国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

果蔬采后生理代謝變化及調(diào)控機(jī)制研究進(jìn)展

2022-03-21 03:19:28唐建新王佳莉英麗美張?jiān)弃Q孫炳新
包裝工程 2022年5期
關(guān)鍵詞:活性氧細(xì)胞膜果蔬

唐建新,王佳莉,英麗美,張?jiān)弃Q,孫炳新

果蔬采后生理代謝變化及調(diào)控機(jī)制研究進(jìn)展

唐建新,王佳莉,英麗美,張?jiān)弃Q,孫炳新

(沈陽(yáng)農(nóng)業(yè)大學(xué) 食品學(xué)院,沈陽(yáng) 110866)

討論采后果蔬的呼吸代謝、能量代謝,以及活性氧代謝與品質(zhì)劣變之間的關(guān)聯(lián)性,旨在為采后果蔬保鮮技術(shù)的應(yīng)用提供理論支持和研究思路。綜述采后果蔬貯藏期間3種生理代謝的變化及相互調(diào)控機(jī)制,以及與品質(zhì)劣變的關(guān)聯(lián)性。采后果蔬的品質(zhì)劣變與呼吸代謝、能量代謝和活性氧代謝密切相關(guān)。采后處理或保鮮技術(shù)可通過(guò)對(duì)果蔬代謝機(jī)制進(jìn)行調(diào)控來(lái)減少褐變、營(yíng)養(yǎng)物質(zhì)流失、軟化、病原菌侵染、冷害等不良現(xiàn)象的發(fā)生。呼吸代謝、能量代謝和活性氧代謝共同構(gòu)成了一個(gè)復(fù)雜的生理代謝網(wǎng)絡(luò),相互作用共同調(diào)控果蔬的生理代謝,進(jìn)而影響采后果蔬的生理品質(zhì)。

果蔬保鮮;呼吸代謝;能量代謝;活性氧代謝;品質(zhì)劣變

我國(guó)果蔬產(chǎn)量目前位居世界首位,蔬菜種植面積約占世界總量的30%,產(chǎn)量約占世界總量的50%[1]。果蔬采后仍保持旺盛的生理代謝,極易發(fā)生氧化褐變、組織軟化、腐爛變質(zhì)和營(yíng)養(yǎng)物質(zhì)流失等一系列不良品質(zhì)變化,造成經(jīng)濟(jì)損失和資源浪費(fèi)。隨著人們對(duì)果蔬品質(zhì)要求的不斷提升,果蔬采后保鮮具有十分重要的意義。采后果蔬的貯藏品質(zhì)與呼吸代謝、能量代謝和活性氧代謝密切相關(guān)。文中擬闡述采后果蔬呼吸代謝、能量代謝與活性氧代謝變化的作用機(jī)制及其與品質(zhì)劣變之間的關(guān)聯(lián)性,分析不同采后處理或保鮮技術(shù)對(duì)果蔬采后生理代謝的影響,以期為果蔬貯藏保鮮技術(shù)的應(yīng)用提供理論依據(jù)和應(yīng)用指導(dǎo)。

1 呼吸代謝

呼吸代謝是采后果蔬生理代謝的中樞,能夠?yàn)樯顒?dòng)和理化反應(yīng)提供能量和反應(yīng)中間體,而較高的呼吸作用會(huì)加速營(yíng)養(yǎng)物質(zhì)的消耗,產(chǎn)生活性氧(ROS)會(huì)加速細(xì)胞膜的氧化損傷,從而進(jìn)一步加速采后果蔬的品質(zhì)劣變和衰老[2]。果蔬的呼吸作用與變質(zhì)程度呈正相關(guān),與貨架期呈負(fù)相關(guān)[3],因此降低呼吸強(qiáng)度對(duì)于維持果蔬采后品質(zhì)具有重要意義。

1.1 呼吸途徑

植物的呼吸途徑包括糖酵解途徑(EMP)、磷酸戊糖途徑(HMP)、三羧酸循環(huán)(TCA)、發(fā)酵途徑以及線粒體電子傳遞鏈中的細(xì)胞色素途徑(CCP)和替代途徑(AP)[4]。呼吸途徑會(huì)隨外界環(huán)境和采后處理技術(shù)的變化而發(fā)生不同程度的變化,采后果蔬的品質(zhì)劣變與呼吸速率的高低以及呼吸途徑的比例密切相關(guān)[3]。EMP 途徑作為呼吸代謝的首要環(huán)節(jié),是植物體內(nèi)蛋白質(zhì)、脂質(zhì)和糖類等有機(jī)物氧化分解的主要途徑,較高的EMP途徑會(huì)加速底物消耗和果蔬衰老[5]。EMP-TCA和HMP途徑是植物體內(nèi)重要的有氧呼吸途徑,可為機(jī)體提供能量。此外,HMP途徑的增強(qiáng)可以提高植物對(duì)非生物脅迫的耐受能力[6]。KONG等[7]指出TCA、EMP和HMP途徑的比例下調(diào)將造成細(xì)胞能量供應(yīng)不足,導(dǎo)致細(xì)胞膜的修復(fù)能力被削弱和對(duì)逆境脅迫的抗性降低。當(dāng)環(huán)境中O2濃度過(guò)低時(shí),植物組織會(huì)進(jìn)行無(wú)氧呼吸,產(chǎn)生乙醛和乙醇等發(fā)酵代謝產(chǎn)物,發(fā)酵代謝的激活被指出可能會(huì)降低有氧呼吸的比例,從而減少細(xì)胞的能量供應(yīng),對(duì)采后果蔬貯藏期品質(zhì)產(chǎn)生重要影響[8]。適度厭氧代謝產(chǎn)物積累有利于維持采后果蔬的貯藏期品質(zhì),而過(guò)度積累會(huì)對(duì)細(xì)胞產(chǎn)生毒性,加速褐變和異味等不良現(xiàn)象的出現(xiàn)[9]。CCP和AP途徑是線粒體電子傳遞鏈中主要的呼吸途徑,可為機(jī)體提供能量和抑制ROS的產(chǎn)生。CCP途徑的末端氧化酶即細(xì)胞色素氧化酶(CCO)的活性可反映組織的呼吸活動(dòng)和線粒體功能[10]。功能失調(diào)的CCO會(huì)擾亂線粒體電子傳遞鏈(ETC),導(dǎo)致ATP產(chǎn)量減少和能量供應(yīng)不足[11]。O2(80%)+ CO2(20%)處理可通過(guò)抑制雙孢蘑菇COX活性的下降來(lái)延緩CCP比例的下降,進(jìn)一步減輕組織受冷害的程度[4]。AP途徑主要通過(guò)ROS與ATP轉(zhuǎn)換解偶聯(lián)來(lái)抑制ROS的產(chǎn)生,從而提高機(jī)體對(duì)不良環(huán)境的抗逆性,且交替氧化酶(AOX)的活性以及AP基因的表達(dá)可由非生物脅迫(如低溫或凍害)誘導(dǎo)升高[12]。

1.2 呼吸代謝對(duì)細(xì)胞能量水平的調(diào)控

線粒體是生物體進(jìn)行呼吸代謝和能量合成的場(chǎng)所,有機(jī)物在細(xì)胞內(nèi)通過(guò)ETC完成一系列的氧化還原反應(yīng),最終生成CO2和H2O,并釋放出能量。呼吸途徑的調(diào)控對(duì)于能量供給水平具有重要影響。褪黑素處理可通過(guò)降低EMP途徑和增加HMP途徑比例來(lái)減少呼吸底物消耗,為細(xì)胞提供充足的能量供應(yīng),從而延緩白菜葉片的衰老[3]。納米復(fù)合包裝通過(guò)抑制呼吸強(qiáng)度來(lái)限制ATP水平的下降,從而維持雙孢蘑菇的能量狀態(tài)和改善采后品質(zhì)[13]。過(guò)度的呼吸代謝會(huì)消耗大量的代謝物質(zhì),從而加速果蔬的成熟和衰老[5]。蘋(píng)果和梨等呼吸躍變型果實(shí)在呼吸躍變時(shí)ATP含量會(huì)發(fā)生劇烈變化,降低呼吸高峰強(qiáng)度可減少呼吸底物消耗,更好地維持貯藏期的品質(zhì)[14]。由此可見(jiàn),維持適當(dāng)?shù)暮粑鼜?qiáng)度和充足的能量供應(yīng)對(duì)維持采后果蔬貨架期品質(zhì)具有重要意義。

