国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

深翻、有機無機肥配施對稻田水分滲漏和氮素淋溶的影響

2021-10-29 11:38王瑾瑜程文龍槐圣昌武紅亮邢婷婷于偉家武際李敏盧昌艾
中國農(nóng)業(yè)科學(xué) 2021年20期
關(guān)鍵詞:耕層耕作氮素

王瑾瑜,程文龍,槐圣昌,武紅亮,邢婷婷,于偉家,武際,李敏,盧昌艾

深翻、有機無機肥配施對稻田水分滲漏和氮素淋溶的影響

王瑾瑜1,程文龍2,槐圣昌1,武紅亮1,邢婷婷1,于偉家1,武際2,李敏2,盧昌艾1*

1中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術(shù)國家工程實驗室/中國農(nóng)業(yè)科學(xué)院土壤質(zhì)量重點實驗室,北京 100081;2安徽省農(nóng)業(yè)科學(xué)院土壤肥料研究所,合肥 237000

【目的】針對我國長江中下游地區(qū)稻麥輪作區(qū)常年淺耕與不合理施肥導(dǎo)致的土壤犁底層增厚與土壤板結(jié)的問題,研究深耕(打破部分犁底層)與施肥方式對稻田土壤容重、土壤緊實度、土壤水分滲漏量、氮素淋溶量及氮素形態(tài)的影響,闡明稻田氮素淋溶量與耕作、施肥方式的響應(yīng)機制,為稻田合理耕層構(gòu)建提供理論依據(jù)?!痉椒ā浚?)基于2015年安徽省舒城縣設(shè)置兩種耕作方式(旋耕12 cm、深翻20 cm)、3種等氮量施肥方式(僅施化肥處理T1、秸稈還田配施化肥處理T2、有機與無機肥配施處理T3)的田間定位試驗,2019—2020年監(jiān)測土壤容重與緊實度以及稻季水分滲漏與氮素淋溶量。(2)通過原狀土柱模擬試驗,研究深翻30 cm(打破犁底層)對稻田水分滲漏量的影響。【結(jié)果】(1)田間試驗結(jié)果表明,深翻20 cm較旋耕12 cm降低了耕層土壤容重與緊實度,但沒有顯著增加水稻生育期的水分滲漏量,僅在分蘗期增加7.4%,孕穗期之后無顯著影響。(2)土柱試驗結(jié)果顯示,深翻30 cm(打破犁底層)水分滲漏量較旋耕12 cm和深翻20 cm顯著增加,淹水時分別增加19.0%與11.0%,非淹水時分別增加23.0%與21.5%。(3)田間試驗水分滲漏液中的氮素主要以硝態(tài)氮的形式存在,T3較T1和T2處理在水稻進(jìn)入孕穗期后顯著降低滲漏液中硝態(tài)氮的濃度;各施肥處理間銨態(tài)氮濃度差異不顯著。(4)從整個水稻生育期看,兩種耕作方式對氮素淋溶量影響不顯著,而3種施肥方式下氮素淋溶量存在明顯差異,T3處理降低了氮素淋溶量。深翻條件下T1、T2與T3處理氮素淋溶量分別為10.69、11.74和9.14 kgN·hm-2,旋耕條件下分別為9.83、11.21和8.58 kg N·hm-2?!窘Y(jié)論】深翻20 cm可以改善土壤物理性狀,但不會增加土壤水分滲漏及氮素淋溶;相同耕作方式下,有機與無機肥配施不會增加土壤水分滲漏與氮素淋溶。因此,在長江中下游黏質(zhì)且犁底層厚(如紅黃壤型)的水稻土區(qū),部分打破犁底層,有機與無機肥配施,可構(gòu)建深厚肥沃的耕作層,且不會增加水分滲漏和氮素的淋溶。

稻-麥輪作;耕作方式;有機無機肥配施;水分滲漏;氮素淋溶

0 引言

【研究意義】稻田長期淺旋等耕作方式,導(dǎo)致耕作層變淺、犁底層上移增厚等問題,造成土壤耕層黏閉,抑制了作物生長[1-2]。因此,研究不同耕作及施肥方式下的土壤水分與氮素淋溶,明確稻田土壤耕層構(gòu)建及其培肥方式對于稻田地力培育具有重要的意義。【前人研究進(jìn)展】耕作方式對于水分滲漏量和氮素淋失已經(jīng)有較多的研究[3-4]。張麗等[5]通過對比后研究發(fā)現(xiàn),采用深松耕可以打破犁底層,對水分滲漏量有顯著提升,可改善土壤環(huán)境,提高水稻產(chǎn)量。李志芳等[6]研究則認(rèn)為,雖然耕作方式可很大程度地改變土壤結(jié)構(gòu),但只能在短時間內(nèi)增強稻田滲漏能力,在作物生育后期水分滲漏量呈明顯下降的趨勢。要從根本上解決耕層土壤黏重問題,需要通過施用有機肥來改善土壤的理化性質(zhì),從而改善稻田的滲透性[6-7]。有機肥的施用可以通過提高土壤潛在的反硝化速率以及微生物的活性,降低硝酸鹽淋失風(fēng)險[8-9]。但SIEMENS等[10]與夏紅霞等[11]研究表明,有機肥的施用較單施化肥會顯著增加土壤養(yǎng)分積累進(jìn)而提高氮素淋溶的風(fēng)險,對環(huán)境造成潛在威脅。前人對于耕作及施肥方式對土壤水分滲漏的研究結(jié)果有所差異,原因可能為單一的耕作方式或施肥方式并不能明確稻田土壤耕層構(gòu)建或培肥方式對稻田水分與氮素淋溶的影響?!颈狙芯壳腥朦c】研究單一耕作方式或施肥方式來改良稻田土壤結(jié)構(gòu)或滲漏特性的文獻(xiàn)較多,而同時開展耕作與施肥方式對土壤水分滲漏與養(yǎng)分淋溶特征的影響研究較少?!緮M解決的關(guān)鍵問題】本研究針對土壤犁底層厚、耕層淺及偏施化肥問題,利用安徽省舒城縣稻-麥輪作區(qū)兩種耕作深度、3種施肥方式的定位試驗,監(jiān)測犁底層部分與全部打破情況下的稻田土壤水分與氮素淋溶量,及其與土壤容重、緊實度之間的關(guān)系,明確稻田土壤適宜的耕層構(gòu)建深度與培肥方式。

