赫磊,路凱,趙春芳,姚姝,周麗慧,趙凌,陳濤,朱鎮(zhèn),趙慶勇,梁文化,王才林,朱麗,張亞?wèn)|
水稻穗頂端退化突變體的表型分析及基因克隆
1江蘇省農(nóng)業(yè)科學(xué)院糧食作物研究所/國(guó)家耐鹽堿水稻技術(shù)創(chuàng)新中心華東中心/江蘇省優(yōu)質(zhì)水稻工程技術(shù)研究中心/國(guó)家水稻改良中心南京分中心/江蘇省農(nóng)業(yè)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,南京 210014;2中國(guó)水稻研究所/水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州 310006
【】水稻穗頂端退化嚴(yán)重影響產(chǎn)量,鑒定與克隆水稻穗頂端退化相關(guān)基因,可以豐富水稻穗發(fā)育調(diào)控的分子機(jī)理,為水稻高產(chǎn)分子設(shè)計(jì)育種提供理論基礎(chǔ)和基因資源?!尽繌木酒贩N武運(yùn)粳30號(hào)EMS突變體庫(kù)篩選到一份穩(wěn)定遺傳的穗頂端退化突變體()。對(duì)退化一次枝梗比例、每穗退化粒數(shù)占比、每穗粒數(shù)、株高、穗長(zhǎng)、單株產(chǎn)量等農(nóng)藝性狀進(jìn)行統(tǒng)計(jì)。使用臺(tái)盼藍(lán)和伊文思藍(lán)染色檢測(cè)頂端小穗是否發(fā)生程序性細(xì)胞死亡。測(cè)定WT和不同發(fā)育時(shí)期幼穗和不同穗部位的H2O2含量。分別與秈稻II-32B、9311正反交進(jìn)行遺傳分析。利用與秈稻II-32B雜交構(gòu)建的F2群體進(jìn)行基因定位和克隆。使用SWISS-MODEL網(wǎng)站預(yù)測(cè)野生型和突變體蛋白的三維結(jié)構(gòu)。利用RT-qPCR分析ROS響應(yīng)標(biāo)志基因、程序性細(xì)胞死亡相關(guān)基因、過(guò)氧化氫酶相關(guān)基因的表達(dá)量。突變體發(fā)生嚴(yán)重的穗頂端退化,統(tǒng)計(jì)所有一次枝梗退化情況,發(fā)現(xiàn)退化小穗主要位于頂端的一次枝梗上。與WT相比,的株高、每穗粒數(shù)、穗長(zhǎng)和單株產(chǎn)量均降低。通過(guò)觀察不同發(fā)育時(shí)期的幼穗,發(fā)現(xiàn)在突變體幼穗發(fā)育至12 cm時(shí),可見(jiàn)穗頂端退化表型。臺(tái)盼藍(lán)和伊文思藍(lán)染色結(jié)果表明突變體頂端小穗發(fā)生程序性細(xì)胞死亡。在退化的頂端小穗中觀察到更強(qiáng)烈的DAB染色;H2O2含量測(cè)定結(jié)果表明,與WT相比,穗中積累更高水平的ROS。遺傳分析表明突變表型受一對(duì)隱性核基因控制。圖位克隆結(jié)果發(fā)現(xiàn)中第二外顯子發(fā)生一個(gè)C到T的突變,導(dǎo)致丙氨酸突變?yōu)槔i氨酸。該基因編碼一個(gè)鋁激活的蘋(píng)果酸轉(zhuǎn)運(yùn)蛋白ALMT7。突變位點(diǎn)位于第4個(gè)跨膜螺旋上。SWISS-MODEL預(yù)測(cè)結(jié)果表明,該突變位點(diǎn)并未對(duì)突變體蛋白三維結(jié)構(gòu)造成明顯影響。RT-qPCR結(jié)果表明,在幼穗發(fā)育至10 cm時(shí),中ROS響應(yīng)標(biāo)志基因、和,程序性細(xì)胞死亡相關(guān)基因和,過(guò)氧化氫酶編碼基因、、的表達(dá)量較WT大幅升高。此外,10 cm幼穗中過(guò)氧化氫酶(CAT)的活性較WT明顯下降。幼穗在發(fā)育后期頂端小穗中積累過(guò)量的ROS,產(chǎn)生程序性細(xì)胞死亡,最終導(dǎo)致頂端小穗發(fā)生退化。
水稻;穗頂端退化;活性氧;程序性細(xì)胞死亡
【研究意義】水稻是中國(guó)重要的糧食作物,在保障國(guó)家糧食安全方面具有重要作用。水稻產(chǎn)量由千粒重、每穗實(shí)粒數(shù)和單位面積有效穗數(shù)決定[1]。水稻穗部發(fā)育關(guān)系到產(chǎn)量,水稻穗的形成涉及復(fù)雜的生理生化過(guò)程,包括分生組織發(fā)育、花序建立和籽粒發(fā)育等。深入研究水稻穗發(fā)育相關(guān)基因?qū)μ岣咚井a(chǎn)量具有重要意義?!厩叭搜芯窟M(jìn)展】目前,已經(jīng)報(bào)道了許多與穗發(fā)育相關(guān)的重要基因,涉及幼穗發(fā)育的不同階段,如腋生分生組織發(fā)育、分生組織之間的轉(zhuǎn)化、分枝伸長(zhǎng)和末端小穗等的調(diào)控[2]。