1.3 呼吸代謝對(duì)活性氧代謝的影響

線粒體在進(jìn)行能量供應(yīng)的同時(shí),其ETC也是重要的ROS發(fā)生器。植物ETC見(jiàn)圖1[15],其中復(fù)合體Ⅰ(NADH脫氫酶)和Ⅲ(CCO)是產(chǎn)生ROS的主要位點(diǎn),植物組織中大約1%~2%的呼吸代謝總氧消耗會(huì)轉(zhuǎn)變?yōu)镽OS產(chǎn)物,加速組織氧化損傷,進(jìn)而導(dǎo)致采后果蔬出現(xiàn)褐變、腐爛、軟化、風(fēng)味和營(yíng)養(yǎng)物質(zhì)流失等一系列品質(zhì)劣變問(wèn)題。CCO和AOX是ETC中2種重要的末端氧化酶,二者不完全氧化會(huì)加速ROS的產(chǎn)生。在存在丙酮酸的情況下,AOX可競(jìng)爭(zhēng)不飽和細(xì)胞色素鏈中的電子來(lái)穩(wěn)定ETC,進(jìn)而最大程度地減少ROS的產(chǎn)生,從而提高組織抵御逆境脅迫的能力[16]。CHEN等[17]指出,抑制AOX活性可誘導(dǎo)煙草在極端干旱環(huán)境中產(chǎn)生ROS,從而加劇組織的氧化損傷。此外,呼吸代謝中吡啶核苷酸的含量也對(duì)活性氧代謝具有重要影響。煙酰胺腺嘌呤二核苷酸(磷酸)(NAD(P))在ETC中被還原為還原型煙酰胺腺嘌呤二核苷酸(磷酸)(NAD(P)H),用來(lái)支持細(xì)胞中的生物合成反應(yīng)和維持組織免受氧化應(yīng)激所必需的氧化還原電位[18]。較高的NAD(P)H/NAD(P)比例可導(dǎo)致ETC中電子的泄露,從而加速ROS的產(chǎn)生和對(duì)機(jī)體的氧化損傷[19]。鮮切甜瓜中較高的NAD(P)H/NAD(P)比例可加速O2?的產(chǎn)生,使組織遭受更高的氧化應(yīng)激,從而加劇細(xì)胞膜氧化損傷和品質(zhì)劣變[19]。NO處理可通過(guò)提高6-磷酸葡萄糖脫氫酶和6-磷酸葡萄糖酸脫氫酶的活性來(lái)維持細(xì)胞中NAD(P)H的含量,進(jìn)一步保護(hù)香蕉果實(shí)免受低溫誘導(dǎo)的氧化脅迫,從而提高香蕉的耐寒性[20]。由此可見(jiàn),呼吸代謝可通過(guò)調(diào)控呼吸途徑關(guān)鍵酶活性和吡啶核苷酸的含量來(lái)影響活性氧代謝。

注:復(fù)合體Ⅰ(NADH 脫氫酶)催化NADH 氧化生成泛醌(輔酶 Q),復(fù)合體Ⅱ(琥珀酸脫氫酶)是泛醌進(jìn)一步的電子供應(yīng),泛醇(泛醌還原型)中的電子被傳遞到復(fù)合體Ⅲ(細(xì)胞色素氧化酶),然后經(jīng)細(xì)胞色素c(cyt c)最終傳遞到復(fù)合體Ⅳ(細(xì)胞色素氧化酶),復(fù)合體Ⅳ催化 O2與電子結(jié)合生成H2O,復(fù)合體Ⅴ(ATP合成酶)利用復(fù)合體Ⅰ、Ⅲ、Ⅳ產(chǎn)生的質(zhì)子動(dòng)力勢(shì)將 ADP 磷酸化生成ATP。復(fù)合體Ⅰ和Ⅲ是電子泄露的主要場(chǎng)所

1.4 呼吸代謝對(duì)采后果蔬生理品質(zhì)的調(diào)控

呼吸代謝對(duì)于采后果蔬的生理品質(zhì)具有重要影響。較高的呼吸強(qiáng)度會(huì)加速營(yíng)養(yǎng)物質(zhì)消耗,從而引發(fā)一系列品質(zhì)劣變問(wèn)題的出現(xiàn),降低呼吸強(qiáng)度和延緩呼吸躍變型果實(shí)呼吸高峰的出現(xiàn)是采后果蔬保鮮技術(shù)應(yīng)用的核心。其中,呼吸躍變型果實(shí)在呼吸躍變期間主要以替代途徑為主,躍變之后主要以細(xì)胞色素氧化途徑為主,因此可通過(guò)調(diào)控呼吸躍變型果實(shí)中的替代比例來(lái)降低總呼吸強(qiáng)度,從而延緩果蔬衰老[21]。此外,替代途徑的抑制也可以降低乙烯的產(chǎn)生量,進(jìn)一步延緩采后果蔬的成熟和衰老[22]。呼吸強(qiáng)度和呼吸途徑關(guān)鍵酶活性對(duì)于采后果蔬的顏色、質(zhì)地、營(yíng)養(yǎng)、風(fēng)味物質(zhì)、抗逆性等具有重要影響。殼聚糖/檸檬酸復(fù)合涂膜通過(guò)降低呼吸強(qiáng)度,以有效提高胡蘿卜的貯藏品質(zhì)[23]。NO處理可通過(guò)抑制EMP途徑減少底物的消耗,促進(jìn)HMP和AP途徑,提高細(xì)胞抗逆性,進(jìn)而提高桃的抗氧化性和耐寒性[3]。

2 能量代謝

能量是維持機(jī)體理化反應(yīng)和生理代謝的重要物質(zhì)。近年來(lái),關(guān)于能量代謝的研究主要集中在膜脂合成相關(guān)的ATP閾值、高ATP水平調(diào)控的采后果蔬保鮮技術(shù)、高ATP水平抑制果蔬褐變以及細(xì)胞外核苷酸(eATP和eADP)在植物信號(hào)轉(zhuǎn)導(dǎo)中的調(diào)節(jié)作用等方面[24]。采后果實(shí)在收獲后能量電荷逐漸減少,細(xì)胞能量代謝與呼吸代謝、活性氧代謝和果蔬采后品質(zhì)劣變密切相關(guān),能量狀態(tài)是影響果蔬采后成熟和衰老的重要因素。

2.1 能量的形式

ATP是儲(chǔ)存和運(yùn)輸能量的載體,主要由線粒體氧化磷酸化產(chǎn)生。當(dāng)果蔬遭遇逆境脅迫或衰老時(shí),組織細(xì)胞可通過(guò)調(diào)控ATP的合成來(lái)維持能荷的穩(wěn)定和線粒體電子傳遞鏈的正常運(yùn)行[21]。過(guò)低的能量水平會(huì)加速 ROS 的產(chǎn)生和細(xì)胞膜的氧化損傷,尤其是當(dāng)ATP水平降至閾值濃度(0.01 mol/L)以下時(shí),細(xì)胞代謝和線粒體功能發(fā)生紊亂,導(dǎo)致膜完整性逐漸喪失,從而加速采后果蔬的品質(zhì)劣變[25]。細(xì)胞整體能量狀態(tài)通常用細(xì)胞能量電荷來(lái)反映,能荷水平越高,則細(xì)胞能量水平越高[26],更有利于采后果蔬品質(zhì)的維持。納米復(fù)合包裝中較高的能荷水平可延緩雙孢蘑菇的腐爛和維持細(xì)胞的微觀結(jié)構(gòu)[13]。此外,ATP/ADP以及AMP/ADP的比值被指出與線粒體的功能和組織衰老密切相關(guān)[27]。高ATP/ADP比值可通過(guò)抑制EMP途徑來(lái)減少采后果實(shí)的底物消耗和避免生理代謝紊亂的發(fā)生[28-29]。由此可見(jiàn),應(yīng)用合適的采后保鮮技術(shù)將細(xì)胞能量狀態(tài)調(diào)控在合適水平是維持采后果蔬品質(zhì)的關(guān)鍵因素。