1 材料與方法

1.1 研究區(qū)域概況

試驗在安徽省舒城縣國家農(nóng)業(yè)高新園區(qū)(116°56'E,31°28'N)稻麥輪作定位試驗田進(jìn)行。該定位試驗開始于2015年,供試土壤為黃棕壤類水稻土,試驗開始前測定耕層厚度為0—15 cm(重壤土),土壤15—25 cm為犁底層(重壤土),25—100 cm為母質(zhì)層(輕黏土)。其土壤基本理化性狀見表1。試驗地屬亞熱帶溫潤性季風(fēng)氣候區(qū),平均氣溫最高為7月(34℃),最低為1月(9℃),年平均氣溫15.6℃。無霜期為224 d,年平均降雨量1 171 mm。

1.2 試驗設(shè)計

采用裂區(qū)設(shè)計,主區(qū)為耕作措施(旋耕12 cm、深翻20 cm),副區(qū)為3個等氮施肥處理T1、T2、T3,副區(qū)處理隨機排列重復(fù)3次,小區(qū)面積40 m2(5 m×8 m)。其中T1指單施化肥,小麥季施肥量為180 kg N·hm-2、60 kg P2O5·hm-2、90 kg K2O·hm-2;水稻季施肥量為210 kg N·hm-2、75 kg P2O5·hm-2、120 kg K2O·hm-2;T2指秸稈還田與化肥配施(秸稈還田量4 500 kg·hm-2,秸稈含氮量為5.0 g·kg-1);T3指有機肥與化肥配施(有機肥為干基豬糞,用量4 500 kg·hm-2,含氮量17.5 g·kg-1),氮養(yǎng)分不足部分用化肥補齊,使得各處理氮養(yǎng)分投入量一致。旋耕采用170小型旋耕機;深翻采用GMF-240深翻機完成作業(yè)。稻季與麥季作物收獲后地上部全部移除,留茬高度小于10 cm,當(dāng)季秸稈粉碎后翻壓還田。磷鉀肥全部基施;氮肥基追比為6﹕2﹕2,分別于水稻分蘗期和孕穗期追施。水稻孕穗期與灌漿后期曬田,水分與植保等管理措施與當(dāng)?shù)亓?xí)慣保持一致,具體降雨及灌溉水量見圖1,水稻品種、種植密度、施肥、滲漏液取樣及水稻收獲日期見表2。

表1 基礎(chǔ)土壤理化性狀

圖1 稻季降水/灌溉水量歷時變化

表2 田間管理及取樣日期

1.3 樣品采集與測定

1.3.1 土壤物理性質(zhì)的測定 在水稻收獲后測定土壤容重與緊實度,土壤容重按照0—5、5—15、15—25、25—35、35—45 cm取環(huán)刀土進(jìn)行測定;土壤緊實度采用美國Spectrum公司SC—900土壤緊實度測量儀原位測定,土壤測量深度為0—45 cm,每個小區(qū)重復(fù)5次。

1.3.2 田間滲漏水樣的收集與測定 在水稻生育期間,采用直徑為6 cm的陶瓷頭負(fù)壓式土壤溶液取樣器定點收集田間滲漏液。在土壤深度30 cm處埋置陶瓷頭,并接PVC管。在收集滲漏液前一天使用負(fù)壓槍將PVC管抽為負(fù)壓,以便滲漏液進(jìn)入管中。24 h后從接有長軟管的陶瓷頭內(nèi)抽取水分滲漏液注入塑料瓶中。每隔10 d抽取一次直到收割[12]。收集的滲漏液立即稱重后使用流動分析儀測定銨態(tài)氮、硝態(tài)氮含量。

1.3.3 原狀土柱滲漏水樣的收集與測定 田間試驗犁底層并未全部打破,只是部分打破了犁底層。通過室內(nèi)土柱試驗?zāi)M3種耕作深度(旋耕12 cm,未打破犁底層;深翻20 cm,打破部分犁底層;深翻30 cm,打破全部犁底層),初步探究犁底層全部打破對水分滲漏的影響。旋耕12 cm與深翻20 cm處理均在田間取原狀土柱直接進(jìn)行淋洗,深翻30 cm處理取自田間0—30 cm土壤全部混勻裝柱后進(jìn)行淋洗。所用原狀土柱為自制高40 cm,直徑為20 cm的不銹鋼圓環(huán),類似于環(huán)刀取土的方法[13-14],選擇田間平整土壤將土柱垂直嵌入30 cm深水稻土中,在不擾動土柱內(nèi)土壤結(jié)構(gòu)的基礎(chǔ)上將土柱與土體取出放置室內(nèi),并在土體上方放置玻璃棉防止水分加入時改變表層土體結(jié)構(gòu),在下方固定玻璃棉以過濾滲漏液并防止土塊掉落;為防止土柱與管壁間的孔隙流,取無肥區(qū)土壤加水和為泥漿沿圓環(huán)內(nèi)壁澆下,填充土柱內(nèi)土體與圓環(huán)內(nèi)壁之間的空隙,土柱下方固定自制三腳架將其架空并在下方收集滲漏液。第一次淋洗試驗按照少量多次原則向土柱內(nèi)加入蒸餾水,調(diào)節(jié)土壤含水量使其下方恰好無滲漏,擬模擬田間水稻生育前期淹水時水分滲漏狀況;之后緩慢加入300 mL蒸餾水平衡2 h后統(tǒng)一收集淋洗液;土柱放置3 d后進(jìn)行第二次淋洗試驗,擬模擬水稻生育后期非淹水時的水分滲漏狀況。

