劉戀,唐志鵬,李菲菲,熊江,呂壁紋,馬小川,唐超蘭,李澤航,周鐵,盛玲,盧曉鵬
‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’貯藏期品質(zhì)、貯藏特性及果皮轉(zhuǎn)錄組分析
劉戀1,2,唐志鵬3,李菲菲4,熊江1,2,呂壁紋1,2,馬小川1,2,唐超蘭1,2,李澤航1,2,周鐵1,2,盛玲1,2,盧曉鵬1,2*
1湖南農(nóng)業(yè)大學(xué)園藝學(xué)院,長(zhǎng)沙 410128;2國家柑橘改良中心長(zhǎng)沙分中心,長(zhǎng)沙 410128;3廣西大學(xué)農(nóng)學(xué)院,南寧 530005;4湖南省農(nóng)業(yè)科學(xué)院園藝研究所,長(zhǎng)沙 430125
【目的】金柑是帶皮食用的柑橘類水果,果皮性狀不僅關(guān)系到消費(fèi)者口感,也對(duì)金柑采后貯藏保鮮產(chǎn)生一定影響。同一遺傳背景下的3個(gè)金柑品種—‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’果皮差異大。比較3個(gè)品種貯藏過程中的內(nèi)在品質(zhì)和貯藏特性,并對(duì)其果皮進(jìn)行轉(zhuǎn)錄組分析,探討3個(gè)品種金柑果皮差異對(duì)其采后特性的影響,旨在為金柑品質(zhì)調(diào)控及采后貯藏保鮮提供新思路新方法。【方法】在商業(yè)成熟度采收‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’果實(shí)進(jìn)行貯藏試驗(yàn),測(cè)定貯藏期間果實(shí)失水率、可溶性固形物、酸、硬度、剪切力、果皮木質(zhì)素及纖維素,并對(duì)3個(gè)品種成熟果皮組織材料進(jìn)行轉(zhuǎn)錄組測(cè)序并驗(yàn)證?!窘Y(jié)果】采后貯藏分析表明,‘滑皮金柑’失水率高于‘融安金柑’及‘脆蜜金柑’,最早出現(xiàn)果皮皺縮現(xiàn)象,貯藏第99天時(shí),滑皮金柑失水率達(dá)38.6%,顯著高于‘融安金柑’的5.8%和‘脆蜜金柑’的14.3%。3個(gè)品種可溶性固形物和酸含量在貯藏期總體呈上升趨勢(shì),‘脆蜜金柑’可溶性固形物含量始終高于其他兩者,貯藏22 d后,‘滑皮金柑’酸含量迅速下降并持續(xù)低于‘脆蜜金柑’和‘融安金柑’。‘脆蜜金柑’和‘滑皮金柑’內(nèi)在品質(zhì)優(yōu)于‘融安金柑’。從結(jié)構(gòu)上來看,‘融安金柑’貯藏過程中變化較大,貯藏第44天時(shí)細(xì)胞已破損明顯。‘滑皮金柑’‘脆蜜金柑’果實(shí)硬度、剪切力顯著強(qiáng)于‘融安金柑’;‘滑皮金柑’‘脆蜜金柑’果皮木質(zhì)素含量(A280·g-1)分別為1.41和1.31,顯著高于‘融安金柑’木質(zhì)素含量(1.12),兩者在纖維素含量上也顯著高于‘融安金柑’。針對(duì)果皮的轉(zhuǎn)錄組分析表明,‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’果皮在苯丙烷生物合成途徑上存在顯著差異,‘滑皮金柑’與‘脆蜜金柑’差異較小,‘融安金柑’與二者差異均較大?;虮磉_(dá)分析顯示,‘滑皮金柑’及‘脆蜜金柑’9個(gè)木質(zhì)素合成相關(guān)基因表達(dá)量均顯著高于‘融安金柑’。【結(jié)論】3個(gè)金柑品種常溫條件下可短期貯藏,采后一個(gè)月內(nèi)銷售完較為適宜。采后貯藏過程中‘滑皮金柑’因水分散失過快最早失去商品價(jià)值,‘脆蜜金柑’外觀和內(nèi)在品質(zhì)最好?!嗝劢鸶獭麑?shí)硬度、剪切力、貯藏性較強(qiáng)與果皮木質(zhì)素和纖維素含量較高、有色層和白皮層細(xì)胞排列緊密密切相關(guān)。苯丙烷生物合成代謝較弱引起木質(zhì)素含量差異與‘融安金柑’果皮韌性差密切相關(guān)。
金柑;貯藏;轉(zhuǎn)錄組;木質(zhì)素
【研究意義】金柑,俗名金桔,蕓香科(Rutaceae)金柑屬()植物,是唯一一種帶皮食用的柑橘類水果,其風(fēng)味獨(dú)特、營養(yǎng)豐富,深受廣大消費(fèi)者的喜愛。金柑成熟期多在11月下旬至12月中旬,由于該時(shí)期上市柑橘類型較多,種植者通常貯藏或延遲采收至春節(jié)前后實(shí)現(xiàn)錯(cuò)峰上市?!诎步鸶獭そ鸶獭啊嗝劢鸶獭钱?dāng)前產(chǎn)業(yè)中主栽的金柑品種,后兩者為‘融安金柑’的變異,前人研究報(bào)道3個(gè)品種在果實(shí)品質(zhì)、果皮硬度、油胞數(shù)量等方面存在明顯差異。果皮是影響金柑口感及采后貯藏性能的首要因素,探討3個(gè)金柑品種果皮差異及其對(duì)采后貯藏特性的影響,可為金柑采后貯藏、品質(zhì)調(diào)控提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】柑橘類果實(shí)常用的貯藏保鮮方法有常溫保存法[1]、低溫貯藏法[2]、化學(xué)保鮮劑涂抹法[3-4]、物理保鮮法[5]、氣調(diào)法[6]、留樹保鮮法[7]等,目前報(bào)道的金柑貯藏保鮮研究主要有留樹保鮮[8]、水楊酸[9-11]、次氯酸鈣[12]化合物、殼聚糖[13]涂抹等方法。李明娟等[8]對(duì)金柑采取避雨栽培留樹保鮮方式,結(jié)果表明金柑可延長(zhǎng)采收期至翌年4月,但不能緩解果實(shí)硬度下降問題。鄧光宙等[9]采前對(duì)金柑進(jìn)行水楊酸處理,可降低采后貯藏中金柑失水率及腐爛率,王淑娟等[14]用蒽酮類化合物處理金柑,也達(dá)到相同的功效。另外,劉萍等[12]報(bào)道次氯酸鈣的處理對(duì)降低金柑果實(shí)腐爛率有一定的作用,且不同時(shí)期采后金柑貯藏所需的最佳次氯酸鈣濃度不一致。