如,突變體()的枝梗數(shù)和每穗粒數(shù)的數(shù)量嚴(yán)重減少;相反,過(guò)量表達(dá)增加了枝梗和小穗的數(shù)目[3-5]。突變體()穗子顯著變大,分枝數(shù)和每穗小穗數(shù)也顯著增加[6]。()突變后分生組織活性增強(qiáng),穗軸與分枝長(zhǎng)度縮短,一次、二次枝梗數(shù)目增加[7]。()編碼一個(gè)ERF/AP2轉(zhuǎn)錄因子,在禾本科植物中高度保守。強(qiáng)突變體的穗子嚴(yán)重卷曲、末端小穗被更高階的輪狀分枝取代[8]。在水稻、玉米、谷子等作物的產(chǎn)量形成過(guò)程中,穗頂端退化對(duì)最終的產(chǎn)量形成有重要影響[9-11]。頂端小穗退化主要由遺傳因素調(diào)控,同時(shí)也受溫度和肥水等非生物脅迫的影響,是水稻生產(chǎn)中的重大問(wèn)題之一[12-14]。目前,已經(jīng)報(bào)道了一些與穗頂端退化相關(guān)的QTL,如—、、、等[14-17]。此外,利用穗頂端退化突變體已克隆數(shù)個(gè)涉及穗頂端退化的基因。()是第一個(gè)被克隆的水稻穗頂端退化的基因,編碼一個(gè)定位于細(xì)胞質(zhì)的包含SHD和VCA結(jié)構(gòu)域的SCAR/WAVE蛋白。與野生型相比,表現(xiàn)出株高變矮、葉尖枯萎、穗頂端嚴(yán)重退化、花藥花粉發(fā)育異常等多重表型[11]。Heng等[18]利用一個(gè)穗頂端退化突變體()克隆到一個(gè)控制穗頂端退化的顯性基因。該基因編碼一個(gè)具有轉(zhuǎn)運(yùn)蘋(píng)果酸功能的質(zhì)膜蛋白。細(xì)胞學(xué)分析發(fā)現(xiàn),穗頂端退化是由發(fā)生在幼穗發(fā)育后期的程序性細(xì)胞死亡造成的。()編碼一個(gè)定位于線粒體的含有胱硫醚β-合酶結(jié)構(gòu)域和DUF21結(jié)構(gòu)域的蛋白,突變體表現(xiàn)為穗頂端小穗退化和穗中間小穗的育性降低。研究表明,DPS1能夠與線粒體硫氧還蛋白Trx1和Trx20互作,并參與ROS清除。突變以后,突變體中脂肪酸代謝和ROS穩(wěn)態(tài)相關(guān)的生物過(guò)程受到影響,從而導(dǎo)致穗頂端退化[19]。Peng等[20]利用一個(gè)退化率高達(dá)60%的穗頂端退化突變體()克隆到另外一個(gè)控制水稻穗頂端退化的基因。編碼一個(gè)定位于細(xì)胞質(zhì)的類鈣調(diào)神經(jīng)磷酸酶B亞基互作蛋白激酶。的突變導(dǎo)致ROS在幼穗中積累,最終導(dǎo)致水稻穗細(xì)胞死亡產(chǎn)生頂端退化表型。編碼一個(gè)鈣氫離子交換蛋白,研究發(fā)現(xiàn)OsCAX1a參與Ca、Mn離子的轉(zhuǎn)運(yùn),突變后導(dǎo)致突變體中Ca、Mn等元素含量下降,產(chǎn)生葉尖枯和穗部頂端退化表型[21]。【本研究切入點(diǎn)】目前,已克隆的水稻穗頂端退化相關(guān)基因涉及多種調(diào)控途徑,但仍不能完全解釋水稻穗頂端退化相關(guān)的分子機(jī)理。因此,穗頂端退化的分子機(jī)理仍需深入研究?!緮M解決的關(guān)鍵問(wèn)題】本研究以粳稻品種武運(yùn)粳30號(hào)EMS誘變得到的穗頂端退化突變體為研究對(duì)象,通過(guò)對(duì)其進(jìn)行表型考察、組織化學(xué)分析、遺傳分析、基因定位以及基因表達(dá)分析,以期解析調(diào)控水稻穗頂端退化的分子機(jī)制,為提高水稻產(chǎn)量奠定基礎(chǔ)。
利用EMS(甲基磺酸乙酯)處理粳稻品種武運(yùn)粳30號(hào),田間篩選得到一份穗頂端退化的材料,經(jīng)多年種植穗頂端退化表型能穩(wěn)定遺傳,命名為(,)。將突變體分別與秈稻9311、II-32B雜交構(gòu)建F2分離群體,用于遺傳分析與基因定位。
在水稻抽穗后,WT和分別取10株主穗,統(tǒng)計(jì)每穗退化粒數(shù)等表型。于成熟期統(tǒng)計(jì)株高、每穗粒數(shù)、穗長(zhǎng)等表型。利用Excel和GraphPad Prism 8軟件統(tǒng)計(jì)、分析數(shù)據(jù)。
將WT和的小穗放入0.4%臺(tái)盼藍(lán)染液中,100℃染色10 min,然后,用2.5 mg·mL-1水合氯醛溶液脫色。將WT和的小穗放入0.25%伊文思藍(lán)染液中,室溫染色過(guò)夜。之后用無(wú)水乙醇脫色,掃描拍照保存。將WT和突變體小穗置于DAB染液(1 mg·mL-1)中,室溫染色8 h,染色完成后使用無(wú)水乙醇脫色,掃描拍照保存。
取不同發(fā)育時(shí)期的WT和的小穗0.1—0.2 g,按1﹕1 000比例分別加入H2O2、CAT提取液冰浴勻漿(每個(gè)樣品3次重復(fù))。8 500 r/min離心10 min,取上清放置冰上待測(cè)。分別使用蘇州科銘公司的H2O2含量測(cè)定試劑盒和CAT酶活性測(cè)定試劑盒測(cè)定H2O2含量、CAT酶活性。