2.2 能量狀態(tài)對(duì)采后果蔬呼吸代謝的影響

果蔬在采后仍保持旺盛的生理代謝和細(xì)胞活性,植物呼吸代謝強(qiáng)弱主要受到細(xì)胞能荷狀態(tài)的調(diào)控。ATP需求通過(guò)改變ATP、ADP和AMP之間的比例來(lái)控制呼吸速率,從而導(dǎo)致糖酵解酶的變構(gòu)調(diào)節(jié)和線粒體電子轉(zhuǎn)運(yùn)的反饋調(diào)節(jié)[30]。高水平的ATP可通過(guò)降低呼吸代謝來(lái)抑制ATP的合成,低水平的ATP可通過(guò)增強(qiáng)呼吸代謝來(lái)激發(fā)ATP合成途徑,為機(jī)體提供能量,以維持細(xì)胞正常生理代謝活動(dòng)[31]。SHU等[31]指出褪黑素處理可通過(guò)維持較高的ATP和ADP水平以及較低的AMP水平來(lái)降低呼吸代謝,達(dá)到維持大白菜貯藏期品質(zhì)和延緩衰老的作用。此外,低水平的ATP被指出可能阻斷ETC末端的電子轉(zhuǎn)移,從而抑制呼吸代謝和能量供應(yīng)[32]。由此可見(jiàn),采后果蔬貯藏期間呼吸和能量代謝的相互調(diào)節(jié)機(jī)制仍需進(jìn)一步研究。

2.3 能量狀態(tài)對(duì)活性氧積累的影響

采后果蔬的能量代謝與ROS積累密切相關(guān)。當(dāng)果蔬遭遇逆境脅迫或衰老時(shí),線粒體加速運(yùn)轉(zhuǎn)會(huì)在為機(jī)體提供能量的同時(shí)加速ROS的產(chǎn)生。高水平的ATP可觸發(fā)受損果實(shí)中ROS的產(chǎn)生,但對(duì)激活抗氧化系統(tǒng)的作用效果較弱[19]。例如,高水平的ATP可觸發(fā)信號(hào)分子ROS的產(chǎn)生,可誘導(dǎo)鮮切甜瓜傷口處酚 類物質(zhì)的積累,從而增強(qiáng)細(xì)胞對(duì)切割創(chuàng)傷的應(yīng)激能 力[33];外源ATP可誘導(dǎo)擬南芥受害葉片中O2?的積累,從而加速其品質(zhì)的劣變進(jìn)程[34]。也有相關(guān)報(bào)道稱,高ATP水平可通過(guò)誘導(dǎo)抗氧化酶活性升高和內(nèi)源抗氧化物質(zhì)積累來(lái)激活抗氧化防御系統(tǒng),從而減少ROS的產(chǎn)生和細(xì)胞氧化損傷。CHEN等[35]指出較高的能量狀態(tài)可誘導(dǎo)抗氧化酶活性的升高,從而使采后黃瓜免受低溫氧化損傷。由此可見(jiàn),采后果蔬貯藏期間能量狀態(tài)對(duì)ROS的產(chǎn)生是抑制作用還是促進(jìn)作用仍需要進(jìn)一步研究。

2.4 能量虧缺對(duì)細(xì)胞膜完整性的損傷

細(xì)胞膜是生物體的重要組成部分,膜的完整性對(duì)維持細(xì)胞的功能性具有重要意義。膜的完整性和細(xì)胞膜內(nèi)外滲透壓的維持、膜脂功能蛋白的合成、跨膜K+和Na+的轉(zhuǎn)運(yùn)均依賴于ATP合成[36]。當(dāng)果實(shí)遭遇逆境脅迫或衰老時(shí),ATP合成能力降低導(dǎo)致能量虧缺,而能量虧缺會(huì)加速細(xì)胞膜水解,破壞細(xì)胞內(nèi)外滲透壓,改變細(xì)胞膜組分和結(jié)構(gòu),從而導(dǎo)致細(xì)胞膜修復(fù)功能的失調(diào),以及細(xì)胞膜脂質(zhì)過(guò)氧化和細(xì)胞膜通透性的增加,細(xì)胞膜完整性受損。例如,涂膜和熱處理可通過(guò)維持葡萄果實(shí)中較高的能荷和ATP水平來(lái)維持細(xì)胞膜的完整性,從而延緩果實(shí)的自溶軟化[37];外源ATP有助于維持果蔬不飽和脂肪酸水平和膜的完整性,從而抑制荔枝果實(shí)的疾病發(fā)展[38]。

能量狀態(tài)的變化對(duì)脂質(zhì)過(guò)氧化的影響通過(guò)間接影響膜脂肪酸整體狀態(tài)實(shí)現(xiàn)。這是因?yàn)槟ぶ|(zhì)過(guò)氧化主要是不飽和脂肪酸的氧化,而不飽和脂肪酸的氧化可促進(jìn)飽和脂肪酸的積累,進(jìn)而擾亂細(xì)胞膜穩(wěn)態(tài)和損傷細(xì)胞膜的完整性和功能性[39]。藍(lán)莓果實(shí)在低溫貯藏期間較低的能荷水平不足以促進(jìn)磷脂的合成以及修復(fù)已被脂質(zhì)過(guò)氧化損傷的細(xì)胞膜,從而導(dǎo)致應(yīng)激反應(yīng)中苯丙氨酸解氨酶和脂氧合酶活性增加,進(jìn)一步加速膜完整性和功能性的損傷[40]。2,4-二硝基苯酚處理可通過(guò)降低ATP含量來(lái)誘導(dǎo)磷脂酶D、脂肪酶和脂肪氧合酶活性的升高,磷脂酰膽堿、磷脂酰肌醇和不飽和脂肪酸含量的下降,以及磷脂酸和飽和脂肪酸含量的升高,加速細(xì)胞膜降解和膜氧化損傷,從而加劇龍眼果實(shí)褐變和病害的發(fā)生[41]。

2.5 能量代謝對(duì)采后果蔬生理品質(zhì)的調(diào)控

采后果蔬組織褐變、病原體感染和冷害的發(fā)生與細(xì)胞能量狀態(tài)密切相關(guān)。高水平的ATP對(duì)于抑制蘋(píng)果[42]和蘑菇[43]等果蔬的褐變具有積極效應(yīng)。線粒體能量代謝是影響園藝作物病原體感染的關(guān)鍵因素,組織能量虧缺會(huì)加速細(xì)胞膜的氧化損傷,導(dǎo)致細(xì)胞區(qū)室化喪失和加速病原體的發(fā)育,從而降低細(xì)胞的抗病性[44]。β-氨基丁酸處理可通過(guò)維持較高的ATP水平來(lái)提高桃果實(shí)對(duì)根霉腐爛病的抗病性[45]。茉莉酸甲酯處理也可通過(guò)維持較高的ATP水平來(lái)減少枇杷果實(shí)炭疽病的發(fā)生[46]。細(xì)胞能量可通過(guò)直接影響膜脂的生物合成和細(xì)胞膜的修復(fù)來(lái)介導(dǎo)冷藏果實(shí)的抗寒性[47]。Ca2+-ATPase是細(xì)胞內(nèi)主要的Ca2+轉(zhuǎn)運(yùn)蛋白,可維持細(xì)胞內(nèi)的Ca2+穩(wěn)態(tài),從而減輕冷敏感植物在冷脅迫下的代謝功能障礙和結(jié)構(gòu)損傷[48],因此高ATP水平有助于減輕采后果蔬貯藏期間冷害的發(fā)生。JIN等[49]指出H+-ATPase和Ca2+-ATPase活性的增強(qiáng)有助于提高桃果實(shí)在冷藏期間的耐冷性,且高ATP水平對(duì)于緩解西葫蘆[49]和桃[50]等果蔬的冷害也表現(xiàn)出積極效應(yīng)。