不同的貯藏方式對(duì)金柑采后貯藏產(chǎn)生不同的影響,不同金柑栽培品種之間貯藏性也存在一定差異。果實(shí)中木質(zhì)素含量對(duì)果實(shí)采后環(huán)境脅迫、病蟲害抵御產(chǎn)生積極影響,但同時(shí)木質(zhì)素含量過多也影響果實(shí)食用口感。木質(zhì)素是一類復(fù)雜的苯丙烷類化合物,可主要分為3種單體:愈創(chuàng)木基木質(zhì)素(G-木質(zhì)素)、紫丁香基木質(zhì)素(S-木質(zhì)素)和對(duì)-羥基苯基丙烷木質(zhì)素(H-木質(zhì)素)[15]。木質(zhì)素在植物體的機(jī)械支持、水分運(yùn)輸及防御中起到重要作用[16-17],但對(duì)于可食用的植物來說,木質(zhì)素含量影響食物品質(zhì),如園藝產(chǎn)品的質(zhì)地與口感劣變[18-20]。潘騰飛等[21]對(duì)‘琯溪蜜柚’采后貯藏研究發(fā)現(xiàn)汁胞?;潭扰c其木質(zhì)素含量呈正相關(guān)?!颈狙芯壳腥朦c(diǎn)】廣西壯族自治區(qū)融安縣是金柑主產(chǎn)區(qū)之一,主要栽培品種為‘融安金柑’,自‘融安金柑’的實(shí)生變異品種‘滑皮金柑’發(fā)現(xiàn)以來,因其果皮油胞少、辛辣味弱,受到果農(nóng)及政府的大力推廣[22],但‘滑皮金柑’也存在果實(shí)略小、果汁略少、果皮較韌的缺點(diǎn)。2014年3月‘滑皮金柑’的芽變品種‘脆蜜金柑’通過了廣西農(nóng)作物品種審定委員會(huì)審定[23],該品種不僅油胞少且果大汁多。質(zhì)地脆爽,成為近年來廣大果農(nóng)種植的熱門品種。遺傳背景相似的3個(gè)品種果皮上呈明顯變異,果皮上的差異由什么原因造成,果皮對(duì)果實(shí)的貯藏性又有何影響都有待研究。【擬解決的關(guān)鍵問題】本研究通過對(duì)‘融安金柑’‘滑皮金柑’和‘脆蜜金柑’果皮進(jìn)行生理生化分析,并探究3個(gè)金柑品種果皮差異對(duì)果實(shí)采后貯藏性能的影響,通過轉(zhuǎn)錄組測(cè)序探索果皮差異形成的原因,為金柑果皮發(fā)育及貯藏保鮮提供理論依據(jù)。
試驗(yàn)于2018年12月至2019年3月在國家柑橘改良中心長(zhǎng)沙分中心進(jìn)行。
1.1.1 試驗(yàn)材料及貯藏方法 ‘融安金柑’(RA)、‘滑皮金柑’(HP)及‘脆蜜金柑’(CM)于商業(yè)成熟度時(shí)采摘自廣西壯族自治區(qū)融安縣,隨即運(yùn)回至國家柑橘改良中心進(jìn)行室溫貯藏,貯藏期為99 d,每11 d拍照記錄并取樣進(jìn)行采后指標(biāo)測(cè)定。
1.1.2 果實(shí)失水率測(cè)定 采用稱重法,3個(gè)品種分別挑選30個(gè)無損傷的完好果實(shí),編號(hào)后稱首重,每11 d再次稱重,失水率=(首重-當(dāng)次重量)/首重。
1.1.3 果實(shí)可溶性固形物及酸含量測(cè)定 采用PAL-BX/ACID Master kit(日本ATAGO公司)儀器對(duì)3個(gè)品種金柑果實(shí)可溶性固形物及酸含量進(jìn)行測(cè)定,3次重復(fù)。
1.1.4 石蠟切片觀察 取采后0、44和88 d的3個(gè)品種果實(shí)切取赤道部橫截面,用FAA固定液固定。石蠟切片樣品制備及觀察參考梁社堅(jiān)等[24]的方法進(jìn)行。
1.1.5 果實(shí)硬度及剪切力測(cè)定 采用TA.XT Plus(英國Stable Micro Systems公司)質(zhì)構(gòu)儀進(jìn)行果實(shí)硬度及剪切力的測(cè)定,數(shù)據(jù)運(yùn)用Texture Exponent軟件進(jìn)行分析,每品種每次重復(fù)10個(gè)果,測(cè)試具體參數(shù)如下。
硬度:測(cè)試探頭為P/100,測(cè)試前速度為1 mm?s-1,測(cè)試中和測(cè)試后速度為2 mm?s-1,壓縮程度為30%,觸發(fā)值為5 g。
剪切力:測(cè)試探頭為HDP/BS,測(cè)試前速度為1 mm?s-1,測(cè)試中和測(cè)試后速度為5 mm?s-1,距離為40 mm,觸發(fā)值為5 g。
1.1.6 果皮纖維素木質(zhì)素含量測(cè)定 木質(zhì)素和纖維素測(cè)定方法均參考ZHAO等[25]的方法進(jìn)行。
‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’于成熟期進(jìn)行采樣。采集樹體中上部4個(gè)方向無病蟲害、無損傷的健康果實(shí),立即分離果皮液氮速凍保存至-80℃冰箱。委托廣州基迪奧生物科技有限公司對(duì)成熟期‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’果皮進(jìn)行高通量轉(zhuǎn)錄組測(cè)序,測(cè)序平臺(tái)為Illumina HiSeq 2000,每品種3個(gè)重復(fù)。測(cè)序所得All-Unigene進(jìn)行無參考基因組分析。
使用RNAprep Pure多糖多酚植物總RNA提取試劑盒(天根生化科技(北京)有限公司)分別對(duì)3個(gè)金柑品種成熟果皮進(jìn)行提取,方法參照試劑盒說明書。使用FastKing RT Kit反轉(zhuǎn)錄試劑盒(天根生化科技(北京)有限公司)將RNA反轉(zhuǎn)為cDNA,方法參照試劑盒說明書。熒光定量PCR引物(表1)使用Beacon designer軟件進(jìn)行設(shè)計(jì),為內(nèi)參基因,使用BIO-RAD CFX96Touch定量PCR儀進(jìn)行擴(kuò)增,反應(yīng)體系為10 μL:適宜體積的cDNA模板,SYBR Premix ExTaq(2×)5 μL,上、下游引物(2.5 μmol?L-1)各0.5 μL,最后加DEPC水至終體積10 μL。擴(kuò)增條件為:95℃預(yù)變性30 s后,95℃變性5 s,58℃ 15 s,72℃ 20 s,40個(gè)循環(huán),每個(gè)樣品設(shè)3個(gè)重復(fù)。數(shù)據(jù)分析根據(jù)2-ΔΔCT法進(jìn)行。
