国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氮肥減量施用對(duì)我國(guó)三大糧食作物產(chǎn)量的影響

2022-02-02 03:13:06杜文婷雷肖肖盧慧宇王云鳳徐佳星羅彩霞張樹蘭
關(guān)鍵詞:施氮氮量氮肥

杜文婷,雷肖肖,盧慧宇,王云鳳,徐佳星,羅彩霞,張樹蘭

氮肥減量施用對(duì)我國(guó)三大糧食作物產(chǎn)量的影響

杜文婷,雷肖肖,盧慧宇,王云鳳,徐佳星,羅彩霞,張樹蘭

西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院/農(nóng)業(yè)農(nóng)村部西北植物營(yíng)養(yǎng)與環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100

探討氮肥減施對(duì)我國(guó)三大糧食作物產(chǎn)量的影響及其與土壤性質(zhì)和管理措施的關(guān)系,明確氮肥減施的可行性。收集2010—2021年公開發(fā)表的90篇論文,按照氮肥減施的比例、種植體系及其在不同條件下(肥料類型、土壤有機(jī)質(zhì)含量、全氮含量、土壤酸堿度以及水分管理等)的作物產(chǎn)量效應(yīng)進(jìn)行分析。在常規(guī)施肥的基礎(chǔ)上,氮肥減施0—40%沒有顯著降低水稻產(chǎn)量,氮肥減施0—30%沒有顯著影響小麥和玉米產(chǎn)量,但是減氮30%—40%顯著降低了小麥和玉米產(chǎn)量,減產(chǎn)分別為6.1%和5.4%。不施氮肥區(qū)產(chǎn)量水平?jīng)]有顯著影響3種作物氮肥減施的產(chǎn)量效應(yīng)。土壤全氮含量>2 g·kg-1時(shí),氮肥減施水稻產(chǎn)量(6.5 t·hm-2)顯著高于常規(guī)施氮產(chǎn)量(6.3 t·hm-2);土壤全氮含量>1 g·kg-1時(shí),氮肥減施小麥產(chǎn)量(6.9 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(7.4 t·hm-2);土壤全氮含量>1.5 g·kg-1時(shí),氮肥減施玉米產(chǎn)量(8.8 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(9.1 t·hm-2)。土壤有機(jī)質(zhì)含量>30 g·kg-1時(shí),氮肥減施的水稻產(chǎn)量(6.9 t·hm-2)顯著高于常規(guī)施氮產(chǎn)量(6.7 t·hm-2);在土壤有機(jī)質(zhì)含量為10—20 g·kg-1以及>20 g·kg-1時(shí),氮肥減施小麥產(chǎn)量(6.6 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(6.9 t·hm-2);一年兩熟制氮肥減施玉米產(chǎn)量(8.9 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(9.1 t·hm-2)。在普通肥料的基礎(chǔ)上,氮肥減施小麥產(chǎn)量(6.8 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(7.1 t·hm-2)。在旱作條件下,氮肥減施的小麥產(chǎn)量(5.9 t·hm-2)顯著低于常規(guī)施氮產(chǎn)量(6.6 t·hm-2)。在常規(guī)施氮量的基礎(chǔ)上減少30%氮肥施用量可以維持我國(guó)三大作物的產(chǎn)量;不同的土壤性質(zhì)和管理措施,減氮后作物的產(chǎn)量存在一定的變異性。因此,氮肥減施需要根據(jù)土壤肥力狀況的管理措施進(jìn)行調(diào)整,從而實(shí)現(xiàn)高產(chǎn)高效。

小麥;玉米;水稻;減氮施肥;管理措施;土壤性質(zhì)

0 引言

【研究意義】水稻、小麥和玉米是我國(guó)三大糧食作物,種植面積達(dá)9 785 萬hm2,約占糧食作物總種植面積的84%,其總產(chǎn)量約占糧食總產(chǎn)量的92%[1],三大作物高產(chǎn)穩(wěn)產(chǎn)對(duì)保證國(guó)家糧食安全具有重大意義。氮素是植物生長(zhǎng)必不可少的元素,由于多數(shù)土壤中的氮素難以滿足作物生長(zhǎng)所需[2],因此氮肥的施用是保障作物高產(chǎn)的常規(guī)措施。目前農(nóng)民普遍施用大量肥料來保證高產(chǎn)[3],所以過量施肥的現(xiàn)象很嚴(yán)重。如太湖地區(qū)水稻平均施氮量為303 kg×hm-2,有74%的農(nóng)戶過量施用氮肥[4];汾渭平原農(nóng)戶小麥平均施氮量為272.6 kg×hm-2,過量施肥的比例達(dá)到64%[5];陜西關(guān)中平原農(nóng)戶玉米施氮量為288 kg×hm-2,施氮量偏高和很高比例達(dá)78%[6]。氮肥的過量施用導(dǎo)致土壤中硝態(tài)氮的積累,在降雨和灌溉充足的條件下,土壤中的硝酸鹽向下淋洗污染地下水[7],同時(shí)部分氮素以NH3+、NXO等形式排放到環(huán)境中,導(dǎo)致環(huán)境中的N2O排放量增加了20%[8-9],加劇溫室效應(yīng)、酸雨、臭氧層空洞等環(huán)境問題。2015年農(nóng)業(yè)部制定了《到2020年化肥使用量零增長(zhǎng)行動(dòng)方案》,為推動(dòng)化肥零增長(zhǎng),由科技部和農(nóng)業(yè)部啟動(dòng)了國(guó)家十三五計(jì)劃農(nóng)業(yè)項(xiàng)目“化學(xué)肥料減施增效綜合技術(shù)研發(fā)”專項(xiàng)。因此,十分必要評(píng)估氮肥減施對(duì)三大糧食作物產(chǎn)量的影響,明確合理的減氮水平對(duì)于保證糧食安全和生態(tài)安全具有重要意義?!厩叭搜芯窟M(jìn)展】前人針對(duì)氮肥減施對(duì)作物產(chǎn)量的影響開展了大量研究,如XUE等[10]報(bào)道在常規(guī)施氮基礎(chǔ)上減少約24%的氮肥使用量,沒有降低小麥和水稻的籽粒產(chǎn)量;LIU等[11]研究發(fā)現(xiàn)陜西省小麥-玉米輪作體系中施氮量為120、240 kg·hm-2的產(chǎn)量無顯著差異。此外,土壤肥力和田間管理措施也會(huì)影響氮肥減施產(chǎn)量效應(yīng)。如王道中等[12]報(bào)道在中高肥力的土壤上,施氮量減少40%時(shí)水稻產(chǎn)量會(huì)顯著降低;而在中低肥力的土壤上,施氮量減少20%—40%均會(huì)顯著減少水稻的產(chǎn)量。尹彩俠等[13]研究表明,相較于常規(guī)施肥量,控釋氮肥減施25%和40%均不會(huì)顯著影響春玉米產(chǎn)量。DING等[14]通過整合中國(guó)緩/控釋肥減施的試驗(yàn)數(shù)據(jù),發(fā)現(xiàn)緩/控釋氮肥減施32%左右能維持水稻產(chǎn)量?!颈狙芯壳腥朦c(diǎn)】盡管許多研究基于田間試驗(yàn)已經(jīng)分析了氮肥減施對(duì)三大糧食作物產(chǎn)量的影響,目前還缺乏國(guó)家尺度氮肥減施對(duì)三大糧食作物產(chǎn)量效應(yīng)的一個(gè)綜合分析。因此,本研究收集了我國(guó)近10年氮肥減量的田間試驗(yàn)數(shù)據(jù),系統(tǒng)分析氮肥減施對(duì)我國(guó)三大糧食作物產(chǎn)量的影響,解析不同土壤性質(zhì)以及管理措施下氮肥減施的產(chǎn)量變化原因?!緮M解決的關(guān)鍵問題】本研究綜合評(píng)價(jià)氮肥減施的產(chǎn)量效應(yīng),旨在為我國(guó)合理氮肥減施提供依據(jù)。