1.4 數(shù)據(jù)處理與分析

1.4.1 田間水分滲漏與氮素淋溶試驗數(shù)據(jù)處理 2019—2020兩年水稻季田間監(jiān)測時間基本一致,且監(jiān)測數(shù)據(jù)差異不大,取平均值計算。

1.4.2 土壤水分與氮素淋溶量的計算 土壤水分每天下滲速率通過以下公式計算:

水/底×10(1)

其中,為下滲速率(mm·d-1);水為每天滲漏液體積(cm3·d-1);底為取樣器底面積(cm2);10為cm與mm的換算倍數(shù)。

水稻生育期氮素淋溶量通過以下公式計算[15]:

(2)

式中,為水稻生育期氮素淋溶量(kg·hm-2);NH4+為滲漏液中銨態(tài)氮濃度(mg·L-1);NO3-為滲漏液中硝態(tài)氮濃度(mg·L-1);水為每天滲漏液體積(cm3·d-1);底為取樣器底面積(cm2);為1、2、3...49;為天數(shù)(d);10-5為單位換算系數(shù)。

數(shù)據(jù)分析采用Microsoft Excel 2019和SPSS 19軟件進(jìn)行數(shù)據(jù)統(tǒng)計分析,采用Duncan分析進(jìn)行顯著性檢驗,采用Sigma Plot 12.5制作圖表。

2 結(jié)果

2.1 耕作與施肥措施對土壤物理性狀的影響

2.1.1 耕作對土壤容重的影響 耕作方式對于土層0—15和25—45 cm土壤容重影響不顯著,深翻顯著降低了15—25 cm土層容重(表3),且在25—35 cm處土壤容重達(dá)到最大,分別為1.62和1.60 g·cm-3。

2.1.2 耕作與施肥對土壤緊實度的影響 不同耕作方式對土壤緊實度的作用效果在水稻生長季極為明顯,尤其是耕層土壤。同一施肥處理下,與旋耕相比,深翻降低了0—25 cm土層的緊實度,其中T3處理兩者差異最顯著;兩種耕作處理土壤緊實度在25 cm以下土層無明顯差異(圖2)。3種施肥處理下,深翻與旋耕土壤緊實度均在30—40 cm達(dá)到最大。

2.2 耕作對水分滲漏量的影響

水稻生育期的田間監(jiān)測結(jié)果表明,水稻分蘗初期(6月19日)深翻處理下的水分滲漏量顯著大于旋耕,7月1日開始旋耕與深翻處理下水分滲漏量無明顯差異(圖3)。水稻生育后期8月中旬到9月14日田間未見明顯的滲漏??傮w來說,兩種耕作方式下水分滲漏總量差異不顯著。水分滲漏液收集期間旋耕與深翻平均滲漏速率分別為7.5、8.1 mm·d-1。

表3 深翻和旋耕對土壤容重的影響

同一列大寫字母代表同一耕作方式下,不同土壤深度之間差異顯著(<0.05);小寫字母代表同一土層深度下深翻與旋耕差異顯著(<0.05)。下表同

Different capital letters in the same column represent significant differences between different soil depths under the same tillage (<0.05).Different lowercase letters represent significant differences between different tillage under the same soil depth (<0.05).The same as table below

圖2 不同耕作和施肥方式下的土壤緊實度

模擬不同耕作深度的土柱試驗結(jié)果表明,深翻30 cm會顯著增加水分滲漏量(圖4)。在同一含水量條件下深翻30 cm(打破全部犁底層)的水分滲漏量均顯著大于旋耕12 cm與深翻20 cm處理,旋耕12 cm與深翻20 cm處理之間差異不顯著。淹水狀態(tài)時,深翻30 cm水分滲漏量較旋耕與深翻分別增加19.0%與11.0%,非淹水時分別增加23.0%與21.5%。

2.3 施肥對水分滲漏液中NH4+-N與NO3--N濃度的影響

通過2019—2020兩年的平均監(jiān)測結(jié)果可得(圖5)。在水稻生育期,田間水分滲漏液銨態(tài)氮濃度為0.37—1.09 mg·L-1。T1、T2與T3施肥處理銨態(tài)氮濃度的最大值均出現(xiàn)在第一次追施蘗肥后兩天(6月19日),分別為0.94、1.09與0.96 mg·L-1。水分滲漏液中硝態(tài)氮濃度為0.91—7.93 mg·L-1。T1、T2與T3施肥處理硝態(tài)氮濃度的最大值較為接近,均出現(xiàn)在第二次追施穗肥后兩天(7月11日),分別為7.75、7.93與7.58 mg·L-1,最小值出現(xiàn)在8月11日,分別為1.75、1.66與0.91 mg·L-1。

2.4 耕作與施肥對氮素淋溶的影響

由圖6所示,在水稻生育期第一個月土壤氮素淋溶速率較大,兩次追肥之后氮素淋溶速率均明顯增加,第二個月氮素淋溶速率急劇下降,從第三個月開始直到收獲未發(fā)生明顯淋溶。水稻分蘗期深翻處理的土壤氮素淋溶速率顯著高于旋耕,且在第二次追肥后達(dá)到最大(0.4 mg·hm-2·d-1),自第二個月開始兩種耕作處理下氮素淋溶速率無顯著差異(圖6-A)。

由圖6對時間進(jìn)行積分求和計算不同耕作與施肥處理下整個稻季氮素淋溶量。如表4所示,不同耕作方式對氮素淋溶量無顯著影響。深翻條件下,不同施肥處理氮素總淋溶量為9.14—11.74 kg N·hm-2,占總施氮量的4.4%—5.6%,其中T3處理氮素淋溶量顯著低于T1與T2處理。旋耕條件下,不同施肥處理氮素總淋溶量為8.58—11.21 kg N·hm-2,占總施氮量的4.1%—5.3%,其中T3處理顯著低于T2處理,T1處理與T2及T3處理無顯著差異。

