力相關(guān)蛋白1的表達(dá),以調(diào)節(jié)線粒體融合分裂平衡,減輕急性肺損傷[12, 28]。此外,HO-1還可通過調(diào)節(jié)線粒體質(zhì)量控制,抑制內(nèi)質(zhì)網(wǎng)應(yīng)激以發(fā)揮抗炎、抗氧化、抗凋亡作用[13, 29]。本實(shí)驗(yàn)結(jié)果顯示,下調(diào)HO-1表達(dá)后,LPS誘導(dǎo)的肺泡巨噬細(xì)胞氧化應(yīng)激和高爾基體應(yīng)激加重,高爾基體結(jié)構(gòu)相關(guān)蛋白表達(dá)進(jìn)一步下降,細(xì)胞凋亡顯著增加,表明HO-1可能通過調(diào)控高爾基體應(yīng)激和氧化應(yīng)激以減輕LPS誘導(dǎo)的肺泡巨噬細(xì)胞損傷,減少細(xì)胞凋亡。但HO-1調(diào)控高爾基體應(yīng)激的具體機(jī)制,以及在體內(nèi)實(shí)驗(yàn)中HO-1是否可通過調(diào)控高爾基體應(yīng)激,減輕細(xì)胞凋亡,以改善急性肺損傷仍需進(jìn)一步研究。
綜上所述,內(nèi)毒素攻擊大鼠肺泡巨噬細(xì)胞時(shí),HO-1可以調(diào)控高爾基體應(yīng)激和氧化應(yīng)激,減少細(xì)胞凋亡。
[1] Liu HZ, Zhou KF, Liao LK, et al. Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling[J]. Respir Res, 2018, 19(1):243.
[2] Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11:1722.
[3]楊冰, 朱路明, 江麗麗, 等. 黃芩苷通過抑制HMGB-1減少U937巨噬細(xì)胞的M1型極化和減輕小鼠的急性肺損傷[J]. 中國病理生理雜志, 2021, 37(7):1233-1239.
Yang B, Zhu LM, Jiang LL, et al. Baicalin inhibits HMGB-1 to reduce M1 polarization of U937 macrophages and attenuate acute lung injury in mice[J]. Chin J Pathophysiol, 2021, 37(7):1233-1239.
[4] Li T, You H, Mo XY, et al. GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and reoxygenation injury[J]. Mol Neurobiol, 2016, 53(2):1377-1385.
[5] Zhang YJ, Wang YH, Read E, et al. Golgi stress response, hydrogen sulfide metabolism, and intracellular calcium homeostasis[J]. Antioxid Redox Signal, 2020, 32(9):583-601.
[6] Li J, Ahat E, Wang YZ. Golgi structure and function in health, stress, and diseases[J]. Results Probl Cell Differ, 2019, 67:441-485.
[7] Li T, You H, Zhang J, et al. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus[J]. Mol Neurobiol, 2014, 49(3):1449-1459.
[8] Velasco A, Hendricks L, Moremen KW, et al. Cell type-dependent variations in the subcellular distribution of alpha-mannosidase I and II[J]. J Cell Biol, 1993, 122(1):39-51.
[9] Hicks SW, Machamer CE. Golgi structure in stress sensing and apoptosis[J]. Biochim Biophys Acta, 2005, 1744(3):406-414.
[10] Ireland SC, Huang HR, Zhang JC, et al. Hydrogen peroxide induces Arl1 degradation and impairs Golgi-mediated trafficking[J]. Mol Biol Cell, 2020, 31(17):1931-1942.
[11] Yu JB, Wang Y, Li Z, et al. Effect of heme oxygenase-1 on mitofusin-1 protein in LPS-induced ALI/ARDS in rats[J]. Sci Rep, 2016, 6:36530.
[12] Yu JB, Shi J, Wang D, et al. Heme oxygenase-1/carbon monoxide-regulated mitochondrial dynamic equilibrium contributes to the attenuation of endotoxin-induced acute lung injury in rats and in lipopolysaccharide-activated macrophages[J]. Anesthesiology, 2016, 125(6):1190-1201.
[13] 胡欣欣, 宮麗榮, 史佳, 等. HO-1在LPS致大鼠肺泡巨噬細(xì)胞凋亡中的內(nèi)源性保護(hù)作用: 與內(nèi)質(zhì)網(wǎng)應(yīng)激的關(guān)系[J]. 中華麻醉學(xué)雜志, 2020, 40(6):752-755.
Hu XX, Gong LR, Shi J, et al. Role of HO-1-induced endogenous protection in LPS-caused apoptosis in rat alveolar macrophages: relationship with endoplasmic reticulum stress[J]. Chin J Anesthesiol, 2020, 40(6):752-755.
[14] Shi J, Yu JB, Liu W, et al. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells[J]. Exp Cell Res, 2016, 349(1):162-167.
[15] Sim?es AE, Pereira DM, Amaral JD, et al. Efficient recovery of proteins from multiple source samples after TRIzol?or TRIzol?LS RNA extraction and long-term storage[J]. BMC Genomics, 2013, 14:181.
