鐘燕琴,楊明亮,呂靜祎,2,葛永紅,2,米紅波,2,陳敬鑫,2
有機酸溶劑體系中殼聚糖膜性能的研究進展
鐘燕琴1,楊明亮1,呂靜祎1,2,葛永紅1,2,米紅波1,2,陳敬鑫1,2
(1.渤海大學 食品科學與工程學院,遼寧 錦州 121013;2.生鮮農(nóng)產(chǎn)品貯藏加工及安全控制技術(shù)國家地方聯(lián)合工程研究中心,遼寧 錦州 121013)
有機酸溶劑體系對殼聚糖的成膜性能至關(guān)重要,探討其潛在的分子機制,可為殼聚糖膜的相關(guān)研究提供理論參考。綜述殼聚糖的化學組成和成膜機制,以及殼聚糖在不同有機酸溶劑體系中成膜的力學性能、溶脹性、氧氣透過率、水蒸氣透過率等特性。有機酸溶劑體系可為殼聚糖的溶解提供更多的質(zhì)子,從而促進殼聚糖分子在水中的溶解。此外,有機酸分子結(jié)構(gòu)中羧酸和羥基數(shù)量、碳鏈長度不同,其與殼聚糖分子間形成的氫鍵和離子作用力不同,進而可在很大程度上影響殼聚糖的成膜性能。有機酸溶劑體系對殼聚糖膜的性能具有較為顯著的影響,這有助于提高其作為可食用膜在改善食品品質(zhì)和保鮮方面的適用性。
殼聚糖;有機酸;膜性能
2015—2018年全球塑料需求量年均增長率為3.9%[1],預計到2050年塑料將占總石油消耗量的20%[1-3]。包裝特別是食品包裝,是塑料的主要應用領(lǐng)域之一[4]。石油基聚合物具有較為優(yōu)良的特性,然而其應用的主要障礙來自它們對環(huán)境會造成嚴重危害,并對人類健康產(chǎn)生不利影響[5]。隨著塑料聚合物薄膜所帶來的環(huán)境問題日益凸顯,可食用和生物可降解食品包裝薄膜的開發(fā)和應用受到了人們的關(guān)注[6-7]。殼聚糖具有無毒、生物降解性、穩(wěn)定性、商業(yè)可獲得性、抗氧化和抗菌性能等特征,是一種極具潛力的包裝生物聚合物[8-14]。殼聚糖薄膜已被用作多種食品的包裝及貯藏保鮮,以提高食品的安全性和貨架期[15-18]。
殼聚糖(2-氨基-2-脫氧-D-吡喃葡萄糖)的化學式為(C6H11O4N),是甲殼素的衍生物,由甲殼素在堿性介質(zhì)中脫乙酰得到[19]。甲殼素是自然界中僅次于纖維素的第2豐富的天然多糖,主要存在于蝦、蟹、昆蟲等節(jié)肢動物的外骨骼中,其結(jié)構(gòu)有序、層次分明的纖維結(jié)構(gòu)中有結(jié)晶的納米纖維,可起到遮蔽作用[20-22]。甲殼素由β-(1-4)連接的2-乙酰氨基-2-脫氧- D-吡喃葡萄糖殘基的均聚物組成[21]。甲殼素在結(jié)構(gòu)上與纖維素鏈相似,但其主鏈中可用的氨基在結(jié)構(gòu)修飾方面比纖維素具有更高的潛力[23]。殼聚糖和甲殼素都是氨基葡萄糖與N-乙酰氨基葡萄糖單體的無規(guī)則共聚物[23-25],區(qū)別在于主干上乙?;臄?shù)目不同[26]。由于葡萄糖胺單體在pH小于6.0下C2帶正電荷,殼聚糖比甲殼素具有更好的溶解性和抗菌活性。殼聚糖具有抗菌特性的原因之一是其帶正電荷的氨基與帶負電荷的微生物細胞膜相互作用,導致微生物的蛋白質(zhì)和其他胞內(nèi)成分的泄漏[22]。目前,殼聚糖被認為是一種適合制造生物降解塑料的生物材料[27]。然而,殼聚糖生物膜的主要缺點是在潮濕環(huán)境和稀酸性溶液中的溶解度高、吸濕能力強、力學性能較弱等[22,26]。
殼聚糖分子間和分子內(nèi)的氫鍵和半晶體結(jié)構(gòu)使其難以溶于水和大多數(shù)有機溶劑[28]。一般來說,殼聚糖可溶于pH<6.0的稀酸性溶液中,其溶解度取決于酸性介質(zhì)中聚合物鏈上氨基的質(zhì)子化,該質(zhì)子化可導致其分子內(nèi)部的氫鍵網(wǎng)絡被正電荷間的靜電斥力破壞[24]。殼聚糖材料具有水合增黏的特性,可以作為可食用、可降解的薄膜或涂料,但殼聚糖膜的高透濕性和力學性缺陷限制了其應用。改變pH值或溶劑可以對殼聚糖膜進行改性,提高膜的阻隔性和力學性能[29]。
有機酸溶劑與殼聚糖分子間的靜電作用、氫鍵或疏水作用均會影響殼聚糖膜的結(jié)構(gòu)和性能,其中主要影響因素為靜電相互作用[30-34],因此,有機酸溶劑體系可在很大程度上影響殼聚糖的成膜性能,這些信息對于闡明殼聚糖膜的結(jié)構(gòu)和性能的關(guān)系至關(guān)重要[35],故文中綜述有機酸溶劑體系對殼聚糖成膜性能的影響及其潛在的分子機制。
殼聚糖是由甲殼素經(jīng)脫乙?;潭冗_到50%左右而得到[36-41](圖1)。殼聚糖的分子結(jié)構(gòu)是線性的,由氨基葡萄糖和N-乙酰氨基葡萄糖通過β-(1-4)糖苷鍵連接[35-39],其中氨基葡萄糖單元的數(shù)量超過60%[36]。通常,殼聚糖可溶解于pH<6的酸性溶液,使其多糖鏈上的氨基帶正電荷,成為陽離子聚合物[40]。