不同小寫字母表示同一采樣日期不同耕作水分滲漏量存在差異(P<0.05)。圖4同

圖4 不同耕作深度的水分滲漏量(A:淹水;B:非淹水)

3 討論

3.1 耕作方式對土壤水分滲漏量的影響

由于常年旋耕等原因,土壤緊實化問題在試驗田區(qū)異常明顯,深翻作為疏松土壤的重要手段,可降低土壤緊實度,在一定程度上降低土壤對作物根系的機械壓迫,創(chuàng)造有利于作物根系延伸和生長的土壤環(huán)境[16]。與此同時,深翻可能會增加土壤水分滲漏及養(yǎng)分的淋失[17]。

通過分析田間監(jiān)測結(jié)果表明,與初始土壤容重相比,旋耕12 cm土壤容重?zé)o顯著變化。深翻20 cm打破部分犁底層,顯著降低了15—25 cm土壤容重,降低了0—25 cm土壤緊實度,而對25 cm以下土層沒有影響,該結(jié)果與辛平等[18]研究結(jié)果類似。從整個水稻生育期來看深翻20 cm并沒有顯著增加水分滲漏量,與室內(nèi)土柱模擬試驗結(jié)果一致。原因是深翻20 cm后,25—35 cm土壤容重達(dá)到1.62 g·cm-3(表3),不低于旋耕25—35 cm的土壤容重,說明25 cm以下的犁底層或黏重板結(jié)層并沒有被破壞,從而形成了一個新的隔水層[19];盡管深翻20 cm,降低了0—25 cm土層的土壤緊實度,但稻田土壤含水量較大,測定的土壤緊實度數(shù)值偏低[20],導(dǎo)致深翻20 cm雖然降低了25—35 cm土壤緊實度,但水分滲漏量沒有明顯增加。而在6月19日兩種耕作方式下水分滲漏量出現(xiàn)顯著差異可能與滲漏液采集前的集中降水有關(guān)(圖1)。打破犁底層的土柱模擬試驗結(jié)果表明,將犁底層全部打破,可能導(dǎo)致深層土壤蓄水能力急劇下降,增加土壤的水分滲漏[21-22],也存在增加氮素等養(yǎng)分流失的風(fēng)險,具體影響還需田間試驗進(jìn)一步驗證。

3.2 施肥方式對氮素淋溶的影響

通過統(tǒng)計分析發(fā)現(xiàn),耕作與施肥對氮素淋溶量的交互作用并不顯著(=0.787),但施肥顯著影響氮素淋溶量(<0.05)。田間監(jiān)測結(jié)果顯示有機與無機肥配施的T3處理土壤氮素淋溶量最小,秸稈配施化肥的T2處理氮素淋溶量最大(表4)。在等量施氮條件下,有機肥的施用增加了土壤碳源,提高了土壤微生物的活性,使得土壤能通過微生物的同化作用或土壤有機質(zhì)固持更多的氮素[23-25],有效減少了土壤水分中硝態(tài)氮的濃度,從而顯著降低了深翻條件下氮素的淋溶[26]。本試驗結(jié)果表明,T2處理氮素淋溶量顯著高于T3處理,相較于T1處理有增加趨勢但差異不顯著。連續(xù)的秸稈還田導(dǎo)致土壤中氮素累積量高于化肥與有機肥處理[27],增加了滲漏液中的硝態(tài)氮含量[28];另一方面,由于還田秸稈短期內(nèi)能固持土壤溶液中的速效氮素[29-30](如硝態(tài)氮或銨態(tài)氮),但秸稈還田使得20—30 cm土層的土壤緊實度更低(圖2),且隨著秸稈的腐解,其前期固持的氮素會釋放出來,勢必會增加水稻生育期的氮素淋溶量。此外,秸稈還田和有機肥施用可能會導(dǎo)致磷、鉀等其他養(yǎng)分含量差異顯著,影響作物生長及對養(yǎng)分的吸收,進(jìn)而影響土壤水分的滲漏及氮素淋溶[31],其具體影響機理還需進(jìn)一步探究。

箭頭所指為追肥時間。圖6同

圖6 不同耕作(A)與施肥(B)處理下土壤氮素淋溶速率歷時變化

表4 稻季不同耕作與施肥處理下氮素淋溶量

不同大寫字母表示同一施肥處理下深翻與旋耕氮素淋溶量存在差異(<0.05);不同小寫字母表示同一耕作處理下不同施肥處理之間存在差異(<0.05)

Different uppercase letters indicated significant differences between different tillage under the same treatment (<0.05).Different lowercase letters indicated significant differences among different treatments under the same tillage (<0.05)

3.3 稻田土壤耕層構(gòu)建與培肥

長江中下游地區(qū)黏質(zhì)且犁底層厚的水稻土,通過深翻或深松部分打破犁底層(如0—20 cm)并沒有增加土壤水分與氮素淋溶;結(jié)合適宜的施肥方式可培肥深厚的稻田耕作層,促進(jìn)深層土壤的養(yǎng)分含量以及增加土壤養(yǎng)分儲量,增強土壤養(yǎng)分轉(zhuǎn)化和運輸[32-33],為作物根系生長提供優(yōu)質(zhì)的耕層環(huán)境[34]。因此,深翻20 cm和有機與無機肥配施相結(jié)合,是一種構(gòu)建稻田土壤肥沃耕層的可行方案。