將與秈稻II-32B、9311進(jìn)行正反交,獲得F1株系和F2群體,分別統(tǒng)計(jì)F1、F2中穗發(fā)育正常和穗頂端退化表型分離比進(jìn)行遺傳分析。采用CTAB法提取葉片DNA。利用水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室保存的均勻分布于12條染色體上的標(biāo)記引物分析親本多態(tài)性。在與秈稻II-32B構(gòu)建的F2群體中選取與表型一致的植株,利用多態(tài)性好的標(biāo)記對(duì)目的基因進(jìn)行連鎖分析。將目的基因初步定位于染色體某個(gè)區(qū)間。
利用RAP-DB(https://rapdb.dna.affrc.go.jp/)網(wǎng)站分析定位區(qū)間內(nèi)的開(kāi)放閱讀框(open reading frame,ORF),在Primer-Blast網(wǎng)站(https://www.ncbi.nlm.nih. gov/tools/primer-blast/)設(shè)計(jì)引物對(duì)WT和的候選基因測(cè)序。利用seqman軟件分析測(cè)序結(jié)果。
將WT和的氨基酸序列在SWISS-MODEL網(wǎng)站(https://swissmodel.expasy.org/)進(jìn)行同源建模,分析WT和的蛋白結(jié)構(gòu)。
水稻組織提取RNA后,使用ReverTra Ace qPCR PCR試劑盒反轉(zhuǎn)獲得cDNA備用。使用AceQ qPCR SYBR Green Master Mix和熒光定量PCR儀(Applied Biosystems 7900HT)進(jìn)行RT-qPCR檢測(cè),以作為內(nèi)參基因,利用2–ΔΔCt計(jì)算基因的表達(dá)量。
2.1.1表現(xiàn)為嚴(yán)重的穗部頂端退化(,)多年種植,穗部頂端退化性狀穩(wěn)定,抽穗后,的頂端小穗發(fā)白、不能夠正常發(fā)育、開(kāi)花,在成熟期后,頂端小穗風(fēng)干、脫落(圖1-A—C)。統(tǒng)計(jì)所有一次枝梗退化情況,發(fā)現(xiàn)絕大多數(shù)退化小穗位于頂端一次枝梗,約35%的一次枝梗發(fā)生退化,約20%的小穗發(fā)生退化(圖1-D—G)。此外,的株高低于WT,每穗粒數(shù)、穗長(zhǎng)、單株產(chǎn)量均下降(圖1-H—K)。
2.1.2 頂端小穗的退化發(fā)生在穗發(fā)育的后期 在種植過(guò)程中,發(fā)現(xiàn)其頂端小穗是在幼穗發(fā)育后期產(chǎn)生的退化現(xiàn)象。為了明確頂端小穗發(fā)生退化的時(shí)期,從幼穗發(fā)育1 cm時(shí)開(kāi)始觀察,在幼穗生長(zhǎng)至12 cm之前,的頂端小穗與WT沒(méi)有區(qū)別(圖2-A—D)。當(dāng)幼穗生長(zhǎng)至12 cm時(shí),能夠觀察到明顯的頂端小穗退化現(xiàn)象(圖2-E)。隨著幼穗后續(xù)不斷發(fā)育至成熟,這些小穗停止發(fā)育,逐漸萎縮干癟,在穗子成熟以后,十分容易脫落(圖2-F)。
A:WT(左)和paa21突變體(右)的株型,bars=10 cm;B:WT(左)和paa21突變體(右)抽穗期的穗子,bars=2 cm;C:WT(左)和paa21突變體(右)成熟的穗子,bars=2 cm;D:來(lái)自一個(gè)穗子的一次枝梗,1—16表示paa21中從穗頂部到底部的一次枝梗。E:D圖中對(duì)應(yīng)枝梗的正常小穗和退化小穗統(tǒng)計(jì),F(xiàn):WT與paa21突變體退化一次枝梗數(shù)目所占比例;G:每穗退化粒數(shù)所占比例;H:株高;I:每穗粒數(shù);J:穗長(zhǎng);K:?jiǎn)沃戤a(chǎn)量。數(shù)據(jù)是均值±標(biāo)準(zhǔn)誤;**表示t檢驗(yàn)下顯著差異(P≤0.01)。下同
A—F:WT(左)和paa21(右)穗發(fā)育不同時(shí)期的表型。依次為1、2、5、7、12和17 cm。bars=1 cm
由上述結(jié)果可知,的穗頂端正常發(fā)育出小穗,但是頂端小穗生長(zhǎng)到后期的時(shí)候停止生長(zhǎng),種子成熟后風(fēng)干脫落。據(jù)此,推斷頂端小穗的細(xì)胞發(fā)生了程序性細(xì)胞死亡(programmed cell death,PCD)。為了驗(yàn)證這個(gè)猜測(cè),利用臺(tái)盼藍(lán)和伊文思藍(lán)對(duì)WT和10—11 cm穗的頂端小穗進(jìn)行染色。結(jié)果發(fā)現(xiàn),與WT相比,突變體頂端小穗著色變深(圖3)。表明突變體的頂端小穗發(fā)生了程序性細(xì)胞死亡。