殼聚糖為弱堿,不溶于純水和有機溶劑[13,42],但可溶于pH<6的稀酸性水溶液[43]。殼聚糖溶解發(fā)生在D-氨基葡萄糖重復單元C-2位置上的—NH2功能質(zhì)子化,并在酸性介質(zhì)中轉(zhuǎn)化為聚電解質(zhì)。殼聚糖之所以溶于pH<6的稀酸性溶液,這是因為殼聚糖具有pKa值為6.3的初級氨基,可以被認為是一種弱堿。氨基的存在意味著pH值可極大地改變殼聚糖的荷電狀態(tài)和性質(zhì)[44]。當pH值很低時,氨基會發(fā)生質(zhì)子化并帶正電荷,這使得殼聚糖成為一種水溶性陽離子聚電解質(zhì);當pH值高于6時,殼聚糖的氨發(fā)生脫質(zhì)子化,聚合物失去電荷,使殼聚糖變得不溶。pKa值在pH值為6.0~6.5時發(fā)生可溶—不可溶轉(zhuǎn)變[24]。在稀酸性有機酸溶液中,殼聚糖的氨基被質(zhì)子化,形成殼聚糖-氨配合物[45](圖2)。含電荷基團的數(shù)量越多,其溶解度越大[46]。
圖1 甲殼素經(jīng)脫乙酰化制得殼聚糖
多糖膜主要是由于聚合物鏈發(fā)生斷裂和重組而形成,其重組過程主要是通過溶劑的蒸發(fā)而使得聚合物鏈間形成親水鍵合、氫鍵、電解質(zhì)交聯(lián)或離子交聯(lián)等一系列相互作用來實現(xiàn)[47]。
殼聚糖溶解于酸性溶液得到殼聚糖溶液,將其澆鑄在聚苯乙烯板等表面上,溶劑蒸發(fā)后,容易得到一層可從聚乙烯板上分離的膜[48]。薄膜的形成歸因于在干燥過程中形成的鏈纏結(jié)和分子間的相互作用,如靜電和氫鍵(在干燥過程中,殼聚糖濃度的增加誘導了氫鍵的形成),這些在多糖的結(jié)構(gòu)中起著重要的作用[49]。高分子量的殼聚糖由于分子內(nèi)和分子間的氫鍵更多而具有良好的成膜性能[50-51](圖3)。殼聚糖可以通過外部交聯(lián)劑形成水凝膠或膜,也可以進行自交聯(lián)。殼聚糖的自交聯(lián)結(jié)構(gòu) 是由于分子間和分子內(nèi)氫鍵或疏水的相互作用而形成[52]。
在膜制備過程中,由于溶劑蒸發(fā)過程中聚合物密度和蒸汽界面發(fā)生變化,產(chǎn)生聚合物密度梯度。這個梯度作為一個屏障,阻止酸溶劑的進一步蒸發(fā),因此,不同有機酸溶劑體系制備的殼聚糖膜的厚度有所差異[53]。Cadogan等[45]利用醋酸、抗壞血酸、檸檬酸、乙醇酸、馬來酸、草酸、酒石酸作為溶劑溶解殼聚糖以成膜。如表1所示,與其他有機酸相比,檸檬酸作為溶劑制備所得到的殼聚糖膜厚度最大,這可能是由溶劑蒸發(fā)過程中聚合物密度梯度較低造成。Pavoni等[54]用乳酸制備的淀粉/殼聚糖共混膜比用醋酸制備的淀粉/殼聚糖共混膜厚度更高,這可能是由于乳酸的增塑作用[47]。此外,乳酸結(jié)構(gòu)中額外羥基的存在可導致聚合物鏈分子間空隙的增加,產(chǎn)生更大的材料柔韌性[53]。酸的解離常數(shù)(pKa)值低,越能促進殼聚糖分子的解離[55]。與醋酸(pKa=4.75)相比,乳酸的解離常數(shù)(pKa=3.85)低,更有利于殼聚糖分子的解離,導致溶液中—NH3+基團數(shù)量增加,聚合物鏈間的斥力增加,從而產(chǎn)生更大體積的空隙,而這些空隙可以被酸性溶液填充[56]。
圖2 以醋酸溶解殼聚糖為例
圖3 殼聚糖膜形成過程中的氫鍵形成
表1 溶劑體系對殼聚糖膜力學性能的影響
Tab.1 Effect of solvent systems on the mechanical properties of chitosan films
在運輸、搬運和儲存過程中,通常需要高力學性能來保持包裝的完整性。理想的包裝材料應具有足夠的機械強度和柔韌性[57]?;诓煌袡C酸溶劑條件下,殼聚糖膜的力學性能可通過離子相互作用的有效性以及聚合物相鄰鏈間的氫鍵形成來闡明[45]。
2.2.1 有機酸溶劑對殼聚糖膜抗拉強度的影響
醋酸溶解殼聚糖制備的膜中存在很強的分子內(nèi)和分子間氫鍵,從而增強膜的抗拉強度。Vimaladevi等[58]發(fā)現(xiàn)醋酸溶解殼聚糖形成的膜比丙酸溶解殼聚糖形成的膜抗拉強度大。Park等[59]提出在醋酸溶液中殼聚糖分子形成二聚體,從而增強分子間的相互作用,因此在醋酸溶液中所制備殼聚糖膜的拉伸強度最高,這些結(jié)果與Park[60-61]、Chen[62]等的觀察結(jié)果一致。Pavoni等[63]也發(fā)現(xiàn)醋酸溶解殼聚糖形成的膜具有較高的拉伸強度和彈性模量,但其斷裂伸長率較低,這種行為可能歸因于殼聚糖結(jié)構(gòu)的組織和鏈纏結(jié)的程度,而鏈纏結(jié)的程度取決于殼聚糖的溶解度以及分子間相互作用。這也表明,在一定程度上,薄膜的斷裂伸長率隨著薄膜拉伸強度的增加而降低[64]。