3 活性氧代謝

采后果實(shí)衰老是一種氧化現(xiàn)象,ROS是植物氧化損傷的主要介質(zhì),過(guò)量ROS積累會(huì)引發(fā)氧化脅迫作用,導(dǎo)致采后果蔬呼吸代謝紊亂、能量供應(yīng)不足和生物膜功能喪失,進(jìn)一步加速采后果蔬衰老、冷害、褐變、軟化等品質(zhì)劣變的發(fā)生。適度的ROS積累可作為信號(hào)分子激活抗氧化防御系統(tǒng),從而維持細(xì)胞穩(wěn)態(tài)和減少細(xì)胞膜氧化損傷,因此采用合適的貯藏保鮮技術(shù)來(lái)減少ROS產(chǎn)生,以維持細(xì)胞內(nèi)ROS穩(wěn)態(tài),對(duì)于減輕細(xì)胞氧化損傷和降低品質(zhì)劣變具有重要意義。

3.1 活性氧產(chǎn)生與清除系統(tǒng)

采后果蔬貯藏期間的生物和非生物脅迫會(huì)導(dǎo)致ETC中末端氧化酶COX和AOX不完全氧化,從而加速ROS的產(chǎn)生。ROS主要包括O2?、H2O2和·OH等,H2O2是抗氧化脅迫反應(yīng)中的重要信號(hào)分子和啟動(dòng)衰老的重要因子,可引發(fā)抗氧化級(jí)聯(lián)反應(yīng)和植物的程序化死亡[51-52]?!H是細(xì)胞中毒性最強(qiáng)的自由基,可導(dǎo)致核酸和蛋白質(zhì)等分子變性。孫志棟等[53]指出采前噴施30 mg/L Nα-月桂酰-L-精氨酸乙酯鹽酸鹽可通過(guò)提高·OH的清除率來(lái)提高冷藏藍(lán)莓的好果率。此外,·OH可提高乙烯合成酶活性,進(jìn)而誘導(dǎo)內(nèi)源乙烯的合成,從而加速果蔬的成熟和衰老進(jìn)程[54]。由于ROS對(duì)植物的生長(zhǎng)代謝也表現(xiàn)出一定的積極作用,低濃度的ROS在細(xì)胞信號(hào)傳遞過(guò)程中可作為第二信使誘導(dǎo)植物對(duì)激素和環(huán)境脅迫產(chǎn)生多種應(yīng)答反應(yīng),從而提高組織抗逆性[55]。此外,ROS也參與了細(xì)胞壁與蛋白質(zhì)的交聯(lián)以及細(xì)胞壁的木質(zhì)化過(guò)程,可加強(qiáng)細(xì)胞壁的防御性,以阻止病原菌入侵,因此可作為抗菌劑直接使用[56]。

超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、過(guò)氧化物酶(POD)和抗壞血酸過(guò)氧化物酶(APX)等抗氧化酶,以及總酚、黃酮、抗壞血酸和花青素等內(nèi)源抗氧化物質(zhì)可構(gòu)成ROS清除系統(tǒng),維持細(xì)胞內(nèi)的ROS代謝平衡和減輕細(xì)胞氧化損傷。應(yīng)用合適的貯藏保鮮技術(shù)以提高細(xì)胞的抗氧化性對(duì)于維持采后果蔬品質(zhì)具有重要影響。甘氨酸甜菜堿處理可通過(guò)誘導(dǎo)抗氧化酶活性提高來(lái)減輕桃果實(shí)的氧化損傷和維持更好的采后品質(zhì)[57]。短期厭氧處理可通過(guò)提高細(xì)胞抗氧化性來(lái)延緩脂質(zhì)過(guò)氧化作用,進(jìn)一步抑制枇杷果實(shí)褐變和腐爛發(fā)生[58]。

3.2 活性氧代謝對(duì)呼吸代謝的影響

當(dāng)果蔬遭受逆境脅迫或衰老時(shí),過(guò)量ROS積累會(huì)加速脂質(zhì)過(guò)氧化和細(xì)胞膜通透性的增加,使細(xì)胞膜完整性受損,而線粒體功能主要依賴于線粒體膜的完整性,因此活性氧代謝對(duì)于呼吸速率、呼吸途徑關(guān)鍵酶活性和吡啶核苷酸含量具有重要影響。鮮切甜瓜中較高的ROS積累將導(dǎo)致CCO功能障礙,降低氧化磷酸化過(guò)程中O2的利用能力,從而減少ATP的產(chǎn)生,導(dǎo)致更多的O2?積累,從而加速細(xì)胞氧化損傷[59]。在O2(80%)+CO2(20%)的氣調(diào)環(huán)境下,可通過(guò)抑制ROS和NO的產(chǎn)生誘導(dǎo)EMP和CCP途徑關(guān)鍵酶活性的降低,從而減少底物的消耗,更有利于雙孢蘑菇貯藏期間的品質(zhì)維持[2]。

3.3 活性氧代謝對(duì)能量代謝的影響

ROS水平對(duì)線粒體的結(jié)構(gòu)和功能具有重要影響。植物組織中超過(guò)95%的ATP由位于線粒體內(nèi)膜的呼吸代謝氧化磷酸化產(chǎn)生,過(guò)量ROS積累會(huì)加劇線粒體的功能性障礙,使氧化磷酸化解偶聯(lián),不能滿足細(xì)胞正常代謝的能量供應(yīng),嚴(yán)重時(shí)會(huì)導(dǎo)致細(xì)胞程序性死亡[60]。低水平的ROS積累可通過(guò)減輕細(xì)胞膜氧化損傷,從而維持細(xì)胞膜的完整性,進(jìn)一步避免能量代謝紊亂現(xiàn)象的發(fā)生,從而延緩桃果實(shí)的品質(zhì)劣變[61]。納米復(fù)合包裝可通過(guò)減輕由ROS積累引起的氧化損傷來(lái)維持雙孢蘑菇的正常能量代謝,更好地維持雙孢蘑菇貯藏期間的微觀結(jié)構(gòu)[13]。此外,ZHAO等[60]研究發(fā)現(xiàn),擬南芥中ROS的產(chǎn)生可作為信號(hào)分子來(lái)調(diào)節(jié)能量代謝,從而減少采后果實(shí)的品質(zhì)劣變。