活性氧(reactive oxygen species,ROS)被認(rèn)為是PCD的重要觸發(fā)因素,較高濃度的ROS能夠誘導(dǎo)植物和動(dòng)物組織中的細(xì)胞死亡[22-23]。H2O2是ROS的一種,據(jù)報(bào)道,水稻穗頂部退化多數(shù)是由H2O2積累導(dǎo)致[18-19]。使用DAB染色檢測(cè)頂端小穗中H2O2的含量。與WT相比,在退化的頂端小穗中觀察到更強(qiáng)烈的DAB染色(圖4-A),表明穗中的H2O2含量更高(圖4-A)。
A:臺(tái)盼藍(lán)染色;B:伊文思藍(lán)染色
對(duì)幼穗不同發(fā)育階段的H2O2含量進(jìn)行測(cè)定,結(jié)果表明,5 cm長(zhǎng)的幼穗中,WT和的H2O2含量沒(méi)有明顯差異,但是,隨著幼穗的發(fā)育,幼穗中的H2O2含量較WT逐漸升高。特別是在10和15 cm長(zhǎng)的幼穗中(圖4-B)。該結(jié)果與之前的觀察結(jié)果一致,即當(dāng)穗長(zhǎng)達(dá)到12 cm時(shí),穗頂端退化開(kāi)始(圖2),表明ROS水平與穗退化之間可能存在相關(guān)性。
對(duì)的10 cm幼穗不同穗部的H2O2進(jìn)一步測(cè)定,與基部小穗相比,退化的頂端小穗和中間小穗的H2O2含量更高(圖4-C)。表明頂端小穗中積累的過(guò)量ROS是導(dǎo)致其發(fā)生PCD的原因。
A:WT和paa21頂端小穗DAB染色;B:不同發(fā)育時(shí)期WT和paa21頂端小穗中過(guò)氧化氫含量的測(cè)定;C:水稻穗不同部位小穗中過(guò)氧化氫含量的測(cè)定,不同字母表示通過(guò)方差分析和LSD測(cè)試進(jìn)行平均值比較的結(jié)果存在顯著差異(p<0.05),ap:穗頂端部分,mp:穗中間部分,bp:穗底部
為了確定的顯隱性以及是否受單基因控制,利用秈稻品種II-32B、9311與突變體進(jìn)行雜交,所有F1植株均表現(xiàn)出野生型表型。F1自交產(chǎn)生的F2群體中出現(xiàn)了野生型表型和穗頂端退化的表型。通過(guò)對(duì)F2群體中野生型和突變型的個(gè)體數(shù)目進(jìn)行統(tǒng)計(jì),4個(gè)群體中χ2值均小于3.84,符合3﹕1的分離比(表1),表明穗頂端退化的性狀由一對(duì)隱性核基因控制。
表1 paa21遺傳分析
為了克隆,利用和II-32B構(gòu)建的F2群體對(duì)進(jìn)行定位。從F2群體中選取21個(gè)表型個(gè)體,利用本實(shí)驗(yàn)室保存的232對(duì)SSR、InDel標(biāo)記將其初步定位于第2染色體上的標(biāo)記B2-19和B2-21之間。
為進(jìn)一步精細(xì)定位,利用418株單株,運(yùn)用新開(kāi)發(fā)的分子標(biāo)記,最終將其定位于H-2-6和H-2-13之間102 kb區(qū)間內(nèi),包含11個(gè)開(kāi)放閱讀框(open reading frame,ORF),對(duì)其測(cè)序比對(duì),發(fā)現(xiàn)基因第二外顯子發(fā)生一個(gè)C到T的突變,導(dǎo)致丙氨酸突變?yōu)槔i氨酸(圖5)。RAP-DB網(wǎng)站注釋編碼一個(gè)鋁激活蘋(píng)果酸轉(zhuǎn)運(yùn)蛋白(aluminum-activated malate transporter,ALMT),是的等位基因[18]。
圖5 PAA21的圖位克隆
ALMT7蛋白有7個(gè)跨膜螺旋[18],通過(guò)分析WT和蛋白氨基酸序列,結(jié)果表明,突變位點(diǎn)在第4個(gè)跨膜螺旋上(圖6-A)。此外,利用SWISS-MODEL網(wǎng)站對(duì)蛋白三維結(jié)構(gòu)進(jìn)行分析。結(jié)果表明,第二外顯子C到T的突變并未對(duì)蛋白三維結(jié)構(gòu)造成明顯影響(圖6-B—C)。
由于的穗中積累大量的ROS,為了研究ROS產(chǎn)生的分子效應(yīng),對(duì)3個(gè)ROS響應(yīng)標(biāo)志基因、和的表達(dá)進(jìn)行分析。這些基因?qū)儆赪RKY轉(zhuǎn)錄因子家族,在水稻、擬南芥中受ROS的強(qiáng)烈誘導(dǎo)表達(dá)[24-25]。在幼穗發(fā)育至10 cm時(shí),中3個(gè)基因的表達(dá)量較WT大幅升高(圖7-A—C)。
、編碼液泡加工酶(vacuolar processing enzymes,VPE),是植物程序性細(xì)胞死亡的關(guān)鍵調(diào)控因子[26-27]。RT-qPCR結(jié)果表明,幼穗發(fā)育至10 cm時(shí),中和的表達(dá)量較WT顯著升高(圖7-D—E)。