共軛堿的穩(wěn)定性和氧化反應影響殼聚糖膜的抗拉強度。Cadogan等[45]發(fā)現(xiàn)使用檸檬酸、草酸和馬來酸制備的殼聚糖膜表現(xiàn)出較高的抗拉強度,可能是由于共軛堿的穩(wěn)定性和羧基的氧化造成的(表1)。如果共軛堿的穩(wěn)定性好,就會促進羰基之間的相互作用,與殼聚糖上的氨基發(fā)生反應,這個過程被稱為還原胺化[65]。例如,酒石酸和抗壞血酸等有機酸進行還原胺化的可能性更大,則其制備所得殼聚糖膜表現(xiàn)出更高的抗拉強度??箟难崾且环N易氧化的有機酸,它既可提供溶解殼聚糖所需的質(zhì)子,還具有交聯(lián)殼聚糖以提高其膜抗拉強度的潛力[45]。Hwang等[38]研究了乙醇酸、蘋果酸和抗壞血酸對殼聚糖膜力學性能的影響,提出抗壞血酸的氧化是膜力學性能得以提高的主要原因。氧化反應后,抗壞血酸分子上出現(xiàn)3個羰基[66]。這些羰基可能與分離的殼聚糖鏈上氨基發(fā)生反應(還原胺化反應),以交聯(lián)殼聚糖膜的分子結(jié)構(gòu),從而提高殼聚糖膜的機械強度。經(jīng)抗壞血酸制備的殼聚糖膜比蘋果酸和乙醇酸所得膜的機械強度更高,這是因為該膜中存在更多的離子相互作用或氫鍵使膜形成更大的分子結(jié)構(gòu)。三聚磷酸鹽對殼聚糖的交聯(lián)作用也是基于此原理[67-68]。
2.2.2 有機酸溶劑對殼聚糖膜斷裂伸長率的影響
有機酸溶劑溶解殼聚糖能力、有機酸結(jié)構(gòu)中羥基的存在、碳鏈的長度與殼聚糖形成的氫鍵和離子作用力不同,進而導致殼聚糖膜的斷裂伸長率不同。
有機酸溶解殼聚糖能力不同,在參與殼聚糖分子間氫鍵時所能用的氫原子不同,所以膜的斷裂伸長率不同。Cadogan等[45]研究表明,使用檸檬酸作為溶劑所制備的殼聚糖膜表現(xiàn)出最大的斷裂伸長率為56%,而醋酸、草酸表現(xiàn)出較小的斷裂伸長率分別為20%和19%。這是因為檸檬酸的氫鍵形成能力最強,而由于醋酸和草酸在參與殼聚糖分子間氫鍵時所能用的氫原子最少,因此不會顯著增加膜的彈性。Park等[59,61]也發(fā)現(xiàn)檸檬酸作為溶劑制得殼聚糖膜具有較高的斷裂伸長率,這可能是由于殼聚糖在檸檬酸溶液中具有較高的溶解度。
乳酸具有一定的增塑作用[47],其所含羥基可與殼聚糖的羥基形成氫鍵,而氫鍵被認為更容易移動的鍵合類型[69],因此乳酸可有效提高殼聚糖膜的斷裂伸長率。Caner等[70]發(fā)現(xiàn)(表1),7.5%乳酸制備的殼聚糖膜的斷裂伸長率為51.31%,而其他有機酸制備膜的平均伸長率僅為24.57%~32.19%。Cruz等[71]認為乳酸結(jié)構(gòu)中羥基的存在所導致聚合物鏈間分子間隙的增加,也是產(chǎn)生更大材料柔韌性的原因之一。Pavoni等[63]用乳酸制備的殼聚糖膜的彈性模量為0.81 MPa,斷裂伸長率為220%,這說明乳酸表現(xiàn)出一定的增塑劑作用。Chen等[41]使用同時含有羧基和羥基的有機酸溶劑制備的多孔殼聚糖膜具有更大的斷裂伸長率。醋酸制備所得膜的斷裂伸長率為115%,而乙醇酸制備所得膜的斷裂伸長率可達170%,這也可能是由于羥基的存在使得殼聚糖與羥基之間形成的更多氫鍵。由于氫鍵是一種容易移動的鍵合類型,因此乙醇酸所得殼聚糖膜的分子排列比醋酸更具有可動性,表現(xiàn)出更高的斷裂伸長率。同樣,蘋果酸與琥珀酸所制備殼聚糖膜的比較研究中也出現(xiàn)類似效果,蘋果酸較琥珀酸增加了一個羥基,蘋果酸制備所得殼聚糖膜的伸長率為182%,而琥珀酸制備所得殼聚糖膜的斷裂伸長率為120%。
殼聚糖膜的斷裂伸長率隨二元羧酸碳原子數(shù)的增加而增加?!狢OOH基團和殼聚糖的—NH2基團之間的質(zhì)子交換產(chǎn)生的氫鍵和離子相互作用為殼聚糖膜提供了物理交聯(lián)[72-73],二元羧酸上含有2個羧基,可以與殼聚糖鏈上的氨基相互作用,使殼聚糖分子發(fā)生離子交聯(lián)[74](見圖4),二元羧酸碳鏈越長,離子交聯(lián)效果越好,斷裂伸長率顯著提高。同時,碳鏈越長也意味著可形成更靈活的網(wǎng)絡。例如,辛二酸(=6)所制備的殼聚糖膜的斷裂伸長率高于丁二酸(=2)[57]。這與Chen[41]結(jié)論一致,隨著二元羧酸碳原子數(shù)的增加,其殼聚糖膜的交聯(lián)結(jié)構(gòu)也變得更大,而較大的結(jié)構(gòu)有助于提高膜的抗拉強度 和拉伸性能。值得注意的是,雖然氫鍵和離子相 互作用可提高殼聚糖的力學性能,但過多的交聯(lián)度則會限制分子的運動和柔韌性,進而降低膜的力學性能[75]。
有機酸的碳原子數(shù)越少,其所含羧基和羥基與水分子發(fā)生相互作用概率增加,所制備殼聚糖膜的溶脹度更大。由于殼聚糖具有高度的親水性,其膜的溶脹率通常大于1000%。Cadogan等[45]研究表明,不同有機酸溶劑體系所制備殼聚糖膜的溶脹作用強弱依次:乙醇酸>抗壞血酸>檸檬酸>酒石酸>草酸。其中,具有最低碳原子數(shù)的乙醇酸表現(xiàn)出最大的溶脹性,其原因是乙醇酸具有高親水性和強氫鍵形成能力。此外,溶脹率隨著羧基數(shù)目的增加而增加。由于殼聚糖中氨基與水的羥基之間的強氫鍵作用,羧基數(shù)目對殼聚糖膜的溶脹率影響相對較小。
圖4 殼聚糖與二元羧酸的離子交聯(lián)