3.4 活性氧代謝對(duì)細(xì)胞膜完整性的影響

生物膜的穩(wěn)定性受膜脂降解酶活性、磷脂組分、膜脂脂肪酸組成及含量等多方面因素的影響。ROS積累是引起細(xì)胞膜損傷和代謝失調(diào)的重要原因。組織中ROS的過(guò)量積累會(huì)攻擊細(xì)胞膜的多價(jià)不飽和脂肪酸,導(dǎo)致蛋白質(zhì)和核酸(酶)等大分子的分解,引起原生質(zhì)膜脫脂化和過(guò)氧化[62]。膜脂過(guò)氧化作用會(huì)進(jìn)一步破壞線粒體呼吸和氧化磷酸化,導(dǎo)致細(xì)胞膜通透性增大和流動(dòng)性降低,離子轉(zhuǎn)運(yùn)機(jī)制紊亂,亞油酸、亞麻酸等不飽和脂肪酸含量降低,膜結(jié)合酶功能受到影響,細(xì)胞氧化損傷加劇[62]。此外,膜脂過(guò)氧化作用還會(huì)產(chǎn)生脫落酸和茉莉酸等植物激素,促進(jìn)乙烯的產(chǎn)生,從而加速果實(shí)的成熟和衰老進(jìn)程[63]。外源施用H2O2可通過(guò)降低抗氧化酶活性和內(nèi)源性抗氧化物質(zhì)積累來(lái)降低細(xì)胞清除ROS的能力,增加O2?的產(chǎn)生,從而進(jìn)一步加速細(xì)胞膜不飽和脂肪酸降解和脂質(zhì)過(guò)氧化,對(duì)采后龍眼果實(shí)的品質(zhì)產(chǎn)生不良影響[64]。2,4-二硝基苯酚處理可誘導(dǎo)采后龍眼果實(shí)中ROS積累、脂氧化酶活性增加和膜脂的不飽和脂肪酸降解,進(jìn)而導(dǎo)致細(xì)胞膜結(jié)構(gòu)完整性和細(xì)胞區(qū)室化消失,多酚氧化酶和/或過(guò)氧化物酶與酚類底物接觸形成棕色聚合物,從而加速果皮褐變[44]。此外,外源性施用ROS清除劑沒(méi)食子酸丙酯可提高細(xì)胞清除ROS的能力,從而降低ROS的產(chǎn)生,延緩脂質(zhì)過(guò)氧化和細(xì)胞膜通透性的增加,更好地維持細(xì)胞膜結(jié)構(gòu)的完整性,從而抑制采后龍眼果實(shí)果皮褐變的發(fā)生[65]。

3.5 活性氧對(duì)采后果蔬生理品質(zhì)的調(diào)控

ROS代謝對(duì)于采后果蔬的褐變、冷害以及組織抗病性具有重要影響。RUENROENGKLIN等[66]指出,荔枝果實(shí)果皮褐變與H2O2和·OH含量的快速增加密切相關(guān)。細(xì)胞膜是冷害發(fā)生的主要部位,細(xì)胞膜脂質(zhì)不飽和度的降低會(huì)加速采后果實(shí)低溫貯藏期間冷害的發(fā)生[67]。茉莉酸甲酯處理可通過(guò)降低細(xì)胞膜不飽和/飽和脂肪酸比例來(lái)減輕枇杷果實(shí)冷害的發(fā)- 展[68]。此外,細(xì)胞抗氧化性的提高被指出也可減輕采后果實(shí)冷害的發(fā)生。抗氧化酶活性的提高可減少青 椒[69]和番茄[70]等果實(shí)低溫貯藏期間冷害的發(fā)生。采后果蔬病害的發(fā)生也與細(xì)胞ROS水平密切相關(guān),過(guò)量ROS積累產(chǎn)生的強(qiáng)烈氧化脅迫會(huì)造成果蔬組織和拮抗菌細(xì)胞內(nèi)氧化還原狀態(tài)失衡,蛋白質(zhì)和核酸等生物分子變性,拮抗菌的拮抗能力降低,從而提高果蔬采后病害的發(fā)生率;由于低水平的ROS可作為第二信使誘導(dǎo)宿主細(xì)胞抗病性的提高,抑制病原菌的侵染,從而降低果蔬采后病害發(fā)生率[71]。0.1 mol/L硅酸鈉處理可通過(guò)誘導(dǎo)H2O2和O2-等ROS的積累來(lái)引發(fā)采后甜瓜對(duì)玫瑰單端孢霉產(chǎn)生防御和應(yīng)激反應(yīng),從而降低病害的發(fā)生[72]。由此可見(jiàn),應(yīng)用低濃度ROS提高果蔬抗病性有望成為降低果蔬采后病害發(fā)生率的有效技術(shù)[73]。

4 結(jié)語(yǔ)

采后果蔬的呼吸代謝、能量代謝和活性氧代謝與品質(zhì)劣變密切相關(guān)。呼吸代謝在為采后果蔬的生理代謝提供能量的同時(shí),會(huì)產(chǎn)生ROS對(duì)細(xì)胞造成氧化損傷,從而加速品質(zhì)劣變。細(xì)胞能量虧缺會(huì)促進(jìn)呼吸代謝來(lái)為機(jī)體提供能量,同時(shí)也會(huì)加速ROS的產(chǎn)生,對(duì)機(jī)體造成氧化損傷,進(jìn)一步加速采后果蔬貯藏期間褐變、冷害和病原菌侵染的發(fā)生。ROS在采后生理代謝中表現(xiàn)出兩方面的作用,適度的ROS積累可作為信號(hào)分子激活抗氧化防御系統(tǒng),從而維持細(xì)胞ROS穩(wěn)態(tài)和減少細(xì)胞氧化損傷,而ROS的過(guò)量積累會(huì)加速細(xì)胞膜的氧化損傷,導(dǎo)致線粒體結(jié)構(gòu)和功能障礙,進(jìn)一步影響細(xì)胞的呼吸和能量代謝。由此可見(jiàn),植物組織的呼吸代謝、能量代謝和活性氧代謝共同構(gòu)成了一個(gè)復(fù)雜的生理代謝網(wǎng)絡(luò),相互影響共同調(diào)控采后果蔬的生理品質(zhì)。應(yīng)用合適的貯藏保鮮技術(shù)將采后果蔬的生理代謝活動(dòng)調(diào)控在合適水平是提高果蔬貯藏保鮮效果的關(guān)鍵。

[1] 王志偉. 果蔬加工技術(shù)現(xiàn)狀與發(fā)展探討[J]. 現(xiàn)代農(nóng)業(yè)研究, 2021, 27(6): 135-136.

WANG Zhi-wei. Present Situation and Development of Fruit and Vegetable Processing Technology[J]. Modern Agriculture Research, 2021, 27(6): 135-136.

[2] LI Ling, KITAZAWA H, WANG Xiang-you, et al. Regulation of Respiratory Pathway and Electron Transport Chain in Relation to Senescence of Postharvest White Mushroom (Agaricus Bisporus) under High O2/CO2Controlled Atmospheres[J]. Journal of Agricultural and Food Chemistry, 2017, 65(16): 3351-3359.

[3] TAN Xiao-li, FAN Zhong-qi, ZENG Ze-xiang, et al. Exogenous Melatonin Maintains Leaf Quality of Postharvest Chinese Flowering Cabbage by Modulating Respiratory Metabolism and Energy Status[J]. Postharvest Biology and Technology, 2021, 177: 111524.

[4] LI Ling, KITAZAWA H, ZHANG Rong-fei, et al. New Insights into the Chilling Injury of Postharvest White Mushroom (Agaricus Bisporus) Related to Mitochondria and Electron Transport Pathway under High O2/CO2Controlled Atmospheres[J]. Postharvest Biology and Technology, 2019, 152: 45-53.

[5] LI Ling, LV Feng-yan, GUO Yan-yin, et al. Respiratory Pathway Metabolism and Energy Metabolism Associated with Senescence in Postharvest Broccoli (Brassica Oleracea L. Var. Italica) Florets in Response to O2/CO2Controlled Atmospheres[J]. Postharvest Biology and Technology, 2016, 111: 330-336.

[6] SLASKI J J, ZHANG Gui-chang, BASU U, et al. Aluminum Resistance in Wheat (Triticum Aestivum) is Associated with Rapid, Al-Induced Changes in Activities of Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase in Root Apices[J]. Physiologia Plantarum, 1996, 98(3): 477-484.

[7] KONG Qing-jun, QI Jian-rui, AN Pei-pei, et al. Melaleuca Alternifolia Oil can Delay Nutrient Damage of Grapes Caused by Aspergillus Ochraceus through Regulation of Key Genes and Metabolites in Metabolic Pathways[J]. Postharvest Biology and Technology, 2020, 164: 111152.

[8] LI Dong, LI Li, XIAO Gong-nian, et al. Effects of Elevated CO2on Energy Metabolism and Γ-Aminobutyric Acid Shunt Pathway in Postharvest Strawberry Fruit[J]. Food Chemistry, 2018, 265: 281-289.