、、編碼過(guò)氧化氫酶,過(guò)氧化氫酶能夠催化H2O2形成H2O和O2,在ROS清除系統(tǒng)中發(fā)揮重要作用。檢測(cè)發(fā)育至5和10 cm的幼穗中這3個(gè)基因的表達(dá)情況。結(jié)果表明,5 cm幼穗中,3個(gè)基因在突變體和WT之間的表達(dá)量相似(圖7-F—H)。而在10 cm幼穗中,3個(gè)基因的表達(dá)量較WT明顯上升(圖7-F—H)。
此外,還對(duì)10 cm幼穗中過(guò)氧化氫酶(CAT)的活性進(jìn)行了測(cè)定。發(fā)現(xiàn)中CAT的活性明顯下降。說(shuō)明突變體中ROS的清除能力下降(圖7-I)。
M1—M6表示PAA21蛋白的跨膜螺旋結(jié)構(gòu),紅框指示突變位點(diǎn)
綜上所述,幼穗在發(fā)育后期頂端小穗中積累過(guò)量的ROS,產(chǎn)生程序性細(xì)胞死亡,最終導(dǎo)致頂端小穗發(fā)生退化。
水稻穗頂端退化會(huì)造成產(chǎn)量上的損失。迄今為止,已經(jīng)報(bào)道了多個(gè)導(dǎo)致水稻穗部頂端退化的基因,如、、、、、和[11, 18-20, 28-31]。這些基因涉及內(nèi)質(zhì)網(wǎng)應(yīng)激、營(yíng)養(yǎng)物質(zhì)運(yùn)輸、ROS穩(wěn)態(tài)調(diào)節(jié)等多個(gè)生理過(guò)程,穎花退化的分子機(jī)制和生理機(jī)理還有待進(jìn)一步豐富[32]。
本研究在EMS突變體庫(kù)中篩選獲得一個(gè)以武運(yùn)粳30號(hào)為背景的穗頂端退化突變體。的穗頂端會(huì)發(fā)生嚴(yán)重的退化現(xiàn)象,導(dǎo)致其穗子變短、每穗粒數(shù)減少、單株產(chǎn)量下降(圖1)。退化小穗數(shù)占每穗總穎花數(shù)的比例約為20%,退化小穗主要分布在穗頂端,并且處于穗軸上部的一次枝梗退化的穎花占比大(圖1)。發(fā)現(xiàn)的幼穗發(fā)育到12 cm時(shí),頂端小穗發(fā)生退化,表明參與維持水稻穗發(fā)育(圖2)。遺傳分析結(jié)果表明,表型受一對(duì)隱性核基因控制(表1)?;蚨ㄎ唤Y(jié)果表明,突變體在的第二個(gè)外顯子中具有單核苷酸替換(C突變A),導(dǎo)致在PAA21第129個(gè)殘基處丙氨酸(Ala)被纈氨酸(Val)替換,但并沒(méi)有造成蛋白三維結(jié)構(gòu)發(fā)生明顯改變(圖5和圖6)。編碼一個(gè)鋁激活的蘋(píng)果酸轉(zhuǎn)運(yùn)蛋白,預(yù)測(cè)有7個(gè)跨膜螺旋。的突變位點(diǎn)在第4個(gè)跨膜螺旋上(圖6-A),推斷該突變可能導(dǎo)致跨膜結(jié)構(gòu)改變,無(wú)法正常轉(zhuǎn)運(yùn)蘋(píng)果酸,產(chǎn)生了穗頂端退化的表型。
圖7 活性氧、PCD相關(guān)基因的表達(dá)量及過(guò)氧化氫酶活性
RA-PDB網(wǎng)站注釋編碼一個(gè)鋁激活的蘋(píng)果酸轉(zhuǎn)運(yùn)蛋白OsALMT。Heng等[18]利用以Kittake為背景的穗頂端退化突變體研究了該基因通過(guò)參與蘋(píng)果酸的轉(zhuǎn)運(yùn)維持穗發(fā)育的功能,并將其命名為。因此,是新的等位基因。與本研究不同的是,是一個(gè)顯性突變,而本研究中的則是一個(gè)隱性突變。的突變位點(diǎn)位于第二個(gè)內(nèi)含子和第三個(gè)外顯子之間的剪接位點(diǎn),導(dǎo)致mRNA剪接發(fā)生改變,產(chǎn)生了2種錯(cuò)誤的轉(zhuǎn)錄本[18]。而的突變位點(diǎn)則是第二外顯子上,僅造成一個(gè)氨基酸的替換。此外,彭永彬[33]利用穗頂端退化突變體,與本研究類似,也是一個(gè)隱性突變。在第三外顯子上發(fā)生了一個(gè)單堿基替換,導(dǎo)致對(duì)應(yīng)編碼氨基酸由精氨酸變?yōu)橘嚢彼帷R虼?,、和中顯隱性的差異可能是突變方式不同導(dǎo)致的。
活性氧是PCD的重要觸發(fā)因素,ROS的過(guò)度積累使細(xì)胞膜高度氧化,進(jìn)而影響細(xì)胞通透性,最終導(dǎo)致細(xì)胞死亡[23, 34-35]。本研究臺(tái)盼藍(lán)和伊文思藍(lán)染色結(jié)果表明,頂端退化小穗中發(fā)生了PCD(圖3)。DAB染色、H2O2含量測(cè)定發(fā)現(xiàn),頂端退化小穗中積累了大量的ROS(圖4)。此外,穗部的PCD相關(guān)基因和ROS清除相關(guān)基因的表達(dá)水平顯著增加,過(guò)氧化氫酶的活性也大幅下降(圖7)。結(jié)果表明,由于ROS在穗頂端的過(guò)度積累而引起的PCD可能是穗頂端退化的原因。綜上所述,推測(cè)的突變導(dǎo)致ROS過(guò)度積累,最終誘導(dǎo)細(xì)胞死亡。