新制備的殼聚糖膜易在去離子水和鹽酸緩沖溶液中溶脹、軟化、直至溶解[76]。有機酸溶劑體系制備所得殼聚糖膜的吸水率和溶解率大小依次為:檸檬酸>蘋果酸>乙醇酸>乳酸≈甲酸>醋酸>丙酸。丙酸制得殼聚糖膜的溶解時間略長于其他膜。除檸檬酸制備所得殼聚糖膜外,其余殼聚糖膜在磷酸鹽緩沖溶液中均可保持完整。經(jīng)過濕熱處理(溫度為60 ℃和相對濕度為75%)后,3種介質(zhì)中多數(shù)有機酸制備所得殼聚糖膜的吸水率和溶解率隨著處理時間的延長明顯降低。其衰減量依次為:磷酸緩沖液>去離子水>鹽酸緩沖液。經(jīng)過48 h處理后,檸檬酸和蘋果酸所制備殼聚糖膜在去離子水和鹽酸緩沖液中能完全溶解,而醋酸和丙酸所制備殼聚糖膜的溶解性 較弱。
膜吸水包含2個過程:即膜材料的吸水作用和膜孔隙對水分子的滯留作用。對于孔隙率相近的膜,其孔隙對水分子的滯留作用強弱相差不大,因此吸水能力的強弱主要取決于膜材料本身對水的吸附作用。研究表明,與醋酸相比,乙醇酸、草酸、琥珀酸、蘋果酸、己二酸等其他有機酸制備殼聚糖膜具有較強的吸水能力[41]。醋酸制備所得殼聚糖膜的吸水性為1500%,而其他有機酸所制備的多孔殼聚糖膜的吸水性可達1800%~2000%。對于一元酸來說,乙醇酸比醋酸多一個羥基,該羥基增強了乙醇酸所制備殼聚糖膜結(jié)合水分子的能力,導致殼聚糖膜吸收更多的水分。與一元羧酸不同,二元羧酸制備的殼聚糖膜可通過離子交聯(lián)作用形成較大空間結(jié)構(gòu),即一個有機酸分子的2個羧基與殼聚糖的氨基相互作用而產(chǎn)生更大的空間結(jié)構(gòu),進而提高其膜的吸水性。此外,羧基本身有親水性,可增強殼聚糖膜的結(jié)合水的能力,因此,可用通過二元羧酸代替一元羧酸來提高殼聚糖多孔膜的吸水性(表2)[38]。
表2 溶劑體系對殼聚糖膜溶脹性的影響
Tab.2 Effect of solvent systems on swelling of chitosan films
殼聚糖膜的氧氣透過率(Oxygen Permeability,OP)與殼聚糖分子量無明顯相關(guān)性,而受到酸溶劑種類的顯著影響[60]。丙酸和甲酸所制備殼聚糖膜的OP值高于醋酸,而醋酸所制備殼聚糖膜的OP值高于乳酸[58,70]。
資料顯示,殼聚糖膜的OP值為0.39× 10?10~7.11×10?10cm3/(m2·d·kPa)[47]。以蘋果酸為溶劑制備的殼聚糖膜表現(xiàn)出較好的氧阻隔性能,OP值為0.39×10?10~1.88×10?10cm3/(m2·d·kPa),而用檸檬酸制備的殼聚糖膜的氧阻隔性較差,OP值為3.26×10?10~4.84×10?10cm3/(m2·d·kPa)。醋酸和丙酸濃度相同,但氧氣透過率不同,可能是殼聚糖的本身性質(zhì)、添加量、制作過程不同而導致差異。
對于食品體系來說,適當阻隔食品中水分、氧氣、二氧化碳和芳香化合物的透過,可延長食品保質(zhì)期,改善食品品質(zhì)[61]。
殼聚糖膜的水蒸氣透過率(Water Vapor Permeability,WVP)與其相對分子質(zhì)量、溶劑類型、膜的厚度等有關(guān)。資料顯示,以甲酸和乳酸為溶劑的殼聚糖膜表現(xiàn)出較差的水蒸氣阻隔性能,其WVP分別為0.73 g·m/(m2·d·kPa)和0.56 g·m/(m2·d·kPa),明顯高于醋酸[61,77]。Vimaladevi[58]和Caner[70]發(fā)現(xiàn)丙酸溶解殼聚糖所制得的膜WVP較醋酸高。
研究表明,二元羧酸制備的殼聚糖膜的WVP值較一元酸低[57]。例如,以丁二酸、己二酸、辛二酸和葵二酸為溶劑制備的殼聚糖膜的WVP分別為醋酸制備殼聚糖膜的1/5.2、1/6.5、1/6.8和1/3.8倍。這可能是二元羧酸的2個羧基與殼聚糖上的氨基離子作用及其產(chǎn)生的交聯(lián)聚合物,可降低聚合物的自由體積造成其所得殼聚糖膜WVP較低[41]。值得注意的是,葵二酸(碳鏈為8時)制備所得殼聚糖膜較其他二元羧酸(丁二酸、己二酸、辛二酸)的WVP高,但仍然遠遠低于醋酸,這可能是因為葵二酸的高疏水性阻止了均相殼聚糖溶液的初始形成,造成殼聚糖膜的不均一性。
Park等[60]研究了醋酸、檸檬酸、蘋果酸和乳酸溶解殼聚糖形成的殼聚糖膜的WVP,結(jié)果顯示,其WVP大小依次為蘋果酸<醋酸<檸檬酸<乳酸,其中蘋果酸溶解殼聚糖制得膜的WVP為2.24×10?2g·m/(m2·d·kPa)(表3)。
表3 溶劑體系對殼聚糖薄膜水蒸氣透過率的影響
Tab.3 Effect of solvent systems on the water vapor permeability of chitosan films