表1 木質(zhì)素合成相關(guān)基因熒光定量引物
用Adobe Photoshop CS6軟件進(jìn)行圖片處理,用Excel軟件進(jìn)行數(shù)據(jù)處理,用GraphPad Prism軟件進(jìn)行作圖,用SPSS軟件、鄧肯式新復(fù)極差法進(jìn)行方差分析。
貯藏過程中,3個(gè)品種從果實(shí)外觀形態(tài)和內(nèi)部結(jié)構(gòu)上都發(fā)生了一系列的變化。室溫貯藏下的‘滑皮金柑’在貯藏第22天時(shí),果頂處就出現(xiàn)了輕微的皺縮現(xiàn)象,隨著貯藏時(shí)間的推移,皺縮現(xiàn)象越來越明顯,由開始時(shí)的果頂處向果實(shí)中部延伸,貯藏第77天時(shí),果實(shí)上半部基本皺縮,貯藏99天時(shí),果實(shí)基本全部皺縮?!诎步鸶獭啊嗝劢鸶獭瑯映霈F(xiàn)皺縮現(xiàn)象,但情況較‘滑皮金柑’輕,均在貯藏第66天左右輕微出現(xiàn)皺縮,‘融安金柑’與‘滑皮金柑’表現(xiàn)出同樣的皺縮規(guī)律,由頂部開始,隨貯藏時(shí)間延長(zhǎng)而痕跡加深,但‘脆蜜金柑’僅表現(xiàn)為隨果實(shí)的軟化出現(xiàn)果皮凹陷,果面不平整(圖1-A)。貯藏過程中,‘滑皮金柑’失水率最高,‘融安金柑’次之,‘脆蜜金柑’最低,‘滑皮金柑’失水率始終大于后兩者,3個(gè)品種間失水率差異均達(dá)到顯著水平。貯藏第99天時(shí),‘滑皮金柑’失水率達(dá)38.6%,顯著高于‘融安金柑’(5.8%)和‘脆蜜金柑’(14.3%)(圖1-B)。
RA:融安金柑;HP:滑皮金柑;CM:脆蜜金柑。不同小寫字母表示差異顯著(P<0.05)。下同
‘融安金柑’外果皮存在大小不一的空腔,即油胞,‘滑皮金柑’和‘脆蜜金柑’未見明顯油胞(圖2-A)。3個(gè)品種金柑外果皮細(xì)胞較中果皮細(xì)胞排列更為緊密,貯藏44 d時(shí),中果皮細(xì)胞間隙變大、出現(xiàn)破損現(xiàn)象,且隨著貯藏時(shí)間的延長(zhǎng),變化程度加深。貯藏44 d時(shí),‘融安金柑’果皮細(xì)胞破損明顯,88 d時(shí)破損解離情況嚴(yán)重;‘滑皮金柑’44 d時(shí)內(nèi)部結(jié)構(gòu)變化較小,到貯藏88 d時(shí)較為明顯;‘脆蜜金柑’在整個(gè)貯藏期間變化均較緩慢(圖2-B)。
A:果皮整體情況;B:中果皮結(jié)構(gòu)變化 A: Overview of fruit peel; B: Structure changes of mesocarp
‘融安金柑’‘滑皮金柑’和‘脆蜜金柑’可溶性固形物及酸含量差異明顯,貯藏過程中呈現(xiàn)明顯的變化趨勢(shì)。果實(shí)成熟時(shí),‘脆蜜金柑’可溶性固形物含量最高,‘融安金柑’次之,‘滑皮金柑’最低;貯藏22 d時(shí),‘滑皮金柑’可溶性固形物含量顯著上升,與‘融安金柑’含量持平。貯藏過程中,3個(gè)品種可溶性固形物含量不斷上升,總體表型為‘脆蜜金柑’含量始終顯著大于其他兩者,‘滑皮金柑’和‘融安金柑’間無顯著差異(圖3-A)。與可溶性固形物含量變化不同,金柑果實(shí)酸含量在貯藏期中呈現(xiàn)波動(dòng)。貯藏前期,‘滑皮金柑’酸含量顯著高于‘脆蜜’和‘融安金柑’,貯藏22 d時(shí)‘滑皮金柑’酸含量迅速下降并持續(xù)低于‘脆蜜’和‘融安金柑’,‘脆蜜’和‘滑皮金柑’貯藏過程中酸含量變化一致。3個(gè)品種金柑貯藏過程中酸含量大致呈現(xiàn)波動(dòng)上升趨勢(shì),且在貯藏22 d時(shí)呈現(xiàn)‘融安金柑’‘脆蜜金柑’‘滑皮金柑’依次降低的趨勢(shì)(圖3-B)。
貯藏過程中,‘融安金柑’‘滑皮金柑’和‘脆蜜金柑’硬度持續(xù)下降。3個(gè)金柑品種成熟果實(shí)硬度大小為‘滑皮金柑’>‘脆蜜金柑’>‘融安金柑’,在貯藏前期這一趨勢(shì)保持穩(wěn)定;貯藏66 d之后,3個(gè)品種果實(shí)硬度差異減小 (圖4-A)。剪切力指切開果實(shí)所需要的力,通常與果實(shí)纖維素、木質(zhì)素含量相關(guān)?!そ鸶獭羟辛︼@著大于‘脆蜜金柑’及‘融安金柑’,并在貯藏期中持續(xù)保持這一規(guī)律。貯藏過程中,3個(gè)金柑品種剪切力呈緩慢上升趨勢(shì)(圖4-B)。
圖3 貯藏期3個(gè)品種金柑可溶性固形物及酸含量變化
‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’成熟果實(shí)在硬度、剪切力方面都表現(xiàn)出明顯差異。3個(gè)金柑品種成熟果實(shí)木質(zhì)素、纖維素均呈現(xiàn)‘滑皮金柑’與‘脆蜜金柑’含量差異較小,‘融安金柑’最低的趨勢(shì);這一結(jié)果與品種間果實(shí)硬度及剪切力變化大體一致。貯藏過程中,3個(gè)品種果實(shí)木質(zhì)素、纖維素含量有小幅波動(dòng)但整體呈現(xiàn)上升趨勢(shì)(圖5)。
圖4 貯藏過程中3個(gè)金柑品種果實(shí)硬度及剪切力變化
圖5 貯藏過程中3個(gè)金柑品種果皮木質(zhì)素及纖維素含量變化