[9] FEYGENBERG O, HERSHKOVITZ V, BEN-ARIE R, et al. Postharvest Use of Organic Coating for Maintaining bio-Organic Avocado and Mango Quality[J]. Acta Horticulturae, 2005(682): 507-512.

[10] LIN Yi-fen, LIN Yi-xiong, LIN He-tong, et al. Application of Propyl Gallate Alleviates Pericarp Browning in Harvested Longan Fruit by Modulating Metabolisms of Respiration and Energy[J]. Food Chemistry, 2018, 240: 863-869.

[11] LIN Yi-xiong, LIN He-tong, CHEN Yi-hui, et al. The Role of ROS-Induced Change of Respiratory Metabolism in Pulp Breakdown Development of Longan Fruit during Storage[J]. Food Chemistry, 2020, 305: 125439.

[12] WANG Jia, RAJAKULENDRAN N, AMIRSADEGHI S, et al. Impact of Mitochondrial Alternative Oxidase Expression on the Response of Nicotiana Tabacum to Cold Temperature[J]. Physiologia Plantarum, 2011, 142(4): 339-351.

[13] WU Yuan-yue, HU Qiu-hui, LI Zhi-xiao, et al. Effect of Nanocomposite-Based Packaging on Microstructure and Energy Metabolism of Agaricus Bisporus[J]. Food Chemistry, 2019, 276: 790-796.

[14] SAQUET A A, STREIF J, BANGERTH F. Energy Metabolism and Membrane Lipid Alterations in Relation to Brown Heart Development in ‘Conference’ Pears during Delayed Controlled Atmosphere Storage[J]. Postharvest Biology and Technology, 2003, 30(2): 123-132.

[15] VANLERBERGHE G C. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants[J]. International Journal of Molecular Sciences, 2013, 14(4): 6805-6847.

[16] MOLLER I M. Plant Mitochondria and Oxidative Stress: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 561-591.

[17] CHEN Yi-hui, SUN Jun-zheng, LIN He-tong, et al. Salicylic Acid Reduces the Incidence of Phomopsis Longanae Chi Infection in Harvested Longan Fruit by Affecting the Energy Status and Respiratory Metabolism[J]. Postharvest Biology and Technology, 2020, 160: 111035.

[18] KRUGER N J, VON SCHAEWEN A. The Oxidative Pentose Phosphate Pathway: Structure and Organisation[J]. Current Opinion in Plant Biology, 2003, 6(3): 236-246.

[19] WU Zhang-fei, TU Ming-mei, YANG Xing-ping, et al. Effect of Cutting on the Reactive Oxygen Species Accumulation and Energy Change in Postharvest Melon Fruit during Storage[J]. Scientia Horticulturae, 2019, 257: 108752.

[20] WANG Yan-sheng, LUO Zi-sheng, KHAN Z U, et al. Effect of Nitric Oxide on Energy Metabolism in Postharvest Banana Fruit in Response to Chilling Stress[J]. Postharvest Biology and Technology, 2015, 108: 21-27.

[21] 郭芹, 李慶鵬, 靳婧, 等. 交替氧化酶在果蔬抗氰呼吸途徑的調(diào)控機(jī)制[J]. 生物技術(shù)進(jìn)展, 2013, 3(6): 412-415.

GUO Qin, LI Qing-peng, JIN Jing, et al. Regulation Mechanism of Alternative Oxidase in Cyanide-Resistant Respiration Pathway of Fruits and Vegetables[J]. Current Biotechnology, 2013, 3(6): 412-415.

[22] GUO Qin, LV Xin, XU Fei, et al. Chlorine Dioxide Treatment Decreases Respiration and Ethylene Synthesis in Fresh-Cut 'Hami' Melon Fruit[J]. International Journal of Food Science & Technology, 2013, 48(9): 1775-1782.

[23] 董文麗, 鞏雪, 侯理達(dá), 等. 殼聚糖/檸檬酸復(fù)合涂膜對(duì)胡蘿卜的保鮮效果[J]. 包裝工程, 2021, 42(9): 72-78.

DONG Wen-li, GONG Xue, HOU Li-da, et al. Effects of Chitosan and Citric Acid Composite Film on Preservation of Carrot[J]. Packaging Engineering, 2021, 42(9): 72-78.

[24] ZHOU Qian, ZHANG Chun-lei, CHENG Shun-chang, et al. Changes in Energy Metabolism Accompanying Pitting in Blueberries Stored at Low Temperature[J]. Food Chemistry, 2014, 164: 493-501.

[25] RAWYLER A, ARPAGAUS S, BRAENDLE R. Impact of Oxygen Stress and Energy Availability on Membrane Stability of Plant Cells[J]. Annals of Botany, 2002, 90(4): 499-507.

[26] JIANG Y, JIANG Y, QU H, et al. Energy Aspects in Ripening and Senescence of Harvested Horticultural Crops[J]. Stewart Postharvest Review, 2007, 3(2): 1-5.

[27] WANG Wen-gong, YANG Xiao-ling, LóPEZ DE SILANES I, et al. Increased AMP: ATP Ratio and AMP-Activated Protein Kinase Activity during Cellular Senescence Linked to Reduced HuR Function[J]. Journal of Biological Chemistry, 2003, 278(29): 27016-27023.

[28] MALDONADO E N, LEMASTERS J J. ATP/ADP Ratio, the Missed Connection between Mitochondria and the Warburg Effect[J]. Mitochondrion, 2014, 19: 78-84.

[29] SAQUET A A, STREIF J, BANGERTH F. Changes in ATP, ADP and Pyridine Nucleotide Levels Related to the Incidence of Physiological Disorders in 'Conference' Pears and 'Jonagold' Apples during Controlled Atmosphere Storage[J]. The Journal of Horticultural Science and Biotechnology, 2000, 75(2): 243-249.

[30] GEIGENBERGER P, RIEWE D, FERNIE A R. The Central Regulation of Plant Physiology by Adenylates[J]. Trends in Plant Science, 2010, 15(2): 98-105.

[31] SHU Chang, ZHANG Wan-li, ZHAO Han-dong, et al. Chlorogenic Acid Treatment Alleviates the Adverse Physiological Responses of Vibration Injury in Apple Fruit through the Regulation of Energy Metabolism[J]. Postharvest Biology and Technology, 2020, 159: 110997.

[32] PARTRIDGE R S, MONROE S M, PARKS J K, et al. Spin Trapping of Azidyl and Hydroxyl Radicals in Azide-Inhibited Rat Brain Submitochondrial Particles[J]. Archives of Biochemistry and Biophysics, 1994, 310(1): 210-217.

[33] LI Xiao-an, LONG Qing-hong, GAO Fan, et al. Effect of Cutting Styles on Quality and Antioxidant Activity in Fresh-Cut Pitaya Fruit[J]. Postharvest Biology and Technology, 2017, 124: 1-7.

[34] SONG C J, STEINEBRUNNER I, WANG Xuan-zhi, et al. Extracellular ATP Induces the Accumulation of Superoxide via NADPH Oxidases in Arabidopsis[J]. Plant Physiology, 2006, 140(4): 1222-1232.

[35] CHEN Bing-xia, YANG Hu-qing. 6-Benzylaminopurine Alleviates Chilling Injury of Postharvest Cucumber Fruit through Modulating Antioxidant System and Energy Status[J]. Journal of the Science of Food and Agriculture, 2013, 93(8): 1915-1921.

[36] PRADET A, RAYMOND P. Adenine Nucleotide Ratios and Adenylate Energy Charge in Energy Metabolism[J]. Annual Review of Plant Physiology, 1983, 34: 199-224.

[37] 張群, 周文化, 譚歡, 等. 葡萄果實(shí)采后自溶軟化與細(xì)胞膜完整性及線粒體內(nèi)能量代謝的關(guān)系[J]. 現(xiàn)代食品科技, 2016, 32(12): 45-54.