4 結(jié)論

深翻20 cm可增加耕層厚度,顯著降低20 cm耕層土壤容重與緊實度,改善耕層土壤物理結(jié)構(gòu),同時在水稻生育期并未造成土壤水分與氮素的大量流失;經(jīng)土柱模擬試驗初步探究,若將犁底層全部打破,水分滲漏量顯著增加,可能增加氮素淋溶。土壤氮素淋溶以硝態(tài)氮為主,有機與無機肥配施可有效減少滲漏液中硝態(tài)氮的濃度,降低耕層氮素隨水分滲漏的淋失風(fēng)險。因此,耕作深度20 cm時,結(jié)合有機無機培肥,可改良稻田土壤緊實化的同時減少水分養(yǎng)分流失,可作為一種有效的稻田土壤培肥耕層構(gòu)建模式。

[1] 韓上, 武際, 李敏, 陳峰, 王允青, 程文龍, 唐杉, 王慧, 郭熙盛, 盧昌艾.深耕結(jié)合秸稈還田提高作物產(chǎn)量并改善耕層薄化土壤理化性質(zhì).植物營養(yǎng)與肥料學(xué)報, 2020, 26(2): 276-284.DOI: CNKI: SUN:ZWYF.0.2020-02-008.

HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A.Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment.Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284.DOI: CNKI:SUN:ZWYF.0.2020-02-008.(in Chinese)

[2] 秦紅靈, 高旺盛, 馬月存, 馬麗, 尹春梅.兩年免耕后深松對土壤水分的影響.中國農(nóng)業(yè)科學(xué), 2008, 41(1): 78-85.DOI: 10.3864/j.issn.0578-1752.2008.01.010.

QIN H L, GAO W S, MA Y C, MA L, YIN C M.Effects of subsoiling on soil moisture under no-tillage 2 years later.Scientia Agricultura Sinica, 2008, 41(1): 78-85.DOI: 10.3864/j.issn.0578-1752.2008.01.010.(in Chinese)

[3] HAIGH M, SANSOM B.Soil compaction, runoff and erosion on reclaimed coal-lands (UK).International Journal of Surface Mining.Reclamation and Environment, 1999, 13(4): 135-146.DOI: 10.1080/ 09208119908944239.

[4] 李明, 李朝蘇, 劉淼, 吳曉麗, 魏會廷, 湯永祿, 熊濤.耕作播種方式對稻茬小麥根系發(fā)育,土壤水分和硝態(tài)氮含量的影響.應(yīng)用生態(tài)學(xué)報, 2020, 31(5): 1425-1434.DOI: 10.13287/j.1001-9332.202005.027.

LI M, LI C S, LIU M, WU X L, WEI H T, TANG Y L, XIONG T.Effects of different tillage and sowing practices on root growth, soil moisture, and soil nitrate nitrogen content of wheat after rice.Chinese Journal of Applied Ecology, 2020, 31(5): 1425-1434.DOI: 10.13287/ j.1001-9332.202005.027.(in Chinese)

[5] 張麗, 張中東, 郭正宇, 宮帥, 王若男, 陶洪斌, 王璞.深松耕作和秸稈還田對農(nóng)田土壤物理特性的影響.水土保持通報, 2015, 35(1): 102-106, 117.DOI: CNKI:SUN:STTB.0.2015-01-020.

ZHANG L, ZHANG Z D, GUO Z Y, GONG S, WANG R N, TAO H B, WANG P.Effects of subsoiling tillage and straw returning to field on soil physical properties.Bulletin of Soil and Water Conservation, 2015, 35(1): 102-106, 117.DOI: CNKI:SUN:STTB.0.2015-01-020.(in Chinese)

[6] 李志芳, 劉小光, 許琦.增施有機肥提高土壤滲水和保水能力.蔬菜, 2012, (12): 44-45.DOI: CNKI:SUN:SCZZ.0.2012-12-025.

LI Z F, LIU X G, XU Q.Increasing the application of organic fertilizer to improve soil water seepage and water retention capacity.Vegetables, 2012, (12): 44-45.DOI: CNKI:SUN:SCZZ.0.2012-12-025.(in Chinese)

[7] 張子璐, 劉峰, 候庭鈺.我國稻田氮磷流失現(xiàn)狀及影響因素研究進(jìn)展.應(yīng)用生態(tài)學(xué)報, 2019, 30(10): 3292-3302.DOI: 10.13287/j.1001- 9332.201910.029.

ZHANG Z L, LIU F, HOU T Y.Current status of nitrogen and phosphorus losses and related factors in Chinese paddy fields: A review.Chinese Journal of Applied Ecology, 2019, 30(10): 3292-3302.DOI: 10.13287/j.1001-9332.201910.029.(in Chinese)

[8] KRAMER S B, REGANOLD J P, GLOVER J D, BOHANNAN B J M, MOONEY H A.Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils.Proceedings of the National Academy of Sciences, 2006, 103(12): 4522-4527.DOI: 10.1073/pnas.0600359103.

[9] 王永生, 楊世琦.寧夏黃灌區(qū)稻田冬春休閑期硝態(tài)氮淋失量.生態(tài)學(xué)報, 2011, 31(16): 4653-4660.DOI: CNKI:SUN:STXB.0.2011-16- 019.

WANG Y S, YANG S Q.The nitrate-nitrogen leaching amount in paddy winter-spring fallow period.Acta Ecologica Sinica, 2011, 31(16): 4653-4660.DOI: CNKI:SUN:STXB.0.2011-16-019.(in Chinese)

[10] SIEMENS J, KAUPENJOHANN M.Contribution of dissolved organic nitrogen to n leaching from four german agricultural soils.Journal of Plant Nutrition & Soil Science, 2002, 165(6): 675-681.DOI:10.1002/jpln.200290002.

[11] 夏紅霞, 朱啟紅, 李強, 王書敏, 丁武泉, 楊志敏, 陳玉成.典型有機肥氮素淋溶流失特征分析.西南農(nóng)業(yè)學(xué)報, 2018, 31(9): 1870-1874.