1 材料與方法

1.1 數(shù)據(jù)來源及獲取

通過中國(guó)知網(wǎng)(CNKI)利用關(guān)鍵詞“化肥減量”“氮肥減施”“氮肥”“產(chǎn)量”等進(jìn)行文獻(xiàn)檢索。按照以下標(biāo)準(zhǔn)對(duì)文獻(xiàn)進(jìn)行篩選:(1)試驗(yàn)地點(diǎn)位于中國(guó)大陸;(2)試驗(yàn)是室外大田試驗(yàn),不包括盆栽試驗(yàn)和溫室試驗(yàn);(3)試驗(yàn)對(duì)象是小麥、玉米或水稻;(4)試驗(yàn)必須包含常規(guī)施肥或農(nóng)戶習(xí)慣施肥處理和化肥氮減施處理,磷鉀肥與常規(guī)施肥保持一致;(5)論文中必須包含作物產(chǎn)量以及施氮量。

獲取論文中氮磷鉀化肥的施用量、試驗(yàn)地點(diǎn)、試驗(yàn)開展的時(shí)間、作物的產(chǎn)量、初始土壤有機(jī)質(zhì)含量、土壤pH、土壤全氮含量、作物的種植制度、水分管理(灌溉、旱作)以及肥料的類型。論文中的文字或者表格展示的數(shù)據(jù)信息直接獲取,圖形展示的數(shù)據(jù)通過GetData軟件獲取,最終收集90篇文獻(xiàn),其中水稻產(chǎn)量的數(shù)據(jù)共145組,小麥產(chǎn)量的數(shù)據(jù)共83組,玉米產(chǎn)量的數(shù)據(jù)共120組。試驗(yàn)地點(diǎn)分布在黑龍江、吉林、遼寧、內(nèi)蒙古、山東、北京、河北、河南、陜西、甘肅、寧夏、安徽、江蘇、浙江、上海、湖南、湖北等17個(gè)省市。

1.2 數(shù)據(jù)分類

考慮到作物的產(chǎn)量受多種因素的影響,用施用肥料類型(控釋/緩釋氮肥、普通氮肥)、土壤有機(jī)質(zhì)含量、土壤全氮含量、土壤酸堿度、是否灌溉、不施氮肥區(qū)產(chǎn)量、作物的種植制度進(jìn)行分組考量氮肥減施的產(chǎn)量效應(yīng)。具體分組信息見表1。

表1 試驗(yàn)相關(guān)數(shù)據(jù)分類

FP為常規(guī)施肥,N10、N20、N30、N40分別表示氮肥減量比例為0—10%、10%—20%、20%—30%、 30%—40%。一年兩熟是指一年收獲兩季作物,不一定是同種作物。下同

FP means conventional fertilization; N10, N20, N30, and N40 mean 0-10%, 10%-20%, 20%-30% and 30%-40% of the reduction ratio of nitrogen fertilizer over FP, respectively. Double cropping means two crops per year, but they are not necessarily the same crop. The same as below

1.3 計(jì)算方法

氮肥減施比例(%)=(常規(guī)氮肥施用量-處理的施氮量)/常規(guī)氮肥施用量×100。

1.4 統(tǒng)計(jì)分析

所有數(shù)據(jù)均采用成對(duì)樣本T 檢驗(yàn)進(jìn)行分析,顯著性為<0.05。數(shù)據(jù)采用SPSS18.0進(jìn)行統(tǒng)計(jì)分析。

2 結(jié)果

2.1 水稻、小麥和玉米的常規(guī)施氮量

我國(guó)水稻常規(guī)施氮量的范圍是135—363 kg·hm-2(圖1),平均施肥量為225 kg·hm-2。小麥常規(guī)施氮量的范圍是162—315 kg·hm-2,平均施肥量為249 kg·hm-2。玉米常規(guī)施氮量的范圍是173—400 kg·hm-2,平均施肥量為250 kg·hm-2。

2.2 氮肥減施對(duì)作物產(chǎn)量的影響

氮肥減施比例在0—10%時(shí),水稻產(chǎn)量的變化范圍是6.2—10.5 t·hm-2,平均產(chǎn)量是8.9 t·hm-2,對(duì)應(yīng)的常規(guī)施肥水稻產(chǎn)量的變化范圍是6.4—10.2 t·hm-2,平均產(chǎn)量是8.7 t·hm-2(圖2)。氮肥減施比例在10%—20%時(shí),水稻產(chǎn)量的變化范圍是3.9—12.5 t·hm-2,平均產(chǎn)量是8.5 t·hm-2,對(duì)應(yīng)的常規(guī)施肥水稻產(chǎn)量的變化范圍是3.7—12.7 t·hm-2,平均產(chǎn)量是8.5 t·hm-2。氮肥減施比例在20%—30%時(shí),水稻產(chǎn)量的變化范圍是3.9— 11.4 t·hm-2,平均產(chǎn)量是6.2 t·hm-2,對(duì)應(yīng)的常規(guī)施肥水稻產(chǎn)量的變化范圍是3.7—10.7 t·hm-2,平均產(chǎn)量是 5.9 t·hm-2。氮肥減施比例在30%—40%時(shí),水稻產(chǎn)量的變化范圍是7.6—12.1 t·hm-2,平均產(chǎn)量是9.1 t·hm-2,對(duì)應(yīng)的常規(guī)施肥水稻產(chǎn)量的變化范圍是6.4—12.5 t·hm-2,平均產(chǎn)量是9.2 t·hm-2。當(dāng)?shù)蕼p施比例為0—10%和20%—30%時(shí)較常規(guī)施肥顯著提高了水稻的產(chǎn)量,減施比例為10%—20%和30%—40%時(shí),沒有顯著影響水稻的產(chǎn)量。圖3顯示,當(dāng)考慮常規(guī)施氮水平時(shí),發(fā)現(xiàn)常規(guī)施氮量小于200 kg·hm-2時(shí),氮肥減施10%—20%時(shí)顯著提高水稻產(chǎn)量,氮肥減施在30%—40%時(shí)顯著降低水稻產(chǎn)量。而常規(guī)施氮水平在200—250 kg·hm-2時(shí),氮肥減施10%—20%情況下也顯著降低水稻產(chǎn)量,施氮量高于250 kg·hm-2,任何氮肥減施比例均未影響水稻產(chǎn)量。

最上方和最下方的線段分別表示數(shù)據(jù)的最大值和最小值,其中箱形圖的上方和下方的線段分別表示數(shù)據(jù)中25%和75%的數(shù)值,箱圖中的線段表示數(shù)據(jù)的中位數(shù),箱圖里面的圓圈表示數(shù)據(jù)的平均數(shù),實(shí)心圓點(diǎn)表示施氮量的分布。下同

氮肥減施比例在0—10%時(shí),小麥產(chǎn)量的變化范圍是2.2—9.6 t·hm-2,平均產(chǎn)量是5.9 t·hm-2,對(duì)應(yīng)的常規(guī)施肥小麥產(chǎn)量的變化范圍是2.3—9.6 t·hm-2,平均產(chǎn)量是6.0 t·hm-2(圖4)。氮肥減施比例在10%—20%時(shí),小麥產(chǎn)量的變化范圍是3.7—9.2 t·hm-2,平均產(chǎn)量是7.6 t·hm-2,對(duì)應(yīng)的常規(guī)施肥小麥產(chǎn)量的變化范圍是3.7—10.0 t·hm-2,平均產(chǎn)量是7.6 t·hm-2。氮肥減施比例在20%—30%時(shí),小麥產(chǎn)量的變化范圍是3.1—8.9 t·hm-2,平均產(chǎn)量是6.9 t·hm-2,對(duì)應(yīng)的常規(guī)施肥小麥產(chǎn)量的變化范圍是3.7—9.6 t·hm-2,平均產(chǎn)量是7.1 t·hm-2。氮肥減施比例在30%—40%時(shí),小麥產(chǎn)量的變化范圍是3.3—8.7 t·hm-2,平均產(chǎn)量是6.7 t·hm-2,對(duì)應(yīng)的常規(guī)施肥小麥產(chǎn)量的變化范圍是3.7—8.4 t·hm-2,平均產(chǎn)量是7.1 t·hm-2。當(dāng)?shù)蕼p施比例為0—30%時(shí),沒有顯著降低小麥產(chǎn)量,但當(dāng)?shù)蕼p施的比例高達(dá)30%—40%時(shí),產(chǎn)量顯著降低。在常規(guī)不同施氮水平下,發(fā)現(xiàn)在200—250 kg·hm-2用量下氮肥減施20%—30%顯著降低小麥產(chǎn)量(圖3),其他施氮水平下,氮肥減施均沒有顯著影響小麥產(chǎn)量。