ZHANG Qun, ZHOU Wen-hua, TAN Huan, et al. Changes in Cell Membrane Integrity and Mitochondrial Energy Metabolism of Postharvest Grape Fruits during Aril Breakdown[J]. Modern Food Science and Technology, 2016, 32(12): 45-54.

[38] YI C, QU H X, JIANG Y M, et al. ATP-Induced Changes in Energy Status and Membrane Integrity of Harvested Litchi Fruit and Its Relation to Pathogen Resistance[J]. Journal of Phytopathology, 2008, 156(6): 365-371.

[39] HUANG Hua, GUO Li-fang, WANG Ling, et al. 1-Methylcyclopropene (1-MCP) Slows Ripening of Kiwifruit and Affects Energy Status, Membrane Fatty Acid Contents and Cell Membrane Integrity[J]. Postharvest Biology and Technology, 2019, 156: 110941.

[40] YI Chun, JIANG Yue-ming, SHI J, et al. ATP-Regulation of Antioxidant Properties and Phenolics in Litchi Fruit during Browning and Pathogen Infection Process[J]. Food Chemistry, 2010, 118(1): 42-47.

[41] LIN Yi-fen, CHEN Meng-yin, LIN He-tong, et al. Phomopsis Longanae-Induced Pericarp Browning and Disease Development of Longan Fruit can Be Alleviated or Aggravated by Regulation of ATP-Mediated Membrane Lipid Metabolism[J]. Food Chemistry, 2018, 269: 644-651.

[42] 王志華, 賈朝爽, 王文輝, 等. 低溫貯藏對(duì)‘金紅’蘋(píng)果能量代謝和品質(zhì)的影響[J]. 園藝學(xué)報(bào), 2020, 47(12): 2277-2289.

WANG Zhi-hua, JIA Chao-shuang, WANG Wen-hui, et al. Effects of Low Temperature Storage on Energy Metabolism, Related Physiology and Quality in 'Jinhong' Apple Fruit[J]. Acta Horticulturae Sinica, 2020, 47(12): 2277-2289.

[43] 藺凱麗, 黃琦, 黃琦輝, 等. 麥角硫因抑制雙孢蘑菇褐變及其與能量代謝關(guān)系[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(8): 1568-1576.

LIN Kai-li, HUANG Qi, HUANG Qi-hui, et al. Browning Inhibition and Energy Metabolism Mechanism of Agaricus Bisporus by Ergothioneine Treatment[J]. Scientia Agricultura Sinica, 2018, 51(8): 1568-1576.

[44] 陳藝暉, 林河通, 林藝芬, 等. 擬莖點(diǎn)霉侵染對(duì)采后龍眼果皮LOX活性和膜脂脂肪酸組分的影響[J]. 熱帶亞熱帶植物學(xué)報(bào), 2011, 19(3): 260-266.

CHEN Yi-hui, LIN He-tong, LIN Yi-fen, et al. Effects of Phomopsis Longanae Chi Infection on Lipoxygenase Activity and Fatty Acid Constituents of Membrane Lipids in Pericarp of Harvested Longan Fruits[J]. Journal of Tropical and Subtropical Botany, 2011, 19(3): 260-266.

[45] WANG Jing, CAO Shi-feng, WANG Lei, et al. Effect of Β-Aminobutyric Acid on Disease Resistance Against Rhizopus Rot in Harvested Peaches[J]. Frontiers in Microbiology, 2018, 9: 1505.

[46] CAO Shi-feng, CAI Yu-ting, YANG Zhen-feng, et al. Effect of MeJA Treatment on Polyamine, Energy Status and Anthracnose Rot of Loquat Fruit[J]. Food Chemistry, 2014, 145: 86-89.

[47] JIN Peng, ZHU Hong, WANG Lei, et al. Oxalic Acid Alleviates Chilling Injury in Peach Fruit by Regulating Energy Metabolism and Fatty Acid Contents[J]. Food Chemistry, 2014, 161: 87-93.

[48] JIAN Ling-cheng, LI Ji-hong, CHEN Wen-ping, et al. Cytochemical Localization of Calcium and Ca2+-ATPase Activity in Plant Cells under Chilling Stress: A Comparative Study between the Chilling-Sensitive Maize and the Chilling-Insensitive Winter Wheat[J]. Plant and Cell Physiology, 1999, 40(10): 1061-1071.

[49] 張苗, 姜玉, 湯靜, 等. 冷激結(jié)合甜菜堿處理對(duì)西葫蘆冷害及能量代謝的影響[J]. 食品科學(xué), 2020, 41(7): 184-190.

ZHANG Miao, JIANG Yu, TANG Jing, et al. Effects of Cold Shock Combined with Glycine Betaine Treatment on Chilling Injury and Energy Metabolism of Zucchini[J]. Food Science, 2020, 41(7): 184-190.

[50] 趙穎穎, 陳京京, 金鵬, 等. 低溫預(yù)貯對(duì)冷藏桃果實(shí)冷害及能量水平的影響[J]. 食品科學(xué), 2012, 33(4): 276-281.

ZHAO Ying-ying, CHEN Jing-jing, JIN Peng, et al. Effect of Low Temperature Conditioning on Chilling Injury and Energy Status in Cold-Stored Peach Fruit[J]. Food Science, 2012, 33(4): 276-281.

[51] SPYCHALLA J P, DESBOROUGH S L. Superoxide Dismutase, Catalase, and Alpha-Tocopherol Content of Stored Potato Tubers[J]. Plant Physiology, 1990, 94(3): 1214-1218.

[52] DESIKAN R, REYNOLDS A, HANCOCK J T, et al. Harpin and Hydrogen Peroxide both Initiate Programmed Cell Death but Have Differential Effects on Defence Gene Expression in Arabidopsis Suspension Cultures[J]. The Biochemical Journal, 1998, 330(Pt 1): 115-120.

[53] 孫志棟, 李共國(guó), 王利平, 等. 采前噴施LAE提高藍(lán)莓冷藏品質(zhì)及其通徑分析[J]. 包裝工程, 2021, 42(7): 28-34.

SUN Zhi-dong, LI Gong-guo, WANG Li-ping, et al. Path Analysis of Improving Cold Storage Quality of Blueberry by Preharvest Spraying LAE[J]. Packaging Engineering, 2021, 42(7): 28-34.

[54] 柯德森, 王愛(ài)國(guó), 羅廣華. 成熟香蕉果實(shí)活性氧與乙烯形成酶活性的關(guān)系[J]. 植物生理學(xué)報(bào), 1998, 24(4): 313-319.

KE De-sen, WANG Ai-guo, LUO Guang-hua. The Relationship between Active Oxygen and the Activity of Ethylene-Forming Enzyme in Ripening Banana Fruit[J]. Acta Photophysiologica Sinica, 1998, 24(4): 313-319.

[55] WANG Di, LI Wen-xuan, LI Dong, et al. Effect of High Carbon Dioxide Treatment on Reactive Oxygen Species Accumulation and Antioxidant Capacity in Fresh-Cut Pear Fruit during Storage[J]. Scientia Horticulturae, 2021, 281: 109925.

[56] HüCKELHOVEN R, KOGEL K H. Reactive Oxygen Intermediates in Plant-Microbe Interactions: Who is who in Powdery Mildew Resistance? [J]. Planta, 2003, 216(6): 891-902.

[57] 王懿, 侯媛媛, 馬鈺晴, 等. 甘氨酸甜菜堿處理對(duì)桃果實(shí)冷害及抗壞血酸-谷胱甘肽循環(huán)代謝的影響[J]. 食品科學(xué), 2021, 42(13): 158-165.

WANG Yi, HOU Yuan-yuan, MA Yu-qing, et al. Effect of Glycine Betaine Treatment on Chilling Injury and Ascorbic Acid-Glutathione Cycle Metabolism in Peach Fruit[J]. Food Science, 2021, 42(13): 158-165.

[58] GAO Hai-yan, TAO Fei, SONG Li-li, et al. Effects of Short-Term N2treatment on Quality and Antioxidant Ability of Loquat Fruit during Cold Storage[J]. Journal of the Science of Food and Agriculture, 2009, 89(7): 1159-1163.