XIA H X, ZHU Q H, LI Q, WANG S M, DING W Q, YANG Z M, CHEN Y C.Analysis on characteristics of nitrogen losses of typical organic fertilizers in leaching experiments.Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1870-1874.(in Chinese)

[12] 張敏, 田玉華, 尹斌, 朱兆良.稻田氮素淋失測定方法的研究進(jìn)展.土壤, 2015, 47(3): 440-445.DOI: 10.13758/j.cnki.tr.2015.03.002.

ZHANG M, TIAN Y H, YIN B, ZHU Z L.A review of methods to determine nitrogen leaching in paddy fields.Soils, 2015, 47(3): 440-445.DOI: 10.13758/j.cnki.tr.2015.03.002.(in Chinese)

[13] MINAMIKAWA K, EGUCHI S, NISHIMURA S, IKARA H, MAEDA M, TAGI K, KOMADA M.Groundwater-induced emissions of nitrous oxide through the soil surface and from subsurface drainage in an Andosol upland field: A monolith lysimeter study.Soil Science & Plant Nutrition, 2013, 59(1): 87-95.DOI: 10.1080/00380768.2012.740606.

[14] 張靜, 王德建, 王燦.用原狀土柱研究太湖地區(qū)稻麥輪作農(nóng)田養(yǎng)分淋溶量.土壤, 2008, 40(4): 591-595.DOI: 10.3321/j.issn:0253-9829.2008.04.016.

ZHANG J, WANG J D, WANG C.On nutrient leaching amount of rice-wheat rotation field with monolith lysimeter in Taihu lake area.Soils, 2008, 40(4): 591-595.DOI: 10.3321/j.issn:0253-9829.2008.04.016.(in Chinese)

[15] 李勇, 楊林章, 殷廣德.太湖地區(qū)直播稻田氮素滲漏損失試驗研究.植物營養(yǎng)與肥料學(xué)報, 2010, 16(1): 99-104.DOI: 10.11674/zwyf.2010.0114.

LI Y, YANG L Z, YIN G D.Experimental study on nitrogen leaching in a direct-seeding rice paddy of Taihu Lake Basin.Journal of Plant Nutrition and Fertilizers, 2010, 16(1): 99-104.DOI: 10.11674/zwyf.2010.0114.(in Chinese)

[16] 馬建業(yè), 張揚, 劉哲, 張樂濤.耕作模式對黃土高原地區(qū)新增耕地土壤緊實度、養(yǎng)分含量及玉米產(chǎn)量的影響.水土保持通報, 2019, 39(6): 456-464.DOI: CNKI:SUN:STTB.0.2019-06-021.

MA J Y, ZHANG Y, LIU Z, ZHANG L T.Effects of tillage patterns on soil compaction, nutrient content and yield of newly cultivated land in loess plateau.Bulletion of Soil and Water Conservation, 2018, 7(4): 456-464.DOI: CNKI:SUN:STTB.0.2019-06-021.(in Chinese)

[17] ZHANG J S, ZHANG F P, YANG J H, WANG J P, CAI M L, LI C F, CAO C G.Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China.Agriculture, Ecosystems and Environment, 2011, 140: 164-173.DOI: 10.1016/j.agee.2010.11.023.

[18] 辛平, 黃高寶, 張國盛, 鄧忠, 徐銀萍.耕作方式對表層土壤飽和導(dǎo)水率及緊實度的影響.甘肅農(nóng)業(yè)大學(xué)學(xué)報, 2005, 40(2): 203-207.DOI: 10.3969/j.issn.1003-4315.2005.02.017.

XIN P, HUANG G B, ZHANG G S, DENG Z, XU Y P.Effects of different tillage methods on saturated hydraulic conductivity and compactiveness of the surface soil.Journal of Gansu Agricultural University, 2005, 40(2): 203-207.DOI: 10.3969/j.issn.1003-4315.2005.02.017.(in Chinese)

[19] DIJCK S J E V, ASCH T W J V.Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France.Soil & Tillage Research, 2002, 63(3/4):141-153.DOI: 10.1016/S0167-1987(01)00237-9.

[20] 蘇有健, 王燁軍, 張永利, 丁勇, 羅毅, 宋莉, 廖萬有.不同耕作方式對茶園土壤物理性狀及茶葉產(chǎn)量的影響.應(yīng)用生態(tài)學(xué)報, 2015, 26(12): 3723-3729.DOI: 10.13287/j.1001-9332.20151016.012.

SU Y J, WANG Y J, ZHANG Y L, DING Y, LUO Y, SONG L, LIAO W Y.Effects of different tillage methods on tea garden soil physical characteristics and tea yield.Chinese Journal of Applied Ecology, 2015, 26(12): 3723-3729.DOI: 10.13287/j.1001-9332.20151016.012.(in Chinese)

[21] 葛雙洋.水稻土深松對土壤物理性質(zhì)及小麥生長影響的研究[D].南京: 南京農(nóng)業(yè)大學(xué), 2017.

GE S Y.Effects of subsoiling on paddy soil physical properties and growth of wheat[D].Nanjing: Nanjing Agricultural University, 2017.(in Chinese)

[22] 花偉東, 郭亞芬, 張忠學(xué).坡耕地局部打破犁底層對水分入滲的影響.水土保持學(xué)報, 2008, 22(5): 214-216.DOI: 10.3321/j.issn:1009- 2242.2008.05.047.

HUA W D, GUO Y F, ZHANG Z X.Influence of plough pan on broke partially slope farmland to moisture content infiltration.Journal of Soil and Water Conservation, 2008, 22(5): 214-216.DOI: 10.3321/j.issn:1009-2242.2008.05.047.(in Chinese)

[23] 徐陽春, 沈其榮, 冉煒.長期免耕與施用有機肥對土壤微生物生物量碳、氮、磷的影響.土壤學(xué)報, 2002, 39(1): 83-90.DOI: 10.3321/j.issn:0564-3929.2002.01.013.