對(duì)3個(gè)金柑品種成熟果實(shí)分離外果皮進(jìn)行無參轉(zhuǎn)錄組測(cè)序,測(cè)序數(shù)據(jù)經(jīng)過濾后得到49G的純凈數(shù)據(jù)(clean data),經(jīng)過組裝共獲得36 093條基因,平均長(zhǎng)度為1 109.5 bp,數(shù)據(jù)產(chǎn)量及組裝質(zhì)量符合轉(zhuǎn)錄組分析的基本要求。36 093條基因在3個(gè)金柑品種轉(zhuǎn)錄組文庫中進(jìn)行表達(dá)量差異比較分析,獲得8 113個(gè)差異表達(dá)基因(DEGs)?!诎步鸶獭汀そ鸶獭啾龋?57個(gè)DEGs上調(diào)表達(dá),1 014個(gè)下調(diào)表達(dá)?!诎步鸶獭汀嗝劢鸶獭啾?,有3 134個(gè)上調(diào)表達(dá),1 514個(gè)下調(diào)?!そ鸶獭汀嗝劢鸶獭啾?,有1 417個(gè)DEGs上調(diào)表達(dá),277個(gè)下調(diào)表達(dá)(表2)。
將測(cè)序獲得的所有基因與KEGG數(shù)據(jù)庫進(jìn)行比對(duì),對(duì)其功能進(jìn)行注釋和分類,共5 917個(gè)Unigene參與124個(gè)代謝通路。主要通路為代謝物質(zhì)生物合成、核糖體、內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)處理和植物病原物相互作用,這些通路基因分別占轉(zhuǎn)錄本總數(shù)的27.09%、13.62%、4.09%、3.31%和3.01%。對(duì)測(cè)序所得差異基因進(jìn)行Pathway顯著性富集分析結(jié)果顯示,‘融安金柑’與‘滑皮金柑’的差異基因顯著富集的通路有苯丙烷的生物合成途徑(phenylpropanoid biosynthesis)、次生代謝產(chǎn)物的生物合成(biosynthesis of secondary metabolites)、二苯乙烯類、二芳基庚烷類和姜辣素的生物合成(stilbenoid, diarylheptanoid and gingerol biosynthesis)、苯丙氨酸代謝(phenylalanine metabolism)、類黃酮生物合成(flavonoid biosynthesis)等途徑;‘融安金柑’與‘脆蜜金柑’的差異基因顯著富集的通路有次生代謝產(chǎn)物的生物合成、光合作用(photosynthesis)、類胡蘿卜素生物合成(carotenoid biosynthesis)、植物與病原菌互作(plant-pathogen interaction)、苯丙烷的生物合成途徑等途徑;‘滑皮金柑’和‘脆蜜金柑’的差異基因也在植物與病原菌互作、光合作用、代謝途徑等途徑顯著富集(表2)。3個(gè)金柑品種差異基因顯著性富集結(jié)果顯示,‘融安金柑’與‘滑皮金柑’和‘脆蜜金柑’在苯丙烷的生物合成途徑上存在較大差異,苯丙烷類物質(zhì)包括花青素、香豆素、木質(zhì)素等次生代謝產(chǎn)物。該途徑共富集到32個(gè)差異表達(dá)基因,表現(xiàn)為‘滑皮金柑’與‘脆蜜金柑’兩者間差異較小,但‘滑皮金柑’‘脆蜜金柑’兩者與‘融安金柑’差異較大,且呈現(xiàn)整體上調(diào)趨勢(shì),上調(diào)基因主要為PAL(苯丙氨酸解氨酶)、HCT(羥肉桂?;D(zhuǎn)移酶4)、COMT(咖啡酸O-甲基轉(zhuǎn)移酶)、CAD(肉桂醇脫氫酶)等此類參與木質(zhì)素合成的相關(guān)基因(圖6)。
對(duì)9個(gè)參與木質(zhì)素合成的基因在‘融安金柑’‘滑皮金柑’和‘脆蜜金柑’果皮中進(jìn)行基因表達(dá)分析,結(jié)果與轉(zhuǎn)錄組測(cè)序結(jié)果一致。參與木質(zhì)素合成的、、、、、、和在‘滑皮金柑’和‘脆蜜金柑’成熟果皮組織中的表達(dá)水平均顯著高于‘融安金柑’。此外,在‘滑皮金柑’和‘脆蜜金柑’中的表達(dá)水平顯著高于‘融安金柑’,且在‘脆蜜金柑’中的表達(dá)量最高。
圖6 3個(gè)品種金柑果皮木質(zhì)素合成途徑差異表達(dá)基因
表2 融安金柑、滑皮金柑及脆蜜金柑成熟果實(shí)果皮差異表達(dá)基因情況
表3 3個(gè)金柑品種間差異表達(dá)基因Pathway富集分析
圖7 金柑果皮木質(zhì)素相關(guān)基因相對(duì)表達(dá)量
水分對(duì)于果實(shí)貯藏保鮮起著關(guān)鍵性作用。通常失水過快過多易引起果實(shí)表面皺縮,影響果實(shí)外觀及內(nèi)在品質(zhì),使商品貨架期縮短,損耗增加。前人對(duì)貢柑、沙糖桔進(jìn)行采后貯藏研究顯示,果實(shí)失水率隨果面蠟質(zhì)的迅速減少而顯著增加[26]。紐荷爾臍橙[27]、藍(lán)莓[28]、番茄[29]等果實(shí)上的研究也表明,蠟質(zhì)缺少是引起果實(shí)失水加速、不耐貯藏的重要原因。本研究表明貯藏過程中‘滑皮金柑’最早出現(xiàn)皺縮現(xiàn)象,隨時(shí)間增加,皺縮嚴(yán)重,這可能與‘滑皮金柑’表皮蠟質(zhì)過少及品種本身水分不足相關(guān)[23],其不宜在室溫條件下較長(zhǎng)時(shí)間貯藏。
近年來,‘滑皮金柑’和‘脆蜜金柑’因其少油