n表示該處理的觀測(cè)數(shù)。下同 n mean the number of observations. The same as below

氮肥減施比例在0—10%時(shí),玉米產(chǎn)量的變化范圍是6.2—13.9 t·hm-2,平均產(chǎn)量是9.1 t·hm-2,對(duì)應(yīng)的常規(guī)施肥玉米產(chǎn)量的變化范圍是6.4—11.7 t·hm-2,平均產(chǎn)量是8.9 t·hm-2(圖5)。氮肥減施比例在10%—20%時(shí),玉米產(chǎn)量的變化范圍是6.1—13.9 t·hm-2,平均產(chǎn)量是10.0 t·hm-2,對(duì)應(yīng)的常規(guī)施肥玉米產(chǎn)量的變化范圍是5.7—13.0 t·hm-2,平均產(chǎn)量是10.1 t·hm-2。氮肥減施比例在20%—30%時(shí),玉米產(chǎn)量的變化范圍是4.1—12.8 t·hm-2,平均產(chǎn)量是9.3 t·hm-2,對(duì)應(yīng)的常規(guī)施肥玉米產(chǎn)量的變化范圍是3.4—13.0 t·hm-2,平均產(chǎn)量是9.3 t·hm-2。氮肥減施比例在30%—40%時(shí),玉米產(chǎn)量的變化范圍是7.3—12.1 t·hm-2,平均產(chǎn)量是9.7 t·hm-2,對(duì)應(yīng)的常規(guī)施肥玉米產(chǎn)量的變化范圍是7.2—15.7 t·hm-2,平均產(chǎn)量是10.3 t·hm-2。當(dāng)?shù)蕼p施為0—30%時(shí),不會(huì)顯著降低玉米產(chǎn)量,但當(dāng)?shù)蕼p施達(dá)30%—40%時(shí),產(chǎn)量會(huì)顯著低于常規(guī)施肥處理。在常規(guī)不同施氮水平下氮肥減施的產(chǎn)量效應(yīng)中發(fā)現(xiàn),0—40%氮肥減施比例均沒有顯著影響玉米產(chǎn)量(圖3)。

柱上數(shù)字表示該處理的觀測(cè)數(shù)。圖6—12同The number mean the number of observations. The same as Fig.6-Fig.12

圖4 不同氮肥減施比例下的小麥產(chǎn)量

圖5 不同氮肥減施比例下的玉米產(chǎn)量

2.3 不同土壤性質(zhì)以及管理措施下氮肥減施對(duì)作物產(chǎn)量的影響

2.3.1 不施氮肥區(qū)產(chǎn)量 當(dāng)不施氮肥區(qū)的產(chǎn)量<5 t·hm-2、5—7.5 t·hm-2、>7.5 t·hm-2時(shí),氮肥減施下的水稻平均產(chǎn)量分別為7.0、8.6、9.9 t·hm-2(圖6),小麥平均產(chǎn)量分別為4.5、8.5、8.3 t·hm-2,玉米平均產(chǎn)量為6.4、10.0、11.0 t·hm-2。3種作物均呈現(xiàn)隨著不施氮肥區(qū)產(chǎn)量的增加,實(shí)際作物產(chǎn)量增加的趨勢(shì),但是在不同不施氮肥區(qū)產(chǎn)量水平下,氮肥減施均沒有顯著影響三大作物的產(chǎn)量。

2.3.2 土壤全氮 當(dāng)土壤全氮含量<1.5 g·kg-1、1.5—2 g·kg-1和>2 g·kg-1時(shí),氮肥減施下水稻平均產(chǎn)量分別為9.2、9.3、6.5 t·hm-2(圖7);在土壤全氮含量>2 g·kg-1,氮肥減施較常規(guī)施氮顯著提高了水稻產(chǎn)量。當(dāng)土壤全氮含量<0.75 g·kg-1、0.75—1 g·kg-1、>1 g·kg-1時(shí),氮肥減施下小麥平均產(chǎn)量為8.4、6.3、6.9 t·hm-2,在土壤全氮含量>1 g·kg-1時(shí),氮肥減施較常規(guī)施氮顯著降低了小麥產(chǎn)量。在土壤全氮含量<1 g·kg-1、1—1.5 g·kg-1、>1.5 g·kg-1時(shí),氮肥減施下玉米平均產(chǎn)量為10.2、9.2、8.8 t·hm-2,在土壤全氮含量>1.5 g·kg-1時(shí),氮肥減施較常規(guī)施氮顯著降低玉米產(chǎn)量(圖7)。

FP:常規(guī)施氮;RNF:氮肥減施0—40%的所有處理。下同 FP means conventional N rate; RNF means reduced 0-40% N rate. The same as below

圖7 土壤全氮含量對(duì)氮肥減施后作物產(chǎn)量的影響

2.3.3 土壤有機(jī)質(zhì) 當(dāng)土壤有機(jī)質(zhì)含量為10—20 g·kg-1、20—30 g·kg-1、>30 g·kg-1時(shí),氮肥減施下的水稻平均產(chǎn)量分別為9.2、8.9、6.9 t·hm-2(圖8),當(dāng)土壤有機(jī)質(zhì)含量>30 g·kg-1,氮肥減施較常規(guī)施氮顯著提高了水稻產(chǎn)量。當(dāng)土壤有機(jī)質(zhì)含量為0—10 g·kg-1、10—20 g·kg-1、>20 g·kg-1時(shí),氮肥減施下的小麥平均產(chǎn)量為7.3、7.5、4.1 t·hm-2,當(dāng)土壤有機(jī)質(zhì)含量為10— 20 g·kg-1和>20 g·kg-1,氮肥減施較常規(guī)施氮顯著降低了小麥產(chǎn)量。當(dāng)土壤有機(jī)質(zhì)含量為0—10 g·kg-1、10— 20 g·kg-1、>20 g·kg-1時(shí),氮肥減施下的玉米平均產(chǎn)量為9.4、9.5、10.4 t·hm-2,氮肥減施和常規(guī)施肥之間的產(chǎn)量無顯著差異。

2.3.4 土壤酸堿度 當(dāng)土壤pH<6.5時(shí),氮肥減施下的水稻產(chǎn)量為6.6 t·hm-2,當(dāng)土壤pH≥6.5時(shí),水稻的產(chǎn)量為9.4 t·hm-2(圖9)。在pH<6.5的土壤上,氮肥減施較常規(guī)施氮顯著提高了水稻的產(chǎn)量。當(dāng)pH<7時(shí),氮肥減施下小麥和玉米的產(chǎn)量分別為6.1 t·hm-2和9.5 t·hm-2;當(dāng)pH≥7時(shí),氮肥減施下小麥和玉米的產(chǎn)量分別為7.4和9.7 t·hm-2(圖9)。小麥、玉米在不同pH條件下,常規(guī)施氮和氮肥減施之間的產(chǎn)量無差異。

圖8 土壤有機(jī)質(zhì)的含量對(duì)氮肥減施后作物產(chǎn)量的影響

圖9 土壤酸堿度對(duì)氮肥減施后作物產(chǎn)量的影響

2.3.5 種植制度 當(dāng)作物種植制度為一年一熟制時(shí),水稻、小麥、玉米在氮肥減施下的產(chǎn)量分別為9.7、6.5、10.1 t·hm-2(圖10),當(dāng)種植制度為一年兩熟制時(shí),3種作物的產(chǎn)量分別為9.7、7.1、8.9 t·hm-2。在一年一熟的條件下,氮肥減施較常規(guī)施肥顯著降低了小麥產(chǎn)量;一年兩熟制的條件下,氮肥減施較常規(guī)施肥顯著降低了玉米產(chǎn)量。

圖10 種植制度對(duì)氮肥減施后作物產(chǎn)量的影響

2.3.6 肥料種類 普通肥料氮肥減施后水稻、小麥和玉米的產(chǎn)量分別為7.7、6.8、9.4 t·hm-2,施用控釋或緩釋肥料時(shí),水稻、小麥和玉米氮肥減施后的產(chǎn)量分別為8.6、7.2、10.2 t·hm-2。當(dāng)施用普通肥料時(shí),氮肥減施較常規(guī)施肥顯著降低了小麥產(chǎn)量,但均未顯著影響水稻和小麥的產(chǎn)量(圖11)。

2.3.7 水分管理 灌溉條件下氮肥減施,小麥和玉米的產(chǎn)量分別為8.2、10.3 t·hm-2;雨養(yǎng)條件下氮肥減施,小麥和玉米產(chǎn)量分別為5.9、8.9 t·hm-2。雨養(yǎng)條件下,氮肥減施較常規(guī)施肥顯著降低了小麥產(chǎn)量(圖12)。