XU Y C, SHEN Q R, RAN W.Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping.Acta Pedologica Sinica, 2002, 39(1): 83-90.DOI: 10.3321/j.issn:0564-3929.2002.01.013.(in Chinese)

[24] 李娟, 李松昊, 鄔奇峰, 祝小祥, 吳建軍.不同施肥處理對稻田氮素徑流和滲漏損失的影響.水土保持學(xué)報, 2016, 30(5): 23-28, 33.DOI: CNKI:SUN:TRQS.0.2016-05-004.

LI J, LI S H, WU Q F, ZHU X X, WU J J.Effects of different fertilization treatments on runoff and leaching losses of nitrogen in paddy field.Journal of Soil and Water Conservation, 2016, 30(5): 23-28, 33.DOI: CNKI:SUN:TRQS.0.2016-05-004.(in Chinese)

[25] MAEDA M, IHARA H, OTA T.Deep soil adsorption of nitrate in a Japanese ndisol in response to different nitrogen sources.Soil and Water Management and Conservation, 2008, 72(3): 702-710.DOI: 10.2136/sssaj2007.0212.

[26] 廖義善, 卓慕寧, 李定強, 郭太龍, 李俊杰, 謝真越.適當(dāng)化肥配施有機肥減少稻田氮磷損失及提高產(chǎn)量.農(nóng)業(yè)工程學(xué)報, 2013, 29(1): 210-217.DOI: 10.3969/j.issn.1002- 6819.2013.z1.033.

LIAO Y S, ZHUO M N, LI D Q, GUO T L, LI J J, XIE Z Y.Formulated fertilization for reducing nitrogen and phosphorus losses from paddy fields and increasing rice yield.Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 210-217.DOI: 10.3969/j.issn.1002- 6819.2013.z1.033.(in Chinese)

[27] GENG Y H, CAO G J, WANG L C, WANG S H.Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution.PlosOne, 14(7): e0219512.DOI: 10.1371/journal.pone.0219512.

[28] 王士超, 閆志浩, 王瑾瑜, 槐圣昌, 武紅亮, 邢婷婷, 葉洪齡, 盧昌艾.秸稈還田配施氮肥對稻田土壤活性碳氮動態(tài)變化的影響.中國農(nóng)業(yè)科學(xué), 2020, 53(4): 782-794.

WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A.Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields.Scientia Agricultura Sinica, 2020, 53(4): 782-794.(in Chinese)

[29] 趙士誠, 魏美艷, 仇少君, 何萍.氮肥管理對秸稈還田下土壤氮素供應(yīng)和冬小麥生長的影響.中國土壤與肥料, 2017, (2): 20-25.DOI:10.11838/sfsc.20170204.

ZHAO S C, WEI M Y, QIU S J, HE P.Effects of nitrogen fertilizer managements on soil nitrogen supply and winter wheat growth under straw return.Soil and Fertilizer Sciences in China, 2017, (2): 20-25.DOI:10.11838/sfsc.20170204.(in Chinese)

[30] 蓋霞普, 劉宏斌, 翟麗梅, 楊波, 任天志, 王洪媛, 武淑霞, 雷秋良.長期增施有機肥/秸稈還田對土壤氮素淋失風(fēng)險的影響.中國農(nóng)業(yè)科學(xué), 2018, 51(12): 2336-2347.DOI:10.3864/j.issn.0578-1752.2018.12.010.

GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L.Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk.Scientia Agricultura Sinica, 2018, 51(12): 2336-2347.DOI:10.3864/j.issn.0578-1752.2018.12.010.(in Chinese)

[31] DUAN Y H, SHI X J, LI S L, SUN X F, HE X H.Nitrogen use efficiency as affected by phosphorus and potassium in long-term rice and wheat experiments.Journal of Integrative Agriculture, 2014, 13(3): 588-596.DOI: 10.1016/S2095-3119(13)60716-9.

[32] 柳開樓, 張會民, 韓天福, 周利軍, 李大明, 胡志華, 黃慶海, 葉會財, 徐小林, 胡惠文.長期化肥和有機肥施用對雙季稻根茬生物量及養(yǎng)分積累特征的影響.中國農(nóng)業(yè)科學(xué), 2017, 50(18): 3540-3548.DOI:10.3864/j.issn.0578-1752.2017.18.010.

LIU K L, ZHANG H M, HAN T F, ZHOU L J, LI D M, HU Z H, HUANG Q H, YE H C, XU X L, HU H W.Effects of long-term application of chemical and organic fertilizers on root biomass and nutrient in double cropping rice system.Scientia Agricultura Sinica, 2017, 50(18): 3540-3548.DOI:10.3864/j.issn.0578-1752.2017.18.010.(in Chinese)

[33] 張黛靜, 張艷艷, 王艷杰, 陳倩青, 楊惠荔, 馬建輝, 李春喜.耕層調(diào)控與有機肥處理下麥田土壤和小麥冠層結(jié)構(gòu)特性及其相互關(guān)系.應(yīng)用生態(tài)學(xué)報, 2018, 29(2): 538-546.DOI:10.13287/j.1001-9332.201802.029.

ZHANG D J, ZHANG Y Y, WANG Y J, CHEN Q Q, YANG H L, MA J H, LI C X.Structure characteristics of soil and canopy and their relationships in wheat field under different tillage and application of organic fertilizer.Chinese Journal of Applied Ecology, 2018, 29(2): 538-546.DOI:10.13287/j.1001-9332.201802.029.(in Chinese)

[34] 陸欣春, 韓曉增, 鄒文秀, 丁素榮, 尤孟陽, 嚴(yán)君, 陳旭, 周學(xué)超.利用牛糞和黑土構(gòu)建肥沃耕層對沙性土壤有機質(zhì)及養(yǎng)分含量的短期影響.土壤與作物, 2018, 7(4): 456-464.DOI: 10.11689/j.issn.2095-2961.2018.04.013.