有機酸溶劑體系可為殼聚糖的溶解提供更多的質(zhì)子,從而促進殼聚糖分子在水中的溶解。與醋酸不同,二羧酸、三羧酸和多元羧酸還可通過離子交換作用實現(xiàn)殼聚糖分子間的交聯(lián),且其所帶有的官能團(如羥基)可與殼聚糖發(fā)生氫鍵作用,從而改變殼聚糖膜的力學性能和功能特性。與其他有機酸溶劑體系相比,醋酸制得的殼聚糖膜溶脹率較低;辛二酸制的殼聚糖膜的水蒸氣透過率較低;而乳酸可顯著改善殼聚糖膜的力學性能,并降低氧氣透過率。殼聚糖幾乎是自然界唯一的陽離子多糖,殼聚糖基膜因其抗菌性和屏障作用,可用于保存和延長食品的貨架期,在未來改善食品品質(zhì)和保鮮方面具有很大的應用前景。目前,關(guān)于殼聚糖復合膜的生產(chǎn)和加工的相關(guān)學術(shù)研究較多,但較差的力學性能限制了其在工業(yè)規(guī)模上的實際應用,因此如何提高殼聚糖膜性能的實際適用性仍將在未來很長時期內(nèi)作為眾多學者專家研究的熱點之一。
[1] 許江菱, 鐘曉萍, 朱永茂, 等. 2015—2016年世界塑料工業(yè)進展[J]. 塑料工業(yè), 2017, 45(3): 1-44.
XU Jiang-ling, ZHONG Xiao-ping, ZHU Yong-mao, et al. Progress of the World's Plastics Industry in 2015-2016[J]. China Plastics Industry, 2017, 45(3): 1-44.
[2] NEWELL R G, QIAN Y, RAIMI D. Global Energy Outlook 2015[R]. National Bureau of Economic Research, 2016.
[3] CUI S, BORGEMENKE J, QIN Y, et al. Bio-Based Polycarbonates from Renewable Feedstocks and Carbon Dioxide[M]. UK: John Wiley & Sons, 2019: 183-208.
[4] CUI H, SURENDHIRAN D, LI C, et al. Biodegradable Zein Active Film Containing Chitosan Nanoparticle Encapsulated with Pomegranate Peel Extract for Food Packaging[J]. Food Packaging and Shelf Life, 2020, 24: 2214-2894.
[5] HOLCAPKOVA P, STLOUKAL P, KUCHARCZYK P, et al. Anti-Hydrolysis Effect of Aromatic Carbodiimide in Poly (Lactic Acid)/Wood Flour Composites Part A Applied Science and Manufacturing[J]. Composites Payt A: Applied Science and Manufacturing, 2017, 103(10): 283-291.
[6] GALIANO F, BRICE?O K, MARINO T, et al. Advances in Biopolymer-Based Membrane Preparation And Applications[J]. Journal of Membrane Science, 2018, 564(7): 562-586.
[7] 孫炳新, 谷宏, 韓春陽, 等. 高直鏈玉米淀粉全降解片材的制備[J]. 包裝工程, 2009, 30(4): 37-39.
SUN Bing-xin, GU Hong, HAN Chun-yang, et al. Preparation of Total Biodegradable Sheet with High Amylose Corn Starch[J]. Packaging Engineering, 2009, 30(4): 37-39.
[8] HAGHIGHI H, LICCIARDELLO F, FAVA P, et al. Recent Advances on Chitosan-Based Films for Sustainable Food Packaging Applications[J]. Food Packaging and Shelf Life, 2020, 26: 100551-100567.
[9] HU F, SUN T, XIE J, et al. Functional Properties and Preservative Effect on Penaeus Vannamei of Chitosan Films with Conjugated or Incorporated Chlorogenic Acid[J]. International Journal of Biological Macromolecules, 2020, 159: 333-340.
[10] WILLIAMS P A. Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters[M]. London: the Royal Society of Chemistry, 2011: 1-50.