胞,辛辣刺激味弱,少核,品質(zhì)優(yōu)而受到廣大消費(fèi)者及果農(nóng)追捧。馬張正等[30]研究發(fā)現(xiàn)‘滑皮金柑’葡萄糖、果糖、蔗糖以及總糖含量均顯著高于‘融安金柑’,檸檬酸和蘋果酸含量卻顯著低于‘融安金柑’。本研究對(duì)‘脆蜜金柑’的分析表明,3個(gè)品種成熟金柑內(nèi)在品質(zhì)上也表現(xiàn)出明顯差異,即‘融安金柑’酸含量高于‘滑皮金柑’和‘脆蜜金柑’,而可溶性固形物卻低于其他兩者。貯藏過程中,3個(gè)品種金柑可溶性固形物持續(xù)上升,酸含量也在波動(dòng)中緩慢上升(圖3),與柚果實(shí)貯藏過程中有機(jī)酸波動(dòng)上升的研究結(jié)果類似[31]。果皮石蠟切片觀察結(jié)果顯示,隨貯藏時(shí)間的增加,‘融安金柑’內(nèi)部結(jié)構(gòu)破損情況加重,‘脆蜜金柑’在整個(gè)貯藏期間變化較緩慢。綜上,3個(gè)金柑品種在貯藏22 d時(shí)品質(zhì)較采收時(shí)有提升,且外觀、果皮結(jié)構(gòu)無明顯變化,暗示3種金柑鮮果適宜在采后一個(gè)月內(nèi)上市銷售完成。品種間而言,‘脆蜜金柑’及‘滑皮金柑’品質(zhì)優(yōu)于‘融安金柑’。
柑橘果實(shí)貯藏過程中失水、軟化等果實(shí)質(zhì)地下降問題直接影響果實(shí)抵抗采后病害能力、果實(shí)運(yùn)輸和貯藏特性。細(xì)胞壁主要的組分纖維素、半纖維素、木質(zhì)素和果膠質(zhì)等與果實(shí)質(zhì)地變化關(guān)系密切[32-35]。Zhang等[36]研究表面桃果實(shí)中纖維素的代謝及結(jié)構(gòu)改變引起果實(shí)軟化,其果實(shí)硬度也與果膠分子鏈的長(zhǎng)短相關(guān);潘東明等[37]在琯溪蜜柚的研究上發(fā)現(xiàn)木質(zhì)素含量的增加促進(jìn)了琯溪蜜柚采后汁胞?;砂T,口感變差,同時(shí)果皮白皮層變得疏松綿爛;‘嘎啦’比‘爵士’蘋果果實(shí)更易軟化變綿也是由于兩品種細(xì)胞壁結(jié)構(gòu)差異造成[38]。本研究中3個(gè)金柑品種果實(shí)硬度隨貯藏時(shí)間的延長(zhǎng)持續(xù)下降,與果實(shí)有色層和白皮層細(xì)胞破損、細(xì)胞間隙變大有明顯關(guān)系;品種間,‘滑皮金柑’成熟果實(shí)硬度最高,貯藏后期‘滑皮金柑’硬度降至最低,與果實(shí)有色層和白皮層細(xì)胞結(jié)構(gòu)變化相符。以上結(jié)果表明,‘滑皮金柑’宜鮮果上市而不宜貯藏,‘融安金柑’及‘脆蜜金柑’可采后短期貯藏。
柑橘果實(shí)剪切力、硬度與果實(shí)的木質(zhì)素、纖維素含量密切相關(guān),也是影響果實(shí)口感的重要因素。唐紅英[39]、古湘[40]等的研究顯示,不化渣的南豐蜜橘果實(shí)囊瓣纖維素、木質(zhì)素含量均高于化渣的沙糖橘,在剪切力上也呈現(xiàn)這一規(guī)律。枇杷采后木質(zhì)素含量的升高引起果實(shí)木質(zhì)化,導(dǎo)致質(zhì)地生硬,粗糙少汁[41]。KONAN等[42]報(bào)道木質(zhì)素的合成速率導(dǎo)致冬瓜外皮和種皮硬度差異。本研究中,3個(gè)品種成熟果實(shí)硬度和剪切力差異與品種間木質(zhì)素和纖維素含量大致一致,表明金柑果皮中木質(zhì)素、纖維素含量與硬度、韌性及耐貯性有密切關(guān)系。ZHANG等[43]對(duì)硬度低的杏品種‘Liehe’和高硬度品種‘Jinxihong’進(jìn)行轉(zhuǎn)錄組測(cè)序發(fā)現(xiàn)苯丙素生物合成關(guān)鍵酶的DEGs在‘Liehe’中顯著下調(diào),可能調(diào)節(jié)參與苯丙素途徑的CAD從而影響其果皮木質(zhì)素沉積。LIU等[44]對(duì)轉(zhuǎn)錄組分析發(fā)現(xiàn)木質(zhì)素合成途徑中的和等基因響應(yīng)枇杷采后木質(zhì)化過程。本研究中,3個(gè)品種成熟果實(shí)果皮轉(zhuǎn)錄組測(cè)序結(jié)果也表明‘融安金柑’‘滑皮金柑’和‘脆蜜金柑’在苯丙素生物合成途徑上有顯著差異,該途徑涉及木質(zhì)素在內(nèi)的多種次生代謝物生物合成。進(jìn)一步驗(yàn)證分析可知,‘滑皮金柑’及‘脆蜜金柑’木質(zhì)素合成途徑的9個(gè)關(guān)鍵基因較‘融安金柑’均顯著上調(diào)表達(dá)。因此,與‘融安金柑’相比,‘滑皮金柑’及‘脆蜜金柑’木質(zhì)素合成途徑上調(diào)表達(dá)導(dǎo)致的果實(shí)硬度和果皮木質(zhì)素含量較高是其果皮韌性較強(qiáng)的重要原因。
‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’成熟果實(shí)品質(zhì)存在顯著差異。與‘滑皮金柑’及‘脆蜜金柑’相比,‘融安金柑’可溶性固形物含量較低,酸含量高,且極具辛辣刺激味?!そ鸶獭诟休^硬且在貯藏過程中水分散失過快,最早失去商品價(jià)值;‘脆蜜金柑’貯藏期間失水率較低、內(nèi)在品質(zhì)穩(wěn)定且外觀無明顯變化。綜合3個(gè)金柑品種內(nèi)在及外觀變化進(jìn)行評(píng)價(jià),‘脆蜜金柑’貯藏品質(zhì)為三者最佳,3個(gè)品種鮮果宜在采后一個(gè)月內(nèi)完成銷售。金柑果實(shí)硬度、剪切力、木質(zhì)素和纖維素含量的變化,與有色層和白皮層細(xì)胞結(jié)構(gòu)變化密切相關(guān)?!そ鸶獭c‘脆蜜金柑’成熟果實(shí)果皮轉(zhuǎn)錄組水平差異較小,二者與‘融安金柑’差異均較大;苯丙烷生物合成途徑的改變引起木質(zhì)素含量的差異,導(dǎo)致3個(gè)品種果皮韌性存在差異。
[1] CHEN C Y, NIE Z P, WAN C P, GAN Z Y, CHEN J Y.Suppression on postharvest juice sac granulation and cell wall modification by chitosan treatment in harvested pummelo (L.Osbeck) stored at room temperature.Food Chemistry, 2021, 336: 127636.