LU X C, HAN X Z, ZOU W X, DING S R, YOU M Y, YAN J, CHEN X, ZHOU X C.The contents of soil organic matter and nutrients as impacted by constructing fertile cultivated layers of sandy soil using cow dung and black soil in a short term experiment.Soils and Crops, 2018, 7(4): 456-464.DOI: 10.11689/j.issn.2095-2961.2018.04.013.(in Chinese)

Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field

WANG JinYu1, CHENG WenLong2, HUAI ShengChang1, WU HongLiang1, XING TingTing1, YU WeiJia1, WU Ji2, LI Min2, LU ChangAi1*

1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Arable Land/Key Laboratory of Soil Quality, CAAS, Beijing 100081;2Anhui Academy of Agricultural Science, Hefei 237000

【Objective】Aimed at the problems of shallow soil plow layer, thickening of plow pan and soil hardening caused by perennial shallow ploughing and unreasonable fertilization in rice-wheat rotation area in the middle and lower reaches of Yangtze River in China,the effects of deep plowing (breaking part of plow pan) and fertilization on paddy field soil bulk density, soil compaction, soil water leaching and nitrogen leaching were studied to illuminate the response of nitrogen leaching to two tillage methods and three fertilization measures, and then provide theoretical basis for the construction of plow layer in the paddy soil.【Method】(1) Two tillage methods (rotary tillage 12 cm and deep plowing 20 cm) and three equal nitrogen fertilization treatments (single inorganic fertilizer treatment T1, returning straw with inorganic fertilizer treatment T2, organic manure with inorganic fertilizer treatment T3) were established in Shucheng County, Anhui Province in 2015.Soil water leaching and nitrogen leaching in rice season as well as soil bulk density and soil compaction were monitored dynamically in 2019-2020; (2) The soil-column experiment from paddy field was conducted to monitor.Water leaching from the treatment of deep plowing 30 cm in depth (total breaking of soil plow pan) was studied.【Result】(1) Field experiment results showed that the soil bulk density and soil compaction from the treatment of deep plowing 20 cm in depth were declined in rice season compared to those from the treatment of rotary tillage 12 cm in depth.Compared with the treatment of rotary tillage 12 cm in depth, the soil water leaching from the treatment of deep plowing 20 cm in depth increased by 7.4% in tillering stage, and there was no obvious change in soil water leaching after rice booting stage.From the whole rice growth period, the difference of soil water leaching between the treatment of deep plowing 20 cm in depth and the treatment of rotary tillage 12 cm in depth was not significant; (2) The results of soil-column experiment showed the soil water leaching from the treatment of deep plowing 30 cm in depth (total breaking of soil plow pan) increased significantly by 19.0% and 11.0% in flooding and 23.0% and 21.5% in non-flooding, respectively, compared with the treatment of rotary tillage 12 cm in depth and the treatment of deep plowing 20 cm in depth; (3) Nitrate nitrogen was dominant form of nitrogen in the soil water leaching.The concentration of nitrate nitrogen in soil water leaching from T3 treatment decreased significantly compared with that of T1 and T2 treatment after rice booting stage, but the difference of ammonium nitrogen concentration in soil water leaching from T1, T2 and T3 treatment were not significant; (4) From the whole growth period of rice, the difference of nitrogen leaching from the treatment of rotary tillage 12 cm in depth and the treatment of deep plowing 20 cm in depth was not significant, while the three treatments of fertilization had obvious difference on nitrogen leaching.Under the condition of deep plowing 20 cm in depth, the nitrogen leaching rates of T1, T2 and T3 treatment were 10.7, 11.7 and 9.1 kg N·hm-2respectively, and under the condition of rotary tillage 12 cm in depth, the nitrogen leaching rates of T1, T2 and T3 treatment were 9.83,11.21 and 8.58 kg N·hm-2, respectively.T3 treatment decreased significantly nitrogen leaching compared to T1 and T2 treatment.【Conclusion】Deep plowing 20 cm in depth can improve soil physical structure, however, soil water leaching and nitrogen leaching are not significantly increased, and the combination of organic manure and inorganic fertilizer can significantly reduce nitrate nitrogen leaching.These results are of theoretical significance for the building of deep and fertile tillage layer in the clay paddy soil with high plow pan (such as red-yellow soil) in the middle and lower reaches of the Yangtze River through deep plowing measures, combined application of organic manure and inorganic fertilizer.

rice-wheat rotation; tillage practices; combined application of organic and inorganic fertilizers; water leaching; nitrogen leaching

2020-11-14;

2020-12-29

國家公益性行業(yè)(農(nóng)業(yè))科研專項(201503122)、中國農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費專項(161013201952)

王瑾瑜,Tel:17735133681;E-mail:1791294676@qq.com。通信作者盧昌艾,Tel:010-82108703;E-mail:luchangai@caas.cn

(責(zé)任編輯 李云霞)

猜你喜歡
耕層耕作氮素
不同氮肥用量對小麥氮素吸收分配及利用效率的影響
基于數(shù)字孿生的農(nóng)業(yè)耕作監(jiān)控系統(tǒng)
土壤侵蝕對紫色土坡耕地耕層障礙因素的影響*
保護(hù)性耕作試驗監(jiān)測數(shù)據(jù)分析
不同產(chǎn)量潛力小麥品種氮素積累與轉(zhuǎn)運的差異
腐植酸:盯住東北三省5650 萬畝黑土地保護(hù)性耕作發(fā)力
誘變結(jié)合小孢子培養(yǎng)的氮高效大麥DH株系評價
輪作制度對敦化市土壤主要理化性狀影響的研究
高溫脅迫下番茄臨界氮模型的建立及氮素營養(yǎng)診斷*
秸稈還田對耕層土壤理化性質(zhì)及冬小麥-夏玉米產(chǎn)量的影響