[11] NARASAGOUDR S S, HEGDE V G, CHOUGALE R B, et al. Influence of Boswellic Acid on Multifunctional Properties of Chitosan/Poly(vinyl alcohol) Films for Active Food Packaging[J]. International Journal of Biological Macromolecules, 2020, 154: 48-61.
[12] LIU X, XU Y, ZHAN X, et al. Development and Properties of New Kojic Acid and Chitosan Composite Biodegradable Films for Active Packaging Materials[J]. International Journal of Biological Macromolecules, 2020, 144: 483-490.
[13] 范林林, 李萌萌, 馮敘橋, 等. 殼聚糖涂膜對鮮切蘋果貯藏品質(zhì)的影響[J]. 食品科學, 2014, 35(22): 350-355.
FAN Lin-lin, LI Meng-meng, FENG Xu-qiao, et al. Effect of Chitosan Treatment on Quality of Fresh-Cut Apple during Cold Storage[J]. Food Science, 2014, 35(22): 350-355.
[14] 李海浪. 殼聚糖衍生物的制備及其在藥物載體中的應用研究[D]. 上海: 中國科學院研究生院(上海應用物理研究所), 2014: 1-20.
LI Hai-lang. Preparation of Chitosan Derivatives and Their Application in Drug Carriers[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2014: 1-20.
[15] 李知函. 殼聚糖基生物質(zhì)抑菌材料的制備及其應用研究[D]. 廣州: 華南理工大學, 2016: 3-11.
LI Zhi-han. Preparation and Application of Chitosan Based Biomass Antibacterial Material[D]. Guangzhou: South China University of Technology, 2016: 3-11.
[16] PARK S I, ZHAO Y. Incorporation of a High Concentration of Mineral or Vitamin into Chitosan-Based Films[J]. Journal of Agricultural and Food Chemistry, 2004, 52(7): 1933-1939.
[17] SUYATMA N E, TIGHZERT L, COPINET A, et al. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films[J]. The Archives of Bone and Joint Surgery, 2005, 53(10): 3950-3957.
[18] WU Tao, ZIVANOVIC S, DRAUGHON F A, et al. Physicochemical Properties and Bioactivity of Fungal Chitin and Chitosan[J]. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3888-3894.
[19] ELSABEE M Z, ABDOU E S, NAGY K S A, et al. Surface Modification of Polypropylene Films by Chitosan and Chitosan/Pectin Multilayer[J]. Carbohydrate Polymers, 2008, 71(2): 187-195.
[20] MOURYA V K, INAMDAR N N. Chitosan-Modifications And Applications: Opportunities Galore[J]. Reactive and Functional Polymers, 2008, 68(6): 1013-1051.
[21] JAYAKUMAR R, NWE N, TOKURA S, et al. Sulfated Chitin and Chitosan as Novel Biomaterials[J]. International Journal of Biological Macromolecules, 2007, 40(3): 175-181.
[22] DUTTA P K, DUTTA J, TRIPATHI V S. Chitin and Chitosan: Chemistry, Properties and Applications[J]. Journal of Scientific & Industrial Research, 2004, 63(1): 20-31.
[23] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: a New Family of Nature-Based Materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466.
[24] PILLAI C K S, PAUL W, SHARMA C P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation[J]. Progress in Polymer Science, 2009, 34(7): 641-678.
[25] ELSABEE M Z, ABDOU E S. Chitosan Based Edible Films and Coatings: A Review[J]. Materials Science & Engineering C, Materials for Biological Applications, 2013, 33(4): 1819-1841.
[26] ARANAZ I, MENGíBAR M, HARRIS R, et al. Functional Characterization of Chitin and Chitosan[J]. Current Chemical Biology, 2009, 3(2): 203-230.
[27] CHEN Chu-chu, LI Da-gang, SHAO Xu. High-Performance Nanocomposite Films: Reinforced with Chitosan Nanofiber Extracted from Prawn Shells[J]. Journal of Materials Science, 2014, 49(3): 1215-1221.
[28] TIAN Q, LIU S, SUN X, et al. Theoretical Studies on the Dissolution of Chitosan in 1-Butyl-3-Methylimidazolium Acetate Ionic Liquid[J]. Carbohydrate Research, 2015, 408: 107-113.
[29] PARK J W, CHOI K H, PARK K K. Acid-Base Equilibria and Related Properties of Chitosan[J]. Bulletin of the Korean Chemical Society, 1983, 4: 68-72.
[30] LAKEHAL I, MONTEMBAULT A, DAVID L, et al. Prilling and Characterization of Hydrogels and Derived Porous Spheres from Chitosan Solutions with Various Organic Acids[J]. International Journal of Biological Macromolecules, 2019, 129: 68-77.
[31] DEMARGER-ANDRE S, DOMARD A. Chitosan Carboxylic Acid Salts in Solution and in the solid state[J]. Carbohydrate Polymers, 1994, 23(3): 211-219.
[32] KHOURI J, PENLIDIS A, MORESOLI C. Heterogeneous Method of Chitosan Film Preparation: Effect of Multifunctional Acid on Film Properties[J]. Journal of Applied Polymer Science, 2020, 137(18): 48648.
[33] VELáSQUEZ-COCK J, RAMíREZ E, BETANCOURT S, et al. Influence of the Acid Type in the Production of Chitosan Films Reinforced with Bacterial Nanocellulose[J]. International Journal of Biological Macromolecules, 2014, 69: 208-213.
[34] ZHONG Y, SONG X, LI Y. Antimicrobial, Physical and Mechanical Properties of Kudzu Starch-Chitosan Composite Films as a Function of Acid Solvent Types[J]. Carbohydrate Polymers, 2011, 84(1): 335-342.
[35] QIAO C, MA X, WANG X, et al. Structure and Properties of Chitosan Films: Effect of the Type of Solvent Acid[J]. LWT-Food Science and Technology, 2021, 135(7): 109984-109990.