3 討論

3.1 氮肥減施對(duì)作物產(chǎn)量的總體影響

本研究發(fā)現(xiàn)在常規(guī)施氮量的基礎(chǔ)上,氮肥減施比例在0—40%范圍內(nèi)并沒有顯著降低水稻產(chǎn)量,氮肥減施的比例在0—30%時(shí),沒有顯著降低小麥和玉米的產(chǎn)量,而且氮肥減施的產(chǎn)量效應(yīng)與農(nóng)戶施氮水平?jīng)]有明顯的關(guān)系。說明我國(guó)主要糧食種植區(qū)農(nóng)戶氮肥施用過量現(xiàn)象嚴(yán)重,這與前人報(bào)道的結(jié)果一致[6,14-15]。如我國(guó)太湖地區(qū)和東北黑土區(qū)水稻最佳施氮量分別為209、170 kg×hm-2[16-17],而對(duì)農(nóng)戶調(diào)研顯示,太湖地區(qū)和陜南秦巴山區(qū)水稻平均施氮量分別為303、158 kg×hm-2,分別有74%和22.6%的農(nóng)戶過量施用氮肥[4,18]。另外,太湖地區(qū)、華北地區(qū)和陜西關(guān)中平原的小麥最佳氮肥施用量為169、119和138 kg×hm-2[19-21];而汾渭平原農(nóng)戶小麥平均施氮量為272.6 kg×hm-2,過量施肥的比例達(dá)到64%[5]。青海省小麥平均施氮量為159 kg×hm-2,過量施肥的比例達(dá)到40%[22]。在我國(guó)華北平原、河南洛陽(yáng)地區(qū)和陜西關(guān)中平原玉米的最佳施氮量為129、139、和193 kg×hm-2[20-21,23];而陜西關(guān)中平原玉米農(nóng)戶施氮量為288 kg×hm-2,施氮量偏高和很高比例達(dá)78%[6],東北地區(qū)農(nóng)戶玉米平均施氮量為207 kg×hm-2,過量施氮的比例也達(dá)30%[24]。氮肥的過量施用造成作物株高較高、群體密度大、生物量大、內(nèi)部透光性差、易引發(fā)病蟲害、導(dǎo)致作物產(chǎn)量降低[25-26],或者導(dǎo)致作物生育后期貪青晚熟,易發(fā)生倒伏也導(dǎo)致產(chǎn)量降低[27]。此外,傳統(tǒng)施肥不僅用量高,而且基肥用量占整個(gè)生育期施氮量的一半及以上[6],但由于作物苗期根系不發(fā)達(dá),對(duì)肥料需求較小,不能高效利用,導(dǎo)致氮損失較多[28]。如氮肥過量施用使得我國(guó)北方農(nóng)田硝態(tài)氮大量殘留[7],南方稻田氣態(tài)氮損失嚴(yán)重[29]。加之,我國(guó)大氣氮沉降數(shù)量也較高,如陜西關(guān)中平原總氮沉降為25.8— 31.9 kg×hm-2[30]。另外,氮肥減施配合施用增效劑[31-33]或采用控釋氮肥[14,33]或普通氮肥結(jié)合深施[34],這些措施均有利于減少氮素?fù)p失,提高氮肥利用效率[35]。因此,氮肥減施0—30%沒有顯著降低三大作物產(chǎn)量,在減施20%—30%時(shí)還顯著提高了水稻產(chǎn)量。

圖11 不同肥料種類對(duì)氮肥減施后作物產(chǎn)量的影響

圖12 灌溉和雨養(yǎng)管理對(duì)氮肥減施后作物產(chǎn)量的影響

3.2 不同土壤條件下氮肥減施對(duì)作物產(chǎn)量的影響

不施氮肥區(qū)產(chǎn)量反映了土壤基礎(chǔ)肥力,也包含土壤的無機(jī)氮含量狀況[36-37]。本研究發(fā)現(xiàn)不施氮肥區(qū)產(chǎn)量水平對(duì)氮肥減施的產(chǎn)量效應(yīng)沒有顯著影響。這可能是因?yàn)橥寥乐袣埩舻臒o機(jī)氮水平較高,氮肥減施不會(huì)導(dǎo)致氮素供應(yīng)不足。如ZHANG等[21]報(bào)道陜西關(guān)中平原許多地點(diǎn)在磷鉀供應(yīng)充分的情況下施氮對(duì)小麥、玉米產(chǎn)量的影響不明顯,與土壤剖面殘留大量的無機(jī)氮有關(guān)。LIU等[38]也報(bào)道在不施氮肥區(qū)產(chǎn)量較低或較高時(shí),施氮對(duì)產(chǎn)量均無顯著影響,表明在試驗(yàn)施氮量范圍內(nèi)氮素均可滿足作物生長(zhǎng)。

在不同的土壤全氮含量下,氮肥減施的產(chǎn)量效應(yīng)并不一致(圖7),如水稻在土壤全氮含量>2 g·kg-1時(shí),氮肥減施顯著提高水稻產(chǎn)量。土壤全氮較高意味著土壤有機(jī)質(zhì)含量也較高,有機(jī)質(zhì)含量高能改善土壤的物理性質(zhì),同時(shí)有機(jī)質(zhì)礦化釋放的氮素是作物營(yíng)養(yǎng)的重要氮源之一[39],因此,氮肥減施避免氮過量的負(fù)面影響,進(jìn)而顯著提升產(chǎn)量。小麥在土壤全氮含量>1 g·kg-1,玉米在土壤全氮含量>1.5 g·kg-1時(shí),氮肥減施卻顯著降低產(chǎn)量。這可能是由于土壤中供氮能力主要與可礦化態(tài)氮相關(guān)[40],而可礦化氮與全氮之間沒有穩(wěn)定的比例[41],因此全氮含量高的土壤可礦化態(tài)氮含量不一定高,加之在旱作條件下常常存在水分脅迫,影響有機(jī)質(zhì)礦化釋放氮素,影響作物根系生長(zhǎng)以及養(yǎng)分的遷移,在土壤無機(jī)氮?dú)埩袅枯^低時(shí),氮肥減施后出現(xiàn)產(chǎn)量顯著降低的情況。

不同土壤有機(jī)質(zhì)含量下氮肥減施對(duì)作物產(chǎn)量的影響也不相同。在有機(jī)質(zhì)含量>30 g·kg-1的土壤上,氮肥減施的水稻產(chǎn)量顯著高于常規(guī)產(chǎn)量,原因與土壤全氮較高時(shí)相同。而有機(jī)質(zhì)含量>20 g·kg-1的土壤,氮肥減施顯著降低小麥產(chǎn)量,沒有顯著影響玉米產(chǎn)量。如上所述小麥、玉米包含旱作和灌溉情況,特別是旱作冬小麥低溫時(shí)間長(zhǎng),加之常常存在水分脅迫,進(jìn)而影響土壤有機(jī)質(zhì)的礦化釋放有效氮,如果土壤無機(jī)氮?dú)埩糨^少的情況下,減氮可能會(huì)引起小麥的氮素缺乏,最終降低產(chǎn)量。

在pH<6.5的土壤上氮肥減施較常規(guī)顯著提高水稻產(chǎn)量。這可能是因?yàn)殚L(zhǎng)期過量施氮導(dǎo)致了嚴(yán)重的土壤酸化,氮肥減施可能會(huì)減輕低pH的負(fù)面影響,如根系生長(zhǎng)[42-43]、作物養(yǎng)分吸收[44-45]。然而小麥、玉米在pH<7的土壤上氮肥減施沒有顯著影響產(chǎn)量。這可能與小麥和玉米主要種植在北方,pH<6.5的樣本數(shù)較少有關(guān)。