[2] 李果果, 歐智濤, 陳東奎, 梁春, 梁增, 劉要鑫, 趙洪濤, 陳香玲.沃柑低溫環(huán)境貯藏的品質(zhì)變化分析.江蘇農(nóng)業(yè)科學(xué), 2019, 47(17): 219-221.
LI G G, OU Z T, CHEN D K, LIANG C, LIANG Z, LIU Y X, ZHAO H T, CHEN X L.Analysis of quality changes of low-temperature environment storage of Orah.Jiangsu Agricultural Sciences, 2019, 47(17): 219-221.(in Chinese)
[3] 鄒運(yùn)乾, 張立, 吳方方, 許讓偉, 徐娟, 胡世全, 謝合平, 程運(yùn)江.打蠟處理對(duì)溫州蜜柑果實(shí)異味物質(zhì)積累的影響.中國農(nóng)業(yè)科學(xué), 2020, 53(12): 2450-2459.
ZOU Y Q, ZHANG L, WU F F, XU R W, XU J, HU S Q, XIE H P, CHENG Y J.Effects of wax coating on off-flavor compound accumulation in the pulp ofmandarin.Scientia Agricultura Sinica, 2020, 53(12): 2450-2459.(in Chinese)
[4] 張晶琳, 王永江, 劉海東, 費(fèi)溧鋒, 陳存坤, 班兆軍.殼聚糖/CMC復(fù)合涂膜處理對(duì)柑橘果實(shí)采后品質(zhì)的影響.現(xiàn)代食品科技, 2019, 35(10): 50-57, 260.
ZHANG J L, WANG Y J, LIU H D, FEI L F, CHEN C K, BAN Z J.Effect of chitosan/CMC composite coating treatment on quality of postharvest.Modern Food Science & Technology, 2019, 35(10): 50-57, 260.(in Chinese)
[5] LI Y, WU C H, WU T T, YUAN C H, HU Y Q.Antioxidant and antibacterial properties of coating with chitosan-citrus essential oil and effect on the quality of Pacific mackerel during chilled storage.Food Science and Nutrition, 2019, 7(3): 1131-1143.
[6] 楊少檜.柑橙橘柚類水果采后處理和貯藏風(fēng)險(xiǎn)控制(下).保鮮與加工, 2010, 10(4): 1-4.
YANG S H.Risk control for postharvest handling and storage of(B).Storage and Process, 2010, 10(4): 1-4.(in Chinese)
[7] 陶愛群, 易干軍, 石雪暉, 姜小文.柑橘留樹保鮮研究進(jìn)展.廣東農(nóng)業(yè)科學(xué), 2012, 39(24): 45-49.
TAO A Q, YI G J, SHI X H, JIANG X W.Overview ofstorage on tree.Guangdong Agricultural Sciences, 2012, 39(24): 45-49.(in Chinese)
[8] 李明娟, 劉根華, 何新華, 景艷艷, 李德安, 周祥杰.避雨栽培對(duì)金柑留樹保鮮果實(shí)品質(zhì)的影響.北方園藝, 2012(4): 149-153.
LI M J, LIU G H, HE X H, JING Y Y, LI D A, ZHOU X J.Effects of rain shelter cultivation on quality offruits during the tree storage.Northern Horticulture, 2012(4): 149-153.(in Chinese)
[9] 鄧光宙, 劉萍, 蔣運(yùn)寧, 李柳洪, 陳國平.不同濃度水楊酸處理對(duì)金柑果實(shí)貯藏保鮮效果的影響.北方園藝, 2011(13): 161-164.
DENG G Z, LIU P, JIANG Y N, LI L H, CHEN G P.The effect of different concentrations of salicylic acid treatments on the storability of.Northern Horticulture, 2011(13): 161-164.(in Chinese)
[10] 王淑娟, 陳明, 陳金印.水楊酸對(duì)‘遂川金柑’采后生理及貯藏效果的影響.果樹學(xué)報(bào), 2012, 29(6): 1110-1114.
WANG S J, CHEN M, CHEN J Y.Effects of salicylic acid treatments on postharvest physiology and storage of ‘Suichuan Kumquat' fruits.Journal of Fruit Science, 2012, 29(6): 1110-1114.(in Chinese)
[11] 鄧光宙, 劉萍, 李柳洪, 蔣運(yùn)寧.采前和采后外源水楊酸處理對(duì)金柑果實(shí)生理的影響.中國南方果樹, 2013, 42(6): 56-58, 63.
DENG G Z, LIU P, LI L H, JIANG Y N.Effects of exogenous salicylic acid treatment on the physiology of kumquat fruit before and after harvest.South China Fruits, 2013, 42(6): 56-58, 63.(in Chinese)
[12] 劉萍, 范七君, 牛英, 婁兵海, 劉冰浩, 鄧崇嶺.次氯酸鈣處理對(duì)金柑采后腐爛及抗氧化物酶活性的影響.果樹學(xué)報(bào), 2016, 33(9): 1148-1155.
LIU P, FAN Q J, NIU Y, LOU B H, LIU B H, DENG C L.Effects of calcium hypochlorite treatment on postharvest decay and defense enzyme activity of kumquat fruits.Journal of Fruit Science, 2016, 33(9): 1148-1155.(in Chinese)
[13] Hosseini S F, Amraie M, Salehi M, Mohseni M, Aloui H.Effect of chitosan-based coatings enriched with savory and/or tarragon essential oils on postharvest maintenance of kumquat (sp.) fruit.Food Science and Nutrition, 2019, 7(1): 155-162.
[14] 王淑娟, 陳明, 陳金印.蒽醌類化合物對(duì)遂川金柑采后生理及貯藏效果的影響.中國食品學(xué)報(bào), 2012, 12(1): 118-123.