[36] KISHIDA A, IKADA Y, DUMITRIU S. Polymeric Biomaterials[M]. New York: Marcel & Decker Inc, 2002: 133-145.
[37] HWANG Y H, LIU T Y K F H, LAI J Y, et al. Improvement in the Properties of Chitosan Membranes Using Natural Organic Acid Solutions as Solvents for Chitosan Dissolution[J]. Journal of Bioscience and Bioengineering, 2007, 27(12): 23-28.
[38] HARISH PRASHANTH K V, THARANATHAN R N. Chitin/Chitosan: Modifications and Their Unlimited Application Potential-an Overview[J]. Trends in Food Science and Technology, 2007, 18(3): 117-131.
[39] CHATELET C, DAMOUR O, DOMARD A. Influence of the Degree of Acetylation on some Biological Properties of Chitosan Films[J]. Biomaterials, 2001, 22(3): 261-268.
[40] LIN TENG SHEE F, ARUL J, BRUNET S, et al. Solubilization of Chitosan by Bipolar Membrane Electroacidification[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18): 6760-6764.
[41] CHEN Po-hui, KUO Ting-yun, LIU F H, et al. Use of Dicarboxylic Acids to Improve and Diversify the Material Properties of Porous Chitosan Membranes[J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9015-9021.
[42] QIN C, LI H, XIAO Q, et al. Water-Solubility of Chitosan and Its Antimicrobial Activity[J]. Carbohydrate Polymers, 2006, 63(3): 367-374.
[43] RITTHIDEJ G C. Nasal Delivery of Peptides and Proteins with Chitosan and Related Mucoadhesive Polymers[M]. London: Academic Press, 2011: 47-68.
[44] YI H, WU L Q, BENTLEY W E, et al. Biofabrication with Chitosan[J]. Biomacromolecules, 2005, 6(6): 2881-2894.
[45] CADOGAN E I, LEE C H, POPURI S R, et al. Effect of Solvent on Physico-Chemical Properties and Antibacterial Activity of Chitosan Membranes[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63(14): 708-715.
[46] RINAUDO M. Chitin and Chitosan: Properties and Applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632.
[47] BUTLER B L, VERGANO P J, TESTIN R F, et al. Mechanical and Barrier Properties of Edible Chitosan Films as Affected by Composition and Storage[J]. Journal of Food Science, 1996, 61(5): 953-956.
[48] NIAMSA N, BAIMARK Y. Preparation and Characterization of Highly Flexible Chitosan Films for Use as Food Packaging[J]. American Journal of Food Technology, 2009, 4(4): 162-169.
[49] BECERRA J, SUDRE G, ROYAUD I, et al. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior[J]. AAPS PharmSciTech, 2017, 18(4): 1070-1083.
[50] PATERSON M, KENNEDY J F. Chitin Handbook; European Chitin Society; RAA Muzzarelli, MG Peter (Eds.); Grottammare, Italy, 1997, xv+ 528 pages, ISBN 88-86889-01-1, US $95.00[J]. Carbohydrate Polymer, 1999, 39(4): 383-389.
[51] URAGAMI T, MATSUDA T, OKUNO H, et al. Structure of Chemically Modified Chitosan Membranes and Their Characteristics of Permeation and Separation of Aqueous Ethanol0 Solutions[J]. Journal of Membrane Science, 1994, 88(3): 243-251.
[52] GARTNER C, LóPEZ B L, SIERRA L, et al. Interplay between Structure and Dynamics in Chitosan Films Investigated with Solid-State NMR, Dynamic Mechanical Analysis, and X-Ray Diffraction[J]. Biomacromolecules, 2011, 12(4): 1380-1386.
[53] TSIGE M, GREST G S. Solvent Evaporation and Interdiffusion in Polymer Films[J]. Journal of Physics-Condensed Matter, 2005, 17(49): 4119-4132.
[54] PAVONI J M F, LUCHESE C L, TESSARO I C. Impact of Acid Type for Chitosan Dissolution on the Characteristics and Biodegradability of Cornstarch/Chitosan Based Films[J]. International Journal of Biological Macromolecules, 2019, 138: 693-703.
[55] SAKAI Y, HAYANO K, YOSHIOKA H, et al. A Novel Method of Dissolving Chitosan in Water for Industrial Application[J]. Polymer Journal, 2001, 33(8): 640-642.
[56] GHASEMI A, MOHTASHAMI M, SHEIJANI S S, et al. Chitosan-Genipin Nanohydrogel as a Vehicle for Sustained Delivery of Alpha-1 Antitrypsin[J]. Research in Pharmaceutical Sciences, 2015, 10(6): 523-534.
[57] MEDIMAGH R, ALOUI H, JEMLI M, et al. Enhanced Functional Properties of Chitosan Films Cross-Linked by Biosourced Dicarboxylic Acids[J]. Polymer Science Series A, 2016, 58(3): 409-418.
[58] VIMALADEVI S, PANDA S K, XAVIER K A, et al. Packaging Performance of Organic Acid Incorporated Chitosan Films on Dried Anchovy (Stolephorus Indicus)[J]. Carbohydrate Polymers, 2015, 127: 189-194.
[59] PARK S Y, PARK H J, LIN X Q, et al. Characterization of Chitosan Film and Structure in Solution[M]. New York: Elsevier, 2000: 199-204.
[60] PARK S Y, JUN S T, MARSH K S. Physical Properties of PVOH/Chitosan-Blended Films Cast from Different Solvents[J]. Food Hydrocolloids, 2001, 15(4-6): 499-502.