[16] Li Y, Chen X, Zhang H, et al. 4-Octyl itaconate alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting oxidative stress and inflammation[J]. Drug Des Devel Ther, 2020, 14:5547-5558.
[17] Huang JH, Nong XP, Chen YL, et al. 3---caffeoyloleanolic acid improves acute lung injury via anti-inflammation and antioxidative stress-involved PI3K/AKT pathway[J]. Chem Biol Drug Des, 2021, 98(1):114-126.
[18] Nepal S, Tiruppathi C, Tsukasaki Y, et al. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation[J]. Proc Natl Acad Sci U S A, 2019, 116(33):16513-16518.
[19] He Q, Liu H, Huang CX, et al. Herpes simplex virus 1-induced blood-brain barrier damage involves apoptosis associated with GM130-mediated Golgi stress[J]. Front Mol Neurosci, 2020, 13:2.
[20] Mancini M, Machamer CE, Roy S, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis[J]. J Cell Biol, 2000, 149(3):603-612.
[21] Nozawa K, Casiano CA, Hamel JC, et al. Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis[J]. Arthritis Res, 2002, 4(4):R3.
[22] Passemard S, Perez F, Gressens P, et al. Endoplasmic reticulum and Golgi stress in microcephaly[J]. Cell Stress, 2019, 3 (12):369-384.
[23] Guiney SJ, Adlard PA, Bush AI, et al. Ferroptosis and cell death mechanisms in Parkinson's disease[J]. Neurochem Int, 2017, 104:34-48.
[24] Li XY, Yu JB, Gong LR, et al. Heme oxygenase-1 (HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway[J]. Free Radic Biol Med, 2021, 165:243-253.
[25] Li HB, Zhang XZ, Sun Y, et al. HO-1/PINK1 regulated mitochondrial fusion/fission to inhibit pyroptosis and attenuate septic acute kidney injury[J]. Biomed Res Int, 2020, 2020:2148706.
[26] Chen XX, Wu SS, Tang L, et al. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats[J]. J Cell Physiol, 2019, 234(5):7301-7319.
[27] 程梅, 董曉筠, 朱彬. 利多卡因?qū)δ摱景Y大鼠心肌損傷及Nrf2/HO-1通路的影響[J]. 中國病理生理雜志, 2021, 37(4):634-639.
Chen M, Dong XY, Zhu B. Effects of lidocaine on myocardial injury and Nrf2/HO-1 signaling pathway in sepsis rats[J]. Chin J Pathophysiol, 2021, 37(4):634-639.
[28] Shi J, Yu JB, Zhang Y, et al. Phosphatidylinositol 3-kinase-mediated HO-1/CO represses Fis1 levels and alleviates lipopolysaccharide-induced oxidative injury in alveolar macrophages[J]. Exp Ther Med, 2018, 16(3):2735-2742.
[29] Shi J, Yu JB, Zhang Y, et al. PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury[J]. Lab Invest, 2019, 99(12):1795-1809.
Role of HO-1 on Golgi stress in LPS-stimulated rat alveolar macrophages
LI Yu-ting, LI Xiang-yun, SHI Jia, LI Cui, YU Jian-bo△
(,,,,300100,)
To evaluate the role of heme oxygenase-1 (HO-1) on Golgi stress in lipopolysaccharide (LPS)-stimulated rat alveolar macrophages.The injury model of rat alveolar macrophages was established by LPS stimulation. CCK-8 assay was applied to measure cell viability, and the DCFH-DA probing was used to detect the generation of reactive oxygen species (ROS). In addition, the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were assayed by SOD and MDA kits, and apoptosis was analyzed by TUNEL assay and caspase-3/7 activity determination. The mRNA expression levels of HO-1 and Golgi phosphoprotein 3 (GOLPH3) were detected by RT-qPCR, and the protein expression levels of HO-1, GOLPH3 and Golgi structure-related proteins (GM130, golgin-97 and mannosidase II) were detected by Western blot.small interfering RNA (siRNA) was applied to reduce the expression ofin rat alveolar macrophages.Stimulation with LPS reduced cell viability and SOD activity, increased the levels of ROS and MDA, up-regulated the expression of HO-1 and GOLPH3, impaired the expression of GM130, golgin-97 and mannosidase II, and further increased TUNEL positive rate and caspase-3/7 activityin rat alveolar macrophages (<0.05). Knockdown ofsignificantly inhibited cell viability and SOD activity, increased ROS and MDA levels, decreased the expression of HO-1, GM130, golgin-97 and mannosidase II, increased the expression of GOLPH3, and further increased TUNEL positive rate and caspase-3/7 activity (<0.05).The HO-1 attenuates oxidative stress and Golgi stress response, and prevents apoptosis in LPS-stimulated alveolar macrophages.
Golgi stress; Heme oxygenase-1; Lipopolysaccharides; Alveolar macrophages; Oxidative stress
R329.2+5; R363
A
10.3969/j.issn.1000-4718.2022.03.016
1000-4718(2022)03-0509-08
2021-07-05
2022-01-13
[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No.81772106)
Tel: 022-27435873; Email: jianboyu99@sina.com
(責(zé)任編輯:林白霜,羅森)