EMS誘變獲得一個(gè)水稻穗頂端退化突變體,突變表型受一對(duì)隱性核基因控制,為突變所致。穗發(fā)育后期積累大量ROS,誘導(dǎo)細(xì)胞死亡,產(chǎn)生穗頂端退化表型。
[1] XING Y, ZHANG Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010, 61: 421-442.
[2] TEO Z W N, SONG S, WANG Y Q, LIU J, YU H. New insights into the regulation of inflorescence architecture. Trends in Plant Science, 2014, 19(3): 158-165.
[3] IKEDA-KAWAKATSU K, YASUNO N, OIKAWA T, IIDA S, NAGATO Y, MAEKAWA M, KYOZUKA J. Expression level ofdetermines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiology, 2009, 150(2): 736-747.
[4] IKEDA K, ITO M, NAGASAWA N, KYOZUKA J, NAGATO Y. Rice, encoding an F-box protein, regulates meristem fate. The Plant Journal, 2007, 51(6): 1030-1040.
[5] IKEDA K, NAGASAWA N, NAGATO Y.temporally regulates meristem identity in rice. Developmental Biology, 2005, 282(2): 349-360.
[6] LI M, TANG D, WANG K, WU X, LU L, YU H, GU M, YAN C, CHENG Z. Mutations in the F-box geneimprove the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
[7] HUANG X, QIAN Q, LIU Z, SUN H, HE S, LUO D, XIA G, CHU C, LI J, FU X. Natural variation at thelocus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497.
[8] KOMATSU M, MAEKAWA M, SHIMAMOTO K, KYOZUKA J. Theandgenes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Developmental Biology, 2001, 231(2): 364-373.
[9] WANG H, TANG S, ZHI H, XING L, ZHANG H, TANG C, WANG E, ZHAO M, JIA G, FENG B, DIAO X. The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet. the Crop Journal, 2022, 10(2): 342-353.
[10] PEI Y, DENG Y, ZHANG H, ZHANG Z, LIU J, CHEN Z, CAI D, LI K, DU Y, ZANG J, XIN P, CHU J, CHEN Y, ZHAO L, LIU J, CHEN H. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. The Plant Cell, 2022, 34(6): 2222-2241.
[11] BAI J, ZHU X, WANG Q, ZHANG J, CHEN H, DONG G, ZHU L, ZHENG H, XIE Q, NIAN J, CHEN F, FU Y, QIAN Q, ZUO J. Riceencodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015, 169(2): 1179-1191.
[12] 陳惠哲, 朱德峰, 林賢青, 張玉屏. 穗肥施氮量對(duì)兩優(yōu)培九枝梗及穎花分化和退化的影響. 浙江農(nóng)業(yè)學(xué)報(bào), 2008, 20(3): 181-185.