WANG S J, CHEN M, CHEN J Y.Effects of anthrquinones treatments on postharvest physiology and storage of Suichuan kumquat fruits.Journal of Chinese Institute of Food Science and Technology, 2012, 12(1): 118-123.(in Chinese)
[15] VANHOLME R, MORREEL K, RALPH J, BOERJAN W.Lignin engineering.Current Opinion in Plant Biology, 2008, 11(3): 278-285.
[16] BOUDET A M.A new view of lignification.Trends in Plant Science, 1998, 3(2): 67-71.
[17] BOERJAN W, RALPH J, BAUCHER M.Lignin biosynthesis.Annual Review of Plant Biology, 2003, 54(1): 519-546.
[18] CAI C, XU C J, LI X, FERGUSON I, CHEN K S.Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest.Postharvest Biology and Technology, 2006, 40: 163-169.
[19] JIN Q, YAN C C, QIU J X, ZHANG N, LIN Y, CAI Y P.Structural characterization and deposition of stone cell lignin in Dangshan Su pear.Scientia Horticulturae, 2013, 155: 123-130.
[20] PENG J, ZHENG Y, TANG S, RUI H, WANG C Y.A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit.Postharvest Biology and Technology, 2009, 52(1): 24-29.
[21] 潘騰飛, 朱學(xué)亮, 潘東明, 郭志雄, 佘文琴, 陳桂信.‘琯溪蜜柚’貯藏期間汁胞?;c木質(zhì)素代謝的關(guān)系.果樹學(xué)報(bào), 2013, 30(2): 294-298.
PAN T F, ZHU X L, PAN D M, GUO Z X, SHE W Q, CHEN G X.Relationship between granulation and lignin metabolism in ‘Guanximiyou’ pummelo fruit during storage.Journal of Fruit Science, 2013, 30(2): 294-298.(in Chinese)
[22] 韋成興.優(yōu)質(zhì)金柑品種: 融安滑皮金桔.中國南方果樹, 2001, 30(3): 26-27.
WEI C X.High quality kumquat cultivar - Rongan Huapi kumquat.South China Fruits, 2001, 30(3): 26-27.(in Chinese)
[23] 唐志鵬, 高興, 秦榮耀, 孫寧靜, 藍(lán)惠國, 韋日機(jī), 鄧光宙, 劉冰浩.金柑新品種‘脆蜜金柑’的選育.果樹學(xué)報(bào), 2018, 35(1): 131-134.
TANG Z P, GAO X, QIN R Y, SUN N J, LAN H G, WEI R J, DENG G Z, LIU B H.A newcrassifiolia cultivar ‘Cuimi Kumquat’.Journal of Fruit Science, 2018, 35(1): 131-134.(in Chinese)
[24] 梁社堅(jiān), 梁錦堂, 蔣寧雄, 劉培衛(wèi), 吳鴻.柑橘果實(shí)分泌囊發(fā)育與揮發(fā)油積累關(guān)系研究.華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 35(2): 61-65.
LIANG S J, LIANG J T, JIANG N X, LIU P W, WU H.The relationship between secretory cavity development and accumulation of essential oils in fruit of.Journal of South China Agricultural University, 2014, 35(2): 61-65.(in Chinese)
[25] ZHAO Y J, DENG L L, ZHOU Y H, MING J, YAO S X, ZENG K F.Wound healing in citrus fruit is promoted by chitosan and Pichia membranaefaciens as a resistance mechanism against.Postharvest Biology and Technology, 2018, 145: 134-143.
[26] 徐呈祥, 鄭福慶, 馬艷萍, 張少平, 陳小婷, 葉思敏.貯藏溫度對(duì)耐貯性不同的柑橘品種果皮蠟質(zhì)含量及其化學(xué)組成的影響.食品科學(xué), 2021, 42(13): 223-232.
XU C X, ZHENG F Q, MA Y P, ZHANG S P, CHEN X T, YE S M.Effect of storage temperature on peel wax content and chemical composition ofcultivars with different storability.Food Science, 2021, 42(13): 223-232.(in Chinese)
[27] 曾瓊, 吳啟, 王玥辰, 劉德春, 劉山蓓, 劉傳福, 劉勇.紐荷爾臍橙果皮光澤型突變體貯藏性研究.江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 35(3): 525-529.
ZENG Q, WU Q, WANG Y C, LIU D C, LIU S B, LIU C F, LIU Y.A study on fruit storability of glossy mutant of “newhall” navel orange.Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(3): 525-529.(in Chinese)
[28] CHU W J, GAO H Y, CHEN H J, FANG X J, ZHENG Y H.Effects of cuticular wax on the postharvest quality of blueberry fruit.Food Chemistry, 2018, 239: 68-74.
[29] VOGG G, FISCHER S, LEIDE J, EMMANUEL E, JETTER R, LEVY A A, RIEDERER M.Tomato fruit cuticular waxes and theireffects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid-ketoacyl-CoA synthase.Journal of Experimental Botany, 2004, 55(401): 1401-1410.
[30] 馬張正, 馬巧利, 辜青青, 勒思, 雷常玉, 魏清江.滑皮金柑和融安金柑外觀、風(fēng)味及營養(yǎng)成分比較.浙江農(nóng)業(yè)學(xué)報(bào), 2019, 31(4): 654-660.
MA Z Z, MA Q L, GU Q Q, LE S, LEI C Y, WEI Q J.Comparative study of fruit appearance, flavor and nutritional components in Huapi and Rong’an kumquat.Acta Agriculturae Zhejiangensis, 2019, 31(4): 654-660.(in Chinese)
[31] SUN X H, XIONG J J, ZHU A D, ZHANG L, MA Q L, XU J, CHEN Y J, DENG X X.Sugars and organic acids changes in pericarp and endocarp tissues of pumelo fruit during postharvest storage.Scientia Horticulturae, 2012, 142: 112-117.
[32] CHEA S, YU D J, PARK J, OH H D, CHUNG S W, LEE H J.Fruit softening correlates with enzymatic and compositional changes in fruit cell wall during ripening in ‘Bluecrop’ highbush blueberries.Scientia Horticulturae, 2019, 245: 163-170.
[33] LUO T, NIU J J, GUO X M, WU H T, HAN D M, SHUAI L, WU Z X.Preharvest zinc sulfate spray improves the storability of longan (Lour.) fruits by protecting the cell wall components and antioxidants of pericarp.Journal of the Science of Food and Agriculture, 2019, 99(3): 1098-1107.