[59] SRINIVASAN S, AVADHANI N G. Cytochrome c Oxidase Dysfunction in Oxidative Stress[J]. Free Radical Biology and Medicine, 2012, 53(6): 1252-1263.

[60] ZHAO Yan-nan, YU Hong, ZHOU Jian-min, et al. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS[J]. Trends in Plant Science, 2020, 25(5): 446-454.

[61] KAN Juan, WANG Hong-mei, JIN Chang-hai. Changes of Reactive Oxygen Species and Related Enzymes in Mitochondrial Respiration during Storage of Harvested Peach Fruits[J]. Agricultural Sciences in China, 2011, 10(1): 149-158.

[62] INZé D, MONTAGU M V. Oxidative Stress in Plants[J]. Current Opinion in Biotechnology, 1995, 6(2): 153-158.

[63] PUKACKA S, RATAJCZAK E. Production and Scavenging of Reactive Oxygen Species in Fagus Sylvatica Seeds during Storage at Varied Temperature and Humidity[J]. Journal of Plant Physiology, 2005, 162(8): 873-885.

[64] LIN Yi-fen, LIN He-tong, ZHANG Shen, et al. The Role of Active Oxygen Metabolism in Hydrogen Peroxide-Induced Pericarp Browning of Harvested Longan Fruit[J]. Postharvest Biology and Technology, 2014, 96: 42-48.

[65] LIN Yi-fen, LIN Yi-xiong, LIN He-tong, et al. Inhibitory Effects of Propyl Gallate on Browning and Its Relationship to Active Oxygen Metabolism in Pericarp of Harvested Longan Fruit[J]. LWT - Food Science and Technology, 2015, 60(2): 1122-1128.

[66] RUENROENGKLIN N, YANG Bao, LIN He-tong, et al. Degradation of Anthocyanin from Litchi Fruit Pericarp by H2O2and Hydroxyl Radical[J]. Food Chemistry, 2009, 116(4): 995-998.

[67] MARANGONI A G, PALMA T, STANLEY D W. Membrane Effects in Postharvest Physiology[J]. Postharvest Biology and Technology, 1996, 7(3): 193-217.

[68] CAO Shi-feng, ZHENG Yong-hua, WANG Kai-tuo, et al. Methyl Jasmonate Reduces Chilling Injury and Enhances Antioxidant Enzyme Activity in Postharvest Loquat Fruit[J]. Food Chemistry, 2009, 115(4): 1458-1463.

[69] 張萌, 曹婷婷, 程紫薇, 等. 高濕貯藏對(duì)青椒果實(shí)冷害和抗氧化活性的影響[J]. 食品科學(xué), 2021, 42(3): 243-250.

ZHANG Meng, CAO Ting-ting, CHENG Zi-wei, et al. Effect of High Relative Humidity Storage on Chilling Injury and Antioxidant Activity of Green Pepper Fruits[J]. Food Science, 2021, 42(3): 243-250.

[70] 喬勇進(jìn), 王夢(mèng)晗, 王凱晨, 等. 酵母多糖處理提高櫻桃番茄抗冷性的機(jī)制分析[J]. 食品科學(xué), 2016, 37(10): 240-245.

QIAO Yong-jin, WANG Meng-han, WANG Kai-chen, et al. Mechanism Underlying the Improvement of Cold Resistance in Cherry Tomato Treated with Yeast Saccharide[J]. Food Science, 2016, 37(10): 240-245.

[71] CHEN Z, RICIGLIANO J W, KLESSIG D F. Purification and Characterization of a Soluble Salicylic Acid-Binding Protein from Tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(20): 9533-9537.

[72] LYU Liang, BI Yang, LI Shen-ge, et al. Sodium Silicate Prime Defense Responses in Harvested Muskmelon by Regulating Mitochondrial Energy Metabolism and Reactive Oxygen Species Production[J]. Food Chemistry, 2019, 289: 369-376.

[73] WANG Yi-fei, WANG Peng, XIA Jin-dan, et al. Effect of Water Activity on Stress Tolerance and Biocontrol Activity in Antagonistic Yeast Rhodosporidium Paludigenum[J]. International Journal of Food Microbiology, 2010, 143(3): 103-108.

Advances in Physiological Metabolism Changes and Regulation Mechanism of Harvested Fruits and Vegetables

TANG Jian-xin, WANG Jia-li, YING Li-mei, ZHANG Yun-he, SUN Bing-xin

(College of Food Science, Shenyang Agricultural University, Shenyang 110866, China)

The work aims to discuss the relationship respectively between the respiratory metabolism, energy metabolism and reactive oxygen species metabolism and quality deterioration of harvested fruits and vegetables, in order to provide theoretical support and guidance for the application of harvested fruits and vegetables preservation technology. The changes and mutual regulation mechanisms of three physiological metabolisms during postharvest storage were summarized, and the relationship with quality deterioration was reviewed. The quality deterioration of harvested fruits and vegetables was closely related to respiratory metabolism, energy metabolism and reactive oxygen species metabolism. Postharvest treatments or preservation technologies reduced browning, nutrient loss, softening, pathogen infection, and cold injure by regulating the metabolism of fruits and vegetables. Respiratory metabolism, energy metabolism and reactive oxygen species metabolism form a complex physiological metabolic network and interact with each other to regulate the physiological metabolism of fruits and vegetables and further affect the physiological quality.

fruits and vegetables preservation; respiratory metabolism; energy metabolism; reactive oxygen species metabolism; quality deterioration

TS255.3

A

1001-3563(2022)05-0091-09

10.19554/j.cnki.1001-3563.2022.05.013

2021-07-31

遼寧省科技廳揭榜掛帥科技攻關(guān)專項(xiàng)(2021JH1/10400035);遼寧省教育廳課題(LSNQN202009)

唐建新(1995—),女,沈陽(yáng)農(nóng)業(yè)大學(xué)碩士生,主攻食用菌保鮮技術(shù)。

孫炳新(1981—),男,博士,沈陽(yáng)農(nóng)業(yè)大學(xué)副教授,主要研究方向?yàn)槭称钒b與農(nóng)產(chǎn)品貯藏保鮮。

猜你喜歡
活性氧細(xì)胞膜果蔬
奇思妙想的果蔬們
童話世界(2019年26期)2019-09-24 10:57:56
清洗果蔬農(nóng)殘 你做對(duì)了嗎
啟蒙(3-7歲)(2018年8期)2018-08-13 09:31:14
這些果蔬能保護(hù)呼吸道
果蔬大作戰(zhàn)
童話世界(2016年8期)2016-06-02 09:21:05
TLR3活化對(duì)正常人表皮黑素細(xì)胞內(nèi)活性氧簇表達(dá)的影響
皮膚磨削術(shù)聯(lián)合表皮細(xì)胞膜片治療穩(wěn)定期白癜風(fēng)療效觀察
宮永寬:給生物醫(yī)用材料穿上仿細(xì)胞膜外衣
香芹酚對(duì)大腸桿菌和金黃色葡萄球菌細(xì)胞膜的影響
硅酸鈉處理對(duì)杏果實(shí)活性氧和苯丙烷代謝的影響
O2聯(lián)合CO2氣調(diào)對(duì)西蘭花活性氧代謝及保鮮效果的影響
昌图县| 儋州市| 阳高县| 北票市| 东山县| 普兰店市| 涟水县| 申扎县| 敖汉旗| 宜宾市| 宁夏| 黑河市| 洛隆县| 沙田区| 大兴区| 中阳县| 中西区| 凯里市| 蕉岭县| 文登市| 信宜市| 宣恩县| 东阿县| 武冈市| 贞丰县| 金溪县| 平泉县| 武清区| 深圳市| 手游| 绵竹市| 奉贤区| 巩义市| 贡觉县| 灯塔市| 稻城县| 海淀区| 淮安市| 灵寿县| 南投县| 都匀市|