[61] PARK S Y, MARSH K S, RHIM J W. Characteristics of Different Molecular Weight Chitosan Films Affected by the Type of Organic Solvents[J]. Journal of Food Science, 2002, 67(1): 194-197.
[62] CHEN J L, ZHAO Y. Effect of Molecular Weight, Acid, and Plasticizer on the Physicochemical and Antibacterial Properties of Β-Chitosan Based Films[J]. Journal of Food Science, 2012, 77(5): 127-136.
[63] PAVONI J M F, SANTOS N Z, MAY I C, et al. Impact of Acid Type and Glutaraldehyde Crosslinking in the Physicochemical and Mechanical Properties and Biodegradability of Chitosan Films[J]. Polymer Bulletin, 2021, 78(2): 981-1000.
[64] RHIM J W, GENNADIOS A, HANDA A, et al. Solubility, Tensile, and Color Properties of Modified Soy Protein Isolate Films[J]. Journal of Agricultural and Food Chemistry, 2000, 48(10): 4937-4941.
[65] SATO S, SAKAMOTO T, MIYAZAWA E, et al. One-Pot Reductive Amination of Aldehydes and Ketones with α-Picoline-Borane in Methanol, in Water, and in Neat Conditions[J]. Tetrahedron, 2004, 60(36): 7899-7906.
[66] CLAYDEN J, GREEVES N, WARREN S, et al. Organometallic Chemistry[J]. Oxford University Press Inc, 2001, 20(5): 1311-1343.
[67] BHUMKAR D R, POKHARKAR V B. Studies on Effect of pH on Cross-Linking of Chitosan with Sodium Tripolyphosphate: A Technical Note[J]. AAPS PharmSciTech, 2006, 7(2): 138-143.
[68] SHU X Z, ZHU K J. A Novel Approach to Prepare Tripolyphosphate/Chitosan Complex Beads for Controlled Release Drug Delivery[J]. International Journal of Pharmaceutics, 2000, 201(1): 51-58.
[69] JOESTEN M D, SCHAAD L J. Hydrogen Bonding[M]. New York: M Dekker, 1974: 20-50.
[70] CANER C, VERGANO P J, WILES J L. Chitosan Film Mechanical and Permeation Properties as Affected by Acid, Plasticizer, and Storage[J]. Journal of Food Science, 1998, 63(6): 1049-1053.
[71] CRUZ R C A L, DINIZ L G M, LISBOA H M, et al. Effect of Different Carboxylic Acids as Solvent on Chitosan Fibers Production by Wet Spinning[J]. Materia-Rio De Janeiro, 2016, 21(2): 525-531.
[72] 胡天嬌, 陸曄婷, 彭亞倩, 等. 檸檬酸交聯(lián)處理對殼聚糖纖維的增強作用[J]. 絲綢, 2020, 57(12): 15-20.
HU Tian-jiao, LU Ye-ting, PENG Ya-qian, et al. Effect of Cross-Linking Treatment with Citric Acid on Enhancement of Chitosan Fiber[J]. Silk, 2020, 57(12): 15-20.
[73] FALAMARZPOUR P, BEHZAD T, ZAMANI A. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid[J]. International Journal of Molecular Sciences, 2017, 18(2): 396.
[74] GHOSH A, ALI M A. Studies on Physicochemical Characteristics of Chitosan Derivatives with Dicarboxylic Acids[J]. Journal of Materials Science, 2012, 47(3): 1196-1204.
[75] MITRA T, SAILAKSHMI G, GNANAMANI A, et al. Adipic Acid Interaction Enhances the Mechanical and thermal Stability of Natural Polymers[J]. Journal of Applied Polymer Science, 2012, 125(S2): 490-500.
[76] RITTHIDEJ G C, PHAECHAMUD T, KOIZUMI T. Moist Heat Treatment on Physicochemical Change of Chitosan Salt Films[J]. International Journal of Pharmaceutics, 2002, 232(1/2): 11-22.
[77] KIM K M, SON J H, KIM S K, et al. Properties of Chitosan Films as a Function of pH and Solvent Type[J]. Journal of Food Science, 2006, 71(3): 119-124.
Research Progress of Chitosan Film-Forming Properties in Organic Acids Solvent Systems
ZHONG Yan-qin1, YANG Ming-liang1, LYU Jing-yi1,2, GE Yong-hong1,2, MI Hong-bo1,2, CHEN Jing-xin1,2
(1.College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; 2.National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China)
The organic acid solvent system is very significant for the film-forming properties of chitosan. The work aims to explore its potential molecular mechanism to provide a theoretical reference for the related research of chitosan films.The chemical composition and film-forming mechanism of chitosan, as well as the mechanical properties, swelling property, oxygen permeability and water vapor permeability of chitosan films were reviewed in different organic acid solvent systems.Theorganic acid solvent system can provide more protons for the dissolution of chitosan and realize the solubility of chitosan in water. In addition, the number of carboxylic acids and hydroxyl groups in the molecular structure of organic acids, the length of carbon chain, the hydrogen bond and ionic force between organic acids and chitosan were different, which can greatly affect the film-forming performance of chitosan. Theorganic acid solvent system has a crucial effect on the performance of chitosan film, which helps to enhance its applicability in improvement of food quality and preservation.
chitosan film; organic acid; film properties
TB484;S377
A
1001-3563(2022)05-0023-10
10.19554/j.cnki.1001-3563.2022.05.004
2021-06-30
遼寧省博士科研啟動基金(2020-BS-238);遼寧省科技特派團項目(2021JH5/10400025);遼寧省教育廳科學研究項目(LJKZ1025)
鐘燕琴(1995—),女,渤海大學碩士生,主攻果蔬加工及貯藏工程。
陳敬鑫(1985—),男,博士,渤海大學副教授,主要研究方向為農(nóng)產(chǎn)品加工及貯藏。