[34] XU J Y, ZHAO Y H, ZHANG X, ZHANG L J, HOU Y L, DONG W X.Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation.Frontiers in Plant Science, 2016, 7: 1524.
[35] LIU X F, LI S R, FENG X X, LI L L.Study on cell wall composition, fruit quality and tissue structure of hardened ‘suli’ pears (Rehd).Journal of Plant Growth Regulation, 2020.https://doi.org/10.1007/s00344-020-10248-4.
[36] ZHANG L F, CHEN F S, YANG H S, SUN X Y, HUI L, GONG X Z, JIANG C B, DING C H.Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage.LWT-Food Science and Technology, 2010, 43(1): 26-32.
[37] 潘東明, 鄭國華, 陳桂信, 佘文琴, 郭志雄, 施木田, 林慧穎.琯溪蜜柚汁胞?;蚍治?果樹學(xué)報(bào), 1999, 16(3): 202-209.
PAN D M, ZHENG G H, CHEN G X, SHE W Q, GUO Z X, SHI M T, LIN H Y.Analysis of the reasons caused granulation of juice sacs in guanximiyou pomelo variety.Journal of Fruit Science, 1999, 16(3): 202-209.(in Chinese)
[38] NG J K, SCHR?DER R, SUTHERLAND P W, HALLETT I C, HALL M I, PRAKASH R, SMITH B G, MELTON L D, JOHNSTON J W.Cell wall structures leading to cultivar differences in softening rates develop early during apple (x domestica) fruit growth.BMC Plant Biology, 2013, 13(1): 183.
[39] 唐紅英.南豐蜜橘纖維素、半纖維素代謝與化渣性關(guān)系研究[D].南昌: 江西農(nóng)業(yè)大學(xué), 2015.
TANG H Y.Study on the relationship between cellulose, hemicellulose metabolism and mastication of Nangfeng tangerine [D].Nanchang: Jiangxi Agricultural University, 2015.(in Chinese)
[40] 古湘.南豐蜜橘木質(zhì)素代謝與化渣的關(guān)系研究[D].南昌: 江西農(nóng)業(yè)大學(xué), 2016.
GU X.Study on the relationship between lignin metabolism and mastication of Nangfeng tangerine [D].Nanchang: Jiangxi Agricultural University, 2016.(in Chinese)
[41] CAI C, XU C J, LI X, FERGUSON L, CHEN K S.Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest.Postharvest Biology and Technology, 2005, 40(2): 163-169.
[42] KONAN J A, KOFFI K K, ZORO A I B.Lignin biosynthesis rate is responsible for varietal difference in fruit rind and seed coat hardness in the bottle gourd(Molina) Standley.South African Journal of Botany, 2018, 117: 276-281.
[43] ZHANG X, ZHANG Q P, SUN X Y, DU X, LIU W S, DONG W X.Differential expression of genes encoding phenylpropanoid enzymes in an apricot cultivar (L.) with cleavable endocarp.Trees, 2019, 33(6): 1695-1710.
[44] LIU W L, ZHANG J, JIAO C, YIN X R, FEI Z J,WU Q B, CHEN K S.Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat () fruit.Horticulture Research, 2019, 6: 49.
Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat
LIU Lian1, 2,TANG ZhiPeng3, LI FeiFei4, XIONG Jiang1, 2, LBiWen1, 2, MA XiaoChuan1, 2, TANG ChaoLan1, 2, LI ZeHang1, 2, ZHOU Tie1, 2, SHENG Ling1, 2, LU XiaoPeng1, 2*
1College of Horticulture, Hunan Agricultural University, Changsha 430128;2National Center for Citrus Improvement (Changsha), Changsha 410128;3College of Agricultural, Guangxi University, Nanning 530005;4Institute of Horticulture, Hunan Academy of Agricultural Science, Changsha 410125
【Objective】As a citrus fruit with edible peel, the fruit peel of kumquat affects not only the chewing texture but also fruit storage performance.With identical genetic background, Rong’an kumquat, Huapi kumquat and Cuimi kumquat exhibit significant differences in fruit peel.This study aimed to provide new insights and methods for kumquat fruit quality regulation and postharvest storage, through comparisons of three kumquats in fruit quality, storability, peel transcriptome analysis and effects of peel on postharvest characteristics.【Method】Fruits of Rong’an, Huapi and Cuimi were harvested at commercial maturity stage and stored for 99 days at room temperature.During storage, fruit changes of water loss rate, soluble solid, acid, hardness and shear force were determined.Further, peel transcriptome analysis was performed for three kumquats.【Result】The results showed that Huapi had the highest water loss rate and happened peel shrinking earliest among three cultivars.Water loss rate of Huapi was up to 38.6 % at 99 days after storage, significantly higher than 5.8% of Rong’an and 14.3% of Cuimi.Fruit soluble solid and acid in all three kumquats increased overall during storage.During storage, Cuimi exposed the highest soluble solid content always, while Huapi showed the lowest acid content since 22 days after storage.Cuimi and Huapi were with better inner quality during storage than Rong’an.Fruit structure of Rong’an changed tremendously during storage, and the fruit cells were damaged obviously at 44 days of storage.Fruit hardness and shear force of Huapi and Cuimi were significantly higher than those of Rong’an.Lignins (A280·g-1) in peels of Huapi and Cuimi were 1.41 and 1.31, respectively, which were all higher than 1.12 of Rong’an.Both Huapi and Cuimi showed more peel cellulose as well than Rong'an.Peel transcriptome analysis suggested that phenylpropaneiod biosynthesis pathway was up-regulated significantly in Huapi and Cuimi relative to Rong’an, while it changed scarcely between Huapi and Cuimi.Gene expression analysis showed that nine genes in lignin biosynthesis pathway expressed higher in Huapi and Cuimi.【Conclusion】Three kumquats could be stored in a short time at room temperature, and being sold out in one month after harvest could be a good option for planter.In storage, Huapi kumquat lost commodity value quickly because of its fast water loss, while Cuimi kumquat performed well in both external and internal quality.Stronger fruit firmness and shear force as well as better storage performance of Cuimi were associated with the higher lignin and cellulose contents in fruit peel and closer cell arrangement in fruit.Lower peel lignin content in Rong'an kumquat caused by a weak phenylpropane biosynthesis was related closely to its poor peel toughness.
kumquat; storage; transcriptome; lignin
2020-12-31;
2021-02-20
國家自然科學(xué)基金(31872044)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-26)
劉戀,E-mail:durian@stu.hunau.edu.cn。通信作者盧曉鵬,E-mail:xl678@hunau.edu.cn
(責(zé)任編輯 趙伶俐)