3.3 不同管理措施下氮肥減施對(duì)作物產(chǎn)量的影響

本研究發(fā)現(xiàn)一年一熟制氮肥減施會(huì)降低小麥產(chǎn)量,而一年兩熟制氮肥減施會(huì)降低玉米產(chǎn)量。這可能因?yàn)橐荒暌皇熘埔话闶呛底餍←?,旱作小麥常常遭遇水分脅迫,因此影響根系生長(zhǎng)、養(yǎng)分遷移,進(jìn)而影響?zhàn)B分吸收(如氮素)[46],在減量施氮情況下可能存在養(yǎng)分脅迫的情況,因此減產(chǎn)。有研究報(bào)道即使小麥開花后遭遇水分脅迫,提高氮素水平,不僅提高花前同化產(chǎn)物向籽粒轉(zhuǎn)移的比例,延緩功能葉片的衰老,還能延長(zhǎng)籽粒灌漿時(shí)間,提高小麥產(chǎn)量[47]。一年兩熟制氮肥減施降低玉米產(chǎn)量,可能是因?yàn)橐荒陜墒斓挠衩锥酁樾←?玉米輪作中灌溉夏玉米,玉米生育期間,溫度高、降雨量大,容易導(dǎo)致氮肥的氣態(tài)揮發(fā)、淋溶等損失,引起氮素供應(yīng)強(qiáng)度不足造成減產(chǎn),具體機(jī)理還需要進(jìn)一步研究。但是水稻在兩種種植制度下氮肥減量的產(chǎn)量效應(yīng)沒有差異,其中一年一熟的水稻大多來自我國(guó)東北地區(qū),該地區(qū)土壤肥力高、土壤供肥能力強(qiáng),減肥對(duì)產(chǎn)量影響小,而一年兩熟制的水稻常規(guī)施氮量(300 kg×hm-2)[14]遠(yuǎn)高于推薦量(209 kg×hm-2)[16],因此減少氮肥也不會(huì)影響作物產(chǎn)量。

普通肥料施用情況下氮肥減施顯著降低了小麥產(chǎn)量,沒有影響水稻和玉米產(chǎn)量;而控釋肥料減施后均未影響3種作物的產(chǎn)量。這可能是因?yàn)榭蒯尩誓芨鶕?jù)作物的生育期,調(diào)節(jié)氮供應(yīng)速度和氮供應(yīng)量[48-50],在作物生長(zhǎng)早期適量供應(yīng)氮肥,生長(zhǎng)中期大量供氮,生長(zhǎng)晚期少量或者不供應(yīng)氮[51];還有控釋氮肥的使用能顯著減少氮的損失,LIU等[52]研究指出相較于普通氮肥的使用,控釋氮肥的使用后氮的徑流和淋溶損失以及氨揮發(fā)損失減少了20%—50%和17%—32%,保證作物全生育期氮素供給。不同肥料類型下,氮肥減施均沒有影響玉米和水稻的產(chǎn)量可能與這兩種作物生育期短、水分需求大、土壤濕度高,影響緩控釋氮肥或抑制劑的效果有關(guān),如脲酶抑制劑尿素的分解受到土壤溫度、濕度的影響效果不穩(wěn)定[53],硫包膜氮肥容易發(fā)生包膜損壞[54],具體原因需要進(jìn)一步研究。

水分條件不同氮肥減施的作物產(chǎn)量效應(yīng)有所不同;在旱作條件下,氮肥減施顯著降低了小麥產(chǎn)量,但是沒有影響玉米產(chǎn)量;而灌溉條件下氮肥減施均未影響小麥和玉米的產(chǎn)量,這可能與土壤水分含量不同有關(guān)。我國(guó)北方小麥生育期與雨季錯(cuò)位,干旱條件下小麥次生根數(shù)量減少,根系活性降低[55],加之水分不足也影響氮素的遷移,因此最終影響小麥吸收氮素,引起減產(chǎn)。有研究報(bào)道在輕度干旱條件下追施氮肥能夠緩解水分脅迫對(duì)小麥造成的不良影響[47,56]。而玉米生育期與雨季重合,不存在水分不足影響氮素吸收的問題。

4 結(jié)論

綜合全國(guó)近10年來文獻(xiàn)資料分析表明,在常規(guī)施氮量基礎(chǔ)上氮肥減施0—40%并未顯著影響水稻產(chǎn)量,減施0—30%對(duì)小麥和玉米產(chǎn)量均無顯著影響。說明目前我國(guó)三大糧食作物氮肥過量施用嚴(yán)重,氮肥減施是切實(shí)可行的。氮肥減施的作物產(chǎn)量效應(yīng)因土壤性質(zhì)以及管理措施有所不同,綜合考慮我國(guó)三大作物現(xiàn)階段氮肥減施30%較為合理。至于氮肥減施的持續(xù)性將取決于土壤殘留氮的多少,未來需要根據(jù)土壤測(cè)試進(jìn)一步調(diào)整。

[1] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒-2020. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2020.

National Bureau of Statistics of People's Republic of China. China Statistical Yearbook-2020. Beijing:China Statistics Press, 2020. (in Chinese)

[2] 高曉寧. 長(zhǎng)期輪作施肥對(duì)棕壤氮素形態(tài)轉(zhuǎn)化及其供氮特征的影響[D]. 沈陽(yáng): 沈陽(yáng)農(nóng)業(yè)大學(xué), 2009.

GAO X N. Effect of long-term rotation and fertilization on transformation and supply of soil nitrogen[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese)

[3] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil and Tillage Research, 2016, 155: 85-94. doi:10. 1016/j.still.2015.08.006.

[4] 蔣孝松, 劉彩玲, 隋標(biāo), 董彩霞, 郭世偉. 太湖流域稻麥輪作體系施肥現(xiàn)狀分析與對(duì)策. 中國(guó)農(nóng)學(xué)通報(bào), 2012, 28(15): 15-18. doi:10. 3969/j.issn.1000-6850.2012.15.004.

JIANG X S, LIU C L, SUI B, DONG C X, GUO S W. Problems and proposals of the current fertilization situation in the rice-wheat rotation system in Tai Lake Basin. Chinese Agricultural Science Bulletin, 2012, 28(15): 15-18. doi:10.3969/j.issn.1000-6850.2012.15. 004. (in Chinese)

[5] 韓燕, 鄭景瑞, 盧慧宇, 王云鳳, 羅彩霞, 杜文婷, 雷同, 張潤(rùn)澤, 徐佳星, 胡昌錄, 張樹蘭. 汾渭平原農(nóng)戶冬小麥氮磷養(yǎng)分投入調(diào)查與分析. 麥類作物學(xué)報(bào), 2020, 40(11): 1382-1388. doi:10.7606/j.issn. 1009-1041.2020.11.13.

HAN Y, ZHENG J R, LU H Y, WANG Y F, LUO C X, DU W T, LEI T, ZHANG R Z, XU J X, HU C L, ZHANG S L. Investigation and analysis of nitrogen and phosphorus input for winter wheat in Fenwei plain. Journal of Triticeae Crops, 2020, 40(11): 1382-1388. doi:10. 7606/j.issn.1009-1041.2020.11.13. (in Chinese)

[6] 常艷麗, 劉俊梅, 李玉會(huì), 孫本華, 張樹蘭, 楊學(xué)云. 陜西關(guān)中平原小麥/玉米輪作體系施肥現(xiàn)狀調(diào)查與評(píng)價(jià). 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 42(8): 51-61. doi:10.13207/j.cnki.jnwafu.2014. 08.033.

CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(8): 51-61. doi:10.13207/j.cnki.jnwafu.2014.08.033. (in Chinese)

[7] ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6: 25088. doi:10.1038/srep25088.

[8] ZHAO Z, CAO L K, DENG J, SHA Z M, CHU C B, ZHOU D P, WU S H, Lü W G. Modeling CH4and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model. Agricultural Systems, 2020, 178: 102743. doi:10.1016/ j.agsy.2019.102743.

[9] YANG Y Y, LIU L, ZHANG F, ZHANG X Y, XU W, LIU X J, LI Y, WANG Z, XIE Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environmental Science and Pollution Research, 2021, 28(12): 15350-15360. doi:10.1007/s11356-020-11591-5.

[10] XUE L H, YU Y L, YANG L Z. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environmental Research Letters, 2014, 9(11): 115010. doi:10.1088/1748-9326/9/11/115010.

[11] LIU Z J, CHEN Z J, MA P Y, MENG Y, ZHOU J B. Effects of tillage, mulching and N management on yield, water productivity, N uptake and residual soil nitrate in a long-term wheat-summer maize cropping system. Field Crops Research, 2017, 213: 154-164. doi:10.1016/j.fcr. 2017.08.006.

[12] 王道中, 張成軍, 郭熙盛. 減量施肥對(duì)水稻生長(zhǎng)及氮素利用率的影響. 土壤通報(bào), 2012, 43(1): 161-165. doi:10.19336/j.cnki.trtb.2012.01. 031.