CHEN H Z, ZHU D F, LIN X Q, ZHANG Y P. Effect of nitrogen levels in spike stage on differentiation and degeneration of branches and spikelet of hybrid rice cultivar Liangyoupeijiu. Acta Agriculturae Zhejiangensis, 2008, 20(3): 181-185. (in Chinese)
[13] 王亞梁, 張玉屏, 朱德峰, 向鏡, 武輝, 陳惠哲, 張義凱. 水稻穗分化期高溫脅迫對(duì)穎花退化及籽粒充實(shí)的影響. 作物學(xué)報(bào), 2016, 42(9): 1402-1410.
WANG Y L, ZHANG Y P, ZHU D F, XIANG J, WU H, CHEN H Z, ZHANG Y K. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice. Acta Agronomica Sinica, 2016, 42(9): 1402-1410. (in Chinese)
[14] 張興元, 羅勝, 王敏, 叢楠, 趙志超, 程治軍. 與SP1互作的水稻穗頂部退化基因的精細(xì)定位. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(12): 2287-2295.
ZHANG X Y, LUO S, WANG M, CONG N, ZHAO Z C, CHENG Z J. Fine mapping of rice panicle apical abortion geneinteracting with. Scientia Agricultura Sinica, 2015, 48(12): 2287-2295. (in Chinese)
[15] TAN C J, SUN Y J, XU H S, YU S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011, 130(2): 177-184.
[16] 徐華山, 孫永建, 周紅菊, 余四斌. 構(gòu)建水稻優(yōu)良恢復(fù)系背景的重疊片段代換系及其效應(yīng)分析. 作物學(xué)報(bào), 2007, 33(6): 979-986.
XU H S, SUN Y J, ZHOU H J, YU S B. Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agronomica Sinica, 2007, 33(6): 979-986. (in Chinese)
[17] CHENG Z J, MAO B G, GAO S W, ZHANG L, WANG J L, LEI C L, ZHANG X, WU F Q, GUO X P, WAN J M. Fine mapping of, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 2011, 53(9): 710-718.
[18] HENG Y, WU C, LONG Y, LUO S, MA J, CHEN J, LIU J, ZHANG H, REN Y, WANG M, TAN J, ZHU S, WANG J, LEI C, ZHANG X, GUO X, WANG H, CHENG Z, WAN J. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. The Plant Cell, 2018, 30(4): 889-906.
[19] ZAFAR S A, PATIL S B, UZAIR M, FANG J, ZHAO J, GUO T, YUAN S, UZAIR M, LUO Q, SHI J, SCHREIBER L, LI X.() encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytologist, 2020, 225(1): 356-375.
[20] PENG Y B, HOU F X, BAI Q, XU P Z, LIAO Y X, ZHANG H Y, GU C J, DENG X S, WU T K, CHEN X Q, ALI A, WU X J. Rice calcineurin b-like protein-interacting protein kinase 31 (OsCIPK31) is involved in the development of panicle apical spikelets. Frontiers in Plant Science, 2018, 9.
[21] 王中豪. 水稻鈣氫離子交換蛋白基因的圖位克隆和功能分析[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2021.
WANG Z H. Map-based cloning and functional analysis of the Ca2+/H+exchanger genein rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[22] LOOR G, KONDAPALLI J, SCHRIEWER J M, CHANDEL N S, VANDEN HOEK T L, SCHUMACKER P T. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Biology and Medicine, 2010, 49(12): 1925-1936.
[23] MITTLER R. ROS are good. Trends in Plant Science, 2017, 22(1): 11-19.
[24] LI Z, MO W, JIA L, XU Y C, TANG W, YANG W, GUO Y L, LIN R. Rice FLUORESCENT1 is involved in the Regulation of Chlorophyll. Plant Cell Physiology, 2019, 60(19): 2307-2318.
[25] SU T, WANG P, LI H, ZHAO Y, LU Y, DAI P, REN T, WANG X, LI X, SHAO Q, ZHAO D, ZHAO Y, MA C. Thecatalase triple mutant reveals important roles of catalases and peroxisome- derived signaling in plant development. Journal of Integrative Plant Biology, 2018, 60(7): 591-607.
[26] DENG M, BIAN H, XIE Y, KIM Y, WANG W, LIN E, ZENG Z, GUO F, PAN J, HAN N, WANG J, QIAN Q, ZHU M. Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. The FEBS Journal, 2011, 278(24): 4797-4810.
[27] LU W Y, DENG M J, GUO F, WANG M Q, ZENG Z H, HAN N, YANG Y N, ZHU M Y, BIAN H W. Suppression ofenhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice, 2016, 9.
[28] DAI D, ZHANG H, HE L, CHEN J, DU C, LIANG M, ZHANG M, WANG H, MA L. Panicle apical abortion 7 regulates panicle development in rice (L.). International Journal of Molecular Sciences, 2022, 23(16): 9487.