WANG D Z, ZHANG C J, GUO X S. Effects of lower fertilizer on rice growth and nitrogen use efficiency. Chinese Journal of Soil Science, 2012, 43(1): 161-165. doi:10.19336/j.cnki.trtb.2012.01.031. (in Chinese)

[13] 尹彩俠, 李前, 孔麗麗, 秦裕波, 王蒙, 于雷, 劉春光, 王立春, 侯云鵬. 控釋氮肥減施對(duì)春玉米產(chǎn)量、氮素吸收及轉(zhuǎn)運(yùn)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(20): 3941-3950. doi:10.3864/j.issn.0578-1752. 2018.20.012.

YIN C X, LI Q, KONG L L, QIN Y B, WANG M, YU L, LIU C G, WANG L C, HOU Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Scientia Agricultura Sinica, 2018, 51(20): 3941-3950. doi:10.3864/j.issn.0578-1752.2018.20.012. (in Chinese)

[14] DING W C, XU X P, HE P, ULLAH S, ZHANG J J, CUI Z L, ZHOU W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis. Field Crops Research, 2018, 227: 11-18. doi:10.1016/j.fcr.2018.08.001.

[15] LI Y, LI Z, CUI S, CHANG S X, JIA C L, ZHANG Q P. A global synthesis of the effect of water and nitrogen input on maize () yield, water productivity and nitrogen use efficiency. Agricultural and Forest Meteorology, 2019, 268: 136-145. doi:10.1016/j.agrformet. 2019.01.018.

[16] 晏娟, 尹斌, 張紹林, 沈其榮, 朱兆良. 太湖地區(qū)稻麥輪作系統(tǒng)中氮肥效應(yīng)的研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2009, 32(1): 61-66.

YAN J, YIN B, ZHANG S L, SHEN Q R, ZHU Z L. Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region. Journal of Nanjing Agricultural University, 2009, 32(1): 61-66. (in Chinese)

[17] 林娜, 張忠慶, 李韶山, 劉金華, 趙立剛, 王亞卿, 向井, 朱飛鴻, 楊靖民. 基于SPAD值確定東北黑土區(qū)水稻最佳施氮量及追肥時(shí)間. 中國(guó)農(nóng)學(xué)通報(bào), 2015, 31(33): 6-10.

LIN N, ZHANG Z Q, LI S S, LIU J H, ZHAO L G, WANG Y Q, XIANG J, ZHU F H, YANG J M. The optimal amount of fertilizer and additional manuring time of rice in the northeast black earth area based on SPAD. Chinese Agricultural Science Bulletin, 2015, 31(33): 6-10. (in Chinese)

[18] 王小英, 劉芬, 同延安, 趙佐平. 陜南秦巴山區(qū)水稻施肥現(xiàn)狀評(píng)價(jià). 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(11): 3106-3112. doi:10.13287/j.1001-9332. 2013.0534.

WANG X Y, LIU F, TONG Y A, ZHAO Z P. Present situation of rice fertilization in Qin-Ba mountainous area of southern Shaanxi, China. Chinese Journal of Applied Ecology, 2013, 24(11): 3106-3112. doi:10.13287/j.1001-9332.2013.0534. (in Chinese)

[19] 張均華, 劉建立, 張佳寶, 趙夫濤, 程亞南, 王偉鵬. 施氮量對(duì)稻麥干物質(zhì)轉(zhuǎn)運(yùn)與氮肥利用的影響. 作物學(xué)報(bào), 2010, 36(10): 1736-1742.

ZHANG J H, LIU J L, ZHANG J B, ZHAO F T, CHENG Y N, WANG W P. Effects of nitrogen application rates on translocation of dry matter and utilization of nitrogen in rice and wheat. Acta Agronomica Sinica, 2010, 36(10):1736-1742. (in Chinese)

[20] 崔振嶺. 華北平原冬小麥—夏玉米輪作體系優(yōu)化氮肥管理—從田塊到區(qū)域尺度[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2005.

CUI Z L. Optimization of the nitrogen fertilizer management for a winter wheat-summer maize rotation system in the North China plain-from field to regional scale[D]. Beijing: China Agricultural University, 2005. (in Chinese)

[21] ZHANG S L, GAO P C, TONG Y N, NORSE D, LU Y L, POWLSON D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, northwest China. Agriculture, Ecosystems & Environment, 2015, 209: 89-99. doi:10.1016/j.agee.2015.03.002.

[22] 馮承彬, 李吉環(huán), 白惠義, 劉景莉. 青海省春小麥農(nóng)戶施肥狀況調(diào)查研究. 安徽農(nóng)業(yè)科學(xué), 2017, 45(36): 102-104, 148. doi:10.13989/ j.cnki.0517-6611.2017.36.032.

FENG C B, LI J H, BAI H Y, LIU J L. Investigation on current fertilization of spring wheat in Qinghai Province. Journal of Anhui Agricultural Sciences, 2017, 45(36): 102-104, 148. doi:10.13989/j. cnki.0517-6611.2017.36.032. (in Chinese)

[23] 游福欣, 王向陽(yáng), 王宗杰, 王定鄖, 劉迎鋒. 夏玉米最佳施氮量研究. 安徽農(nóng)業(yè)科學(xué), 2005, 33(5): 765-766. doi:10.13989/j.cnki.0517- 6611.2005.05.010.

YOU F X, WANG X Y, WANG Z J, WANG D Y, LIU Y F. Preliminary study on application amount of nitrogen in summer corn. Journal of Anhui Agricultural Sciences, 2005, 33(5): 765-766. doi:10.13989/j.cnki.0517-6611.2005.05.010. (in Chinese)

[24] 高強(qiáng), 馮國(guó)忠, 王志剛. 東北地區(qū)春玉米施肥現(xiàn)狀調(diào)查. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(14): 229-231.

GAO Q, FENG G Z, WANG Z G. Present situation of fertilizer application on spring maize in northeast China. Chinese Agricultural Science Bulletin, 2010, 26(14): 229-231. (in Chinese)

[25] WU W, LIAO Y C, SHAH F, NIE L X, PENG S B, CUI K H, HUANG J L. Plant growth suppression due to sheath blight and the associated yield reduction under double rice-cropping system in central China. Field Crops Research, 2013, 144: 268-280. doi:10. 1016/j.fcr.2013.01.012.

[26] CASTILLA N P, LEA?O R M, ELAZHOUR F A, TENG P S, SAVARY S. Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight. Journal of Phytopathology, 1996, 144(4): 187-192. doi:10. 1111/j.1439-0434.1996.tb01512.x.

[27] WU W, NIE L, SHAH F, LIAO Y, CUI K, JIANG D, XIE J, CHEN Y, HUANG J. Influence of canopy structure on sheath blight epidemics in rice. Plant Pathology, 2014, 63(1): 98-108. doi:10.1111/ ppa.12078.

[28] 馬尚宇, 侯君佑, 王艷艷, 黃正來, 張文靜, 樊永惠, 馬元山. 稻麥輪作系統(tǒng)無機(jī)氮肥高效利用研究進(jìn)展. 土壤通報(bào), 2021, 52(6): 1496-1504. doi:10.19336/j.cnki.trtb.2020110901.

MA S Y, HOU J Y, WANG Y Y, HUANG Z L, ZHANG W J, FAN Y H, MA Y S. Research progress on efficient utilization of inorganic nitrogen in rice and wheat rotation system. Chinese Journal of Soil Science, 2021, 52(6): 1496-1504. doi:10.19336/j.cnki.trtb.2020110901. (in Chinese)

[29] ZHU J G, HAN Y, LIU G, ZHANG Y L, SHAO X H. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutrient Cycling in Agroecosystems, 2000, 57(1): 75-82. doi:10.1023/A: 1009712404335.

[30] 梁婷, 同延安, 林文, 喬麗, 劉學(xué)軍, 白水成, 楊憲龍. 陜西省不同生態(tài)區(qū)大氣氮素干濕沉降的時(shí)空變異. 生態(tài)學(xué)報(bào), 2014, 34(3): 738-745. doi:10.5846/stxb201211011517.

LIANG T, TONG Y A, LIN W, QIAO L, LIU X J, BAI S C, YANG X L. Spatial-temporal variability of dry and wet deposition of atmospheric nitrogen in different ecological regions of Shaanxi. Chinese Journal of Plant Ecology, 2014, 34(3): 738-745. doi:10.5846/ stxb201211011517. (in Chinese)

[31] 馬榮輝, 王瑞雪, 張杰, 董艷紅, 郭躍升, 徐鈺, 邱燕, 劉延生. 應(yīng)用增效尿素減氮施肥對(duì)夏玉米產(chǎn)量及氮肥利用率的影響. 中國(guó)農(nóng)技推廣, 2020, 36(7): 51-53. doi:10.3969/j.issn.1002-381X.2020.07. 022.

MA R H, WANG R X, ZHANG J, DONG Y H, GUO Y S, XU Y, QIU Y, LIU Y S. Effect of nitrogen-reducing fertilization with synergistic urea on yield of summer maize and nitrogen utilization efficiency. China Agricultural Technology Extension, 2020, 36(7): 51-53. doi:10.3969/j.issn.1002-381X.2020.07.022. (in Chinese)

[32] 郝小雨, 馬星竹, 高中超, 周寶庫(kù). 氮肥管理措施對(duì)黑土春玉米產(chǎn)量及氮素利用的影響. 玉米科學(xué), 2016, 24(4): 151-159. doi:10. 13597/j.cnki.maize.science.20160425.

HAO X Y, MA X Z, GAO Z C, ZHOU B K. Effects of nitrogen fertilizer management on spring maize yield and nitrogen utilization in black soil. Journal of Maize Sciences, 2016, 24(4): 151-159. doi:10. 13597/j.cnki.maize.science.20160425. (in Chinese)

[33] 王薇, 李子雙, 趙同凱, 李洪杰, 周曉琳. 控釋尿素減量施用對(duì)冬小麥和夏玉米產(chǎn)量及氮肥利用率的影響. 山東農(nóng)業(yè)科學(xué), 2016, 48(5): 83-85, 88. doi:10.14083/j.issn.1001-4942.2016.05.021.

WANG W, LI Z S, ZHAO T K, LI H J, ZHOU X L. Effects of decreasing controlled- release urea application rate on grain yield and nitrogen use efficiency of winter wheat and summer maize. Shandong Agricultural Sciences, 2016, 48(5): 83-85, 88. doi:10.14083/j.issn. 1001-4942.2016.05.021. (in Chinese)

[34] 彭術(shù), 王華, 張文釗, 侯海軍, 陳安磊, 魏文學(xué), 萬軍勇, 袁輝忠. 長(zhǎng)期氮肥減量深施對(duì)雙季稻產(chǎn)量和土壤肥力的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2020, 26(6): 999-1007. doi:10.11674/zwyf. 19406.

PENG S, WANG H, ZHANG W Z, HOU H J, CHEN A L, WEI W X, WAN J Y, YUAN H Z. Effect of long-term reduction and deep placement of nitrogen fertilizer on rice yield and soil fertility in a double rice cropping system. Plant Nutrition and Fertilizer Science, 2020, 26(6): 999-1007. doi:10.11674/zwyf. 19406. (in Chinese)

[35] XIA L L, LAM S K, CHEN D L, WANG J Y, TANG Q, YAN X Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(5): 1917-1925. doi:10.1111/gcb.13455.

[36] WANG W N, LU J W, REN T, LI X K, SU W, LU M X. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Research, 2012, 137: 37-48. doi:10.1016/j.fcr.2012.08.010.

[37] FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980. PLoS One, 2013, 8(9): e74617. doi:10.1371/journal.pone.0074617.

[38] LIU L, YAO S, ZHANG H T, MUHAMMED A, XU J X, LI R N, ZHANG D J, ZHANG S L, YANG X Y. Soil nitrate nitrogen buffer capacity and environmentally safe nitrogen rate for winter wheat- summer maize cropping in Northern China. Agricultural Water Management, 2019, 213: 445-453. doi:10.1016/j.agwat.2018. 11.001.

[39] FAGERIA N K. Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 2012, 43(16): 2063-2113. doi:10.1080/00103624. 2012.697234.

[40] 葉優(yōu)良, 張福鎖, 李生秀. 土壤供氮能力指標(biāo)研究. 土壤通報(bào), 2001, 32(6): 273-277. doi:10.19336/j.cnki.trtb.2001.06.009.

YE Y L, ZHANG F S, LI S X. Study on soil nitrogen supplying indexes. Chinese Journal of Soil Science, 2001, 32(6): 273-277. doi:10.19336/j.cnki.trtb.2001.06.009. (in Chinese)

[41] 李菊梅, 王朝輝, 李生秀. 有機(jī)質(zhì)、全氮和可礦化氮在反映土壤供氮能力方面的意義. 土壤學(xué)報(bào), 2003, 40(2): 232-238. doi:10.3321/j. issn: 0564-3929.2003.02.011.

LI J M, WANG Z H, LI S X. Significance of soil organic matter, total n and minerali- zable nitrogen in reflecting soil n supplying capacity. Acta Pedologica Sinica, 2003, 40(2): 232-238. doi:10. 3321/j.issn: 0564-3929.2003.02.011. (in Chinese)

[42] 張昌愛, 勞秀榮. 保護(hù)地土壤模擬酸化對(duì)油菜根系的影響. 耕作與栽培, 2003(1): 48-50. doi:10.3969/j.issn.1008-2239.2003.01. 027.

ZHANG C A, LAO X R. Effect of simulated acidification of protected soil on root system of rape.Tillage and Cultivation, 2003(1): 48-50. doi:10.3969/j.issn.1008-2239.2003.01.027. (in Chinese)

[43] 張旭, 劉彥卓, 孔清霓, 黃農(nóng)榮. 土壤pH對(duì)華南雙季稻旱育秧素質(zhì)的影響試驗(yàn)初報(bào). 廣東農(nóng)業(yè)科學(xué), 1998, 25(2): 8-10. doi:10. 16768/j.issn.1004-874x.1998.02.004.

ZHANG X, LIU Y Z, KONG Q N, HUANG N R. Preliminary report on the effect of soil pH on the quality of dry-raised seedlings of double-cropping rice in South China. Guangdong Agriculturl Science, 1998, 25(2): 8-10. doi:10.16768/j.issn.1004-874x.1998.02.004. (in Chinese)

[44] 陳平平. 酸化土壤對(duì)水稻產(chǎn)量與氮利用效率的影響途徑研究[D]. 長(zhǎng)沙: 湖南農(nóng)業(yè)大學(xué), 2015.

CHEN P P. Effect approach of acidified soil on yield and nitrogen utilization efficiency of rice[D]. Changsha: Hunan Agricultural University, 2015. (in Chinese)

[45] 沈靜, 朱毅勇, 徐國(guó)華. 根際pH對(duì)水稻細(xì)胞膜質(zhì)子泵基因表達(dá)的影響. 中國(guó)水稻科學(xué), 2009, 23(4): 349-353. doi:10.3969/j.issn.1001- 7216.2009.04.03.

SHEN J, ZHU Y Y, XU G H. Effect of rhizosphere pH on the expression of plasma membrane H+-ATPase gene in rice plants. Chinese Journal of Rice Science, 2009, 23(4): 349-353. doi:10.3969/j. issn.1001-7216.2009.04.03. (in Chinese)

[46] 馬富舉, 李丹丹, 蔡劍, 姜東, 曹衛(wèi)星, 戴廷波. 干旱脅迫對(duì)小麥幼苗根系生長(zhǎng)和葉片光合作用的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(3): 724-730. doi:10.13287/j.1001-9332.2012.0097.

MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chinese Journal of Applied Ecology, 2012, 23(3): 724-730. doi:10. 13287/j.1001-9332.2012.0097. (in Chinese)

[47] YANG J C, ZHANG J H, HUANG Z L, ZHU Q S, WANG L. Remobilization of carbon reserves is improved by controlled soil- drying during grain filling of wheat. Crop Science, 2000, 40(6): 1645-1655. doi:10.2135/cropsci2000.4061645x.

[48] 王寅, 馮國(guó)忠, 張?zhí)焐? 茹鐵軍, 袁勇, 高強(qiáng). 控釋氮肥與尿素混施對(duì)連作春玉米產(chǎn)量、氮素吸收和氮素平衡的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(3): 518-528. doi:10.3864/j.issn.0578-1752.2016. 03.010.