[29] HU P, TAN Y Q, WEN Y, FANG Y X, WANG Y Y, WU H, WANG J G, WU K X, CHAI B Z, ZHU L, ZHANG G H, GAO Z Y, REN D Y, ZENG D L, SHEN L, XUE D W, QIAN Q, HU J. LMPA regulates lesion mimic leaf and panicle development through ROS-induced PCD in rice. Frontiers in Plant Science, 2022, 13.
[30] YANG F, XIONG M, HUANG M, LI Z, WANG Z, ZHU H, CHEN R, LU L, CHENG Q, WANG Y, TANG J, ZHUANG H, LI Y. Panicle apical abortion 3 controls panicle development and seed size in rice. Rice, 2021, 14(1): 68.
[31] WANG Q L, SUN A Z, CHEN S T, CHEN L S, GUO F Q. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants, 2018, 4(5): 280-288.
[32] ALI A, XU P, RIAZ A, WU X. Current advances in molecular mechanisms and physiological basis of panicle degeneration in rice. International Journal of Molecular Sciences, 2019, 20(7): 1613.
[33] 彭永彬. 水稻穗頂退化突變體和的基因克隆與功能分析[D]. 成都: 四川農(nóng)業(yè)大學(xué), 2018.
PENG Y B. Cloning and functional charactization ofand
[34] WASZCZAK C, CARMODY M, KANGASJ?RVI J. Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 2018, 69(1): 209-236.
[35] MHAMDI A, VAN BREUSEGEM F. Reactive oxygen species in plant development. Development, 2018, 145(15).
Phenotypic analysis and gene cloning of rice panicle apical abortion mutant
HE Lei1, LU Kai1, ZHAO ChunFang1, YAO Shu1, ZHOU LiHui1, ZHAO Ling1, CHEN Tao1, ZHU Zhen1, ZHAO QingYong1, LIANG WenHua1, WANG CaiLin1, ZHU Li2, ZHANG YaDong1
1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement/Key laboratory of Jiangsu Province for Agrobiology, Nanjing 210014;2China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 310006
Rice panicle apical abortion affects yield. Identification and cloning of genes related to rice panicle apical abortion can enrich the molecular mechanism of rice panicle development regulation, and provide theoretical basis and genetic resources for rice high-yield molecular design breeding.Here, a stably inherited() mutant was screened from EMS mutant library of the japonica rice variety "Wuyunjing 30". Agronomic traits, such as ratio of degraded primary branches, degraded apical spikelets, grains per panicle, plant height, panicle length, and grain yield per plant, were statistically analyzed. Trypan blue and Evans blue staining were used to detect whether programmed cell death occurred in the apical spikelets. H2O2content in young panicles at different development stages and different panicle parts of WT andwas determined. Genetic analysis was carried out by reciprocal cross ofwith indica rice II-32B and 9311 respectively. The F2population constructed by crossingwith indica rice II-32B was used for gene mapping and cloning. The three-dimensional structure of wild-type andproteins were predicted using SWISS-MODEL website. The expression levels of ROS response marker genes, programmed cell death related genes and catalase related genes were analyzed by RT-qPCR.produced panicle apical abortion phenotype and the degenerated spikelets were mainly located on the primary branches at the apical panicle. The plant height, grain number per panicle, panicle length and grain yield per plant ofwere lower than those of WT. After observing the young panicles at different development stages, we found that themutant had a panicle apical abortion phenotype when panicle developed to 12 cm. Trypan blue and Evans blue staining results showed that the apical spikelets of themutant had programmed cell death. Stronger DAB staining was observed in the degenerated apical spikelets ofthan WT. The results of H2O2content determination showed that higher level of ROS was accumulated in panicle ofcompared with WT. Genetic analysis suggested thatmutant phenotype is controlled by a pair of recessive nuclear genes. The results of map-based cloning showed that a C to T mutation occurred in the second exon of, resulting in the mutation of alanine to valine. This gene encodes an aluminum activated malate transporter, ALMT7. The mutation site was located at the fourth transmembrane helix. SWISS-MODEL prediction results showed that the mutation site did not significantly affect the three-dimensional structure of the mutant protein. The expression level of ROS response marker genes,andwas significantly higher than that in WT when the young spike developed to 10 cm. Compared with WT, the expression level of programmed cell death related genesandincreased significantly in. The expression level of,andwhich encode catalase in 10 cm young panicle ofwas significantly higher than that of WT. The activity of CAT in10 cm young spikelet was significantly lower than that of WT.accumulate excess ROS in the apical spikelet at late stage of panicle development, resulting in programmed cell death, which eventually leads to the degeneration of the apical spikelet. These results lay a good foundation for further enriching the genetic regulatory network of panicle development.
rice; panicle apical abortion; reactive oxygen species; programmed cell death
2022-09-27;
2022-10-24
江蘇省種業(yè)振興揭榜掛帥項(xiàng)目(JBGS[2021]001)、江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2022336)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-01)
赫磊,E-mail:helei@jaas.ac.cn。通信作者朱麗,E-mail:zhuli05@caas.cn。通信作者張亞?wèn)|,E-mail:zhangyd@jaas.ac.cn
(責(zé)任編輯 李莉)