WANG Y, FENG G Z, ZHANG T S, RU T J, YUAN Y, GAO Q. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production. Scientia Agricultura Sinica, 2016, 49(3): 518-528. doi:10.3864/j.issn.0578-1752.2016.03.010. (in Chinese)

[49] 樊小林, 劉芳, 廖照源, 鄭祥洲, 喻建剛. 我國(guó)控釋肥料研究的現(xiàn)狀和展望. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(2): 463-473. doi:10. 3321/j.issn: 1008-505X.2009.02.032.

FAN X L, LIU F, LIAO Z Y, ZHENG X Z, YU J G. The status and outlook for the study of controlled-release fertilizers in China. Plant Nutrition and Fertilizer Science, 2009, 15(2): 463-473. doi:10.3321/ j.issn: 1008-505X.2009.02.032. (in Chinese)

[50] AZEEM B, KUSHAARI K, MAN Z B, BASIT A, THANH T H. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 2014, 181: 11-21. doi:10. 1016/j.jconrel.2014.02.020.

[51] 樊小林, 廖宗文. 控釋肥料與平衡施肥和提高肥料利用率. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 1998, 4(3): 219-223.

FAN X L, LIAO Z W. Icreasing fertlizer use efficiency by means of controlled release fertilizer (crf) production according to theory and techniques of balanced fertilization. Plant Natrition and Fertilizen Science, 1998, 4(3): 219-223. (in Chinese)

[52] LIU R H, KANG Y H, PEI L, WAN S Q, LIU S P, LIU S H. Use of a new controlled-loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou reservoir area of China. Communications in Soil Science and Plant Analysis, 2016, 47(9): 1137-1147. doi:10.1080/00103624.2016.1166245.

[53] 張文學(xué), 王少先, 夏文建, 孫剛, 劉增兵, 李祖章, 劉光榮. 脲酶抑制劑與硝化抑制劑對(duì)稻田土壤硝化、反硝化功能菌的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25(6): 897-909.

ZHANG W X, WANG S X, XIA W J, SUN G, LIU Z B, LI Z Z, LIU G R. Effects of urease inhibitor and nitrification inhibitor on functional nitrifier and denitrifier in paddy soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 897-909. (in Chinese)

[54] 谷佳林, 徐凱, 付鐵梅, 張東雷, 佟國(guó)香, 羅軍, 佟二建, 衣文平, 徐秋明. 不同密閉材料硫包衣尿素氮素釋放特性及對(duì)夏玉米生長(zhǎng)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(3): 630-637.

GU J L, XU K, FU T M, ZHANG D L, TONG G X, LUO J, TONG E J, YI W P, XU Q M. Nitrogen release characteristics of different hermetic material sulfur coated urea and their effects on summer maize. Plant Nutrition and Fertilizer Science, 2011, 17(3): 630-637. (in Chinese)

[55] 王晨陽(yáng), 馬元喜. 不同土壤水分條件下小麥根系生態(tài)生理效應(yīng)的研究. 華北農(nóng)學(xué)報(bào), 1992, 7(4): 1-8.

WANG C Y, MA Y X. Ecological and physiological effects on root systems of wheat under different soil water conditions. Acta Agriculturae Boreali-Sinica, 1992, 7(4): 1-8. (in Chinese)

[56] 張慧娜, 王志強(qiáng), 林同保. 不同水分條件下追施氮肥對(duì)小麥生物量及氮素利用的影響. 麥類作物學(xué)報(bào), 2010, 30(6): 1104-1109.

ZHANG H N, WANG Z Q, LIN T B. Effects of nitrogen topdressing under different water conditions on the wheat nitrogen utilization and distribution. Journal of Triticeae Crops, 2010, 30(6): 1104-1109. (in Chinese)

Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China

DU WenTing, LEI XiaoXiao, LU HuiYu, WANG YunFeng, XU JiaXing, LUO CaiXia, ZHANG ShuLan

College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi

The present study investigated the effects of reducing nitrogen application rate on the yields of three major cereals in China and its relationship with soil and other factors, so as to clarify the feasibility of reducing nitrogen application.90 published papers from 2010 to 2021 were collected and analyzed the effects of different nitrogen fertilizer reduction ratios on yield, and its relationship with planting systems and different conditions (fertilizer type, soil organic matter content, total nitrogen, soil pH, and water management).Compared with conventional fertilization rate, 0-40% nitrogen reduction did not significantly reduce the yield of rice, 0-30% nitrogen reduction did not significantly affect the yields of wheat and maize, when the nitrogen reduction was 30%-40%, the yield of wheat and maize significantly reduced by 6.1% and 5.4%, respectively. The yield level without nitrogen input area did not significantly affect crop yield of the three cereals following reduction of nitrogen rate. When soil total nitrogen was more than 2 g·kg-1, rice yield with reduced nitrogen application (6.5 t·hm-2) was significantly higher than that with conventional nitrogen application (6.3 t·hm-2); when total nitrogen was more than 1 g·kg-1, wheat yield with reduced nitrogen application (6.9 t·hm-2) was significantly lower than that with conventional nitrogen application (7.4 t·hm-2); when total nitrogen was more than 1.5 g·kg-1, maize yield with reduced nitrogen application (8.8 t·hm-2) was significantly lower than that with conventional nitrogen application (9.1 t·hm-2). When soil organic matter content was more than 30 g·kg-1, rice yield with reduced nitrogen application (6.9 t·hm-2) was significantly higher than that with conventional nitrogen application (6.7 t·hm-2), but soil organic matter content were 10-20 g·kg-1and more than 20 g·kg-1, the reducing nitrogen application significantly reduced wheat yield. When soil pH was lower than 6.5, rice yield with reduced nitrogen application (6.6 t·hm-2) was significantly higher than that with conventional nitrogen application (6.4 t·hm-2). Wheat yield (6.6 t·hm-2) with reducing nitrogen application under single cropping was significantly higher than that with conventional nitrogen application (5.9 t·hm-2); maize yield (8.9 t·hm-2) with reducing nitrogen application under double cropping was significantly lower than that with conventional nitrogen application (9.1 t·hm-2). Based on common fertilizer, wheat yield with reducing nitrogen application (6.8 t·hm-2) was significantly lower than that with conventional nitrogen application (7.1 t·hm-2). Under rainfed, wheat yield with reducing nitrogen application (5.9 t·hm-2) was significantly lower than that with conventional nitrogen application (6.6 t·hm-2).The yield of three major cereals in China can be maintained by reducing conventional nitrogen application rate by 30% although crop yield varied to certain extent with soil properties and management measures. Therefore, the reduced application of nitrogen fertilizer needed to be adjusted according to soil properties and management practices to achieve high yield and high nitrogen efficiency.

wheat; maize; rice; reducing nitrogen application rate; management practices; soil properties

2021-10-22;

2022-01-17

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0800105)

杜文婷,E-mail:duwentinga@163.com。通信作者張樹蘭,E-mail:zhangshulan@nwafu.edu.cn

(責(zé)任編輯 李云霞)

猜你喜歡
施氮氮量氮肥
不同施氮水平對(duì)春玉米光合參數(shù)及產(chǎn)量的影響
氮肥供應(yīng)充足 春耕生產(chǎn)有保障
江淮小氮肥 耕耘六十年——紀(jì)念安徽小氮肥誕生六十周年
抓住機(jī)遇 主動(dòng)作為 努力推進(jìn)我國(guó)氮肥市場(chǎng)穩(wěn)步前行
2017春季各地氮肥市場(chǎng)掠影
施氮水平對(duì)冬小麥冠層氨揮發(fā)的影響
均勻施氮利于玉米根系生長(zhǎng)及產(chǎn)量形成
高、中、低產(chǎn)田水稻適宜施氮量和氮肥利用率的研究
不同地力水平下超級(jí)稻高產(chǎn)高效適宜施氮量及其機(jī)理的研究
施氮量與栽插密度對(duì)超級(jí)早稻中早22產(chǎn)量的影響
江达县| 娱乐| 天长市| 灵川县| 齐齐哈尔市| 招远市| 灌南县| 贵定县| 吉林省| 会同县| 扎鲁特旗| 保康县| 延川县| 兴城市| 吉水县| 宁南县| 同心县| 赞皇县| 太康县| 龙口市| 浦县| 蒙山县| 镇安县| 大埔县| 金川县| 会泽县| 津市市| 巴彦淖尔市| 普兰店市| 鲁甸县| 永丰县| 凌海市| 黄大仙区| 驻马店市| 阿荣旗| 彭水| 凤阳县| 毕节市| 陆良县| 客服| 西藏|