王婷 李婕羚 韋士程 劉廣立 駱海萍 張仁鐸
摘 ?要: 以浮萍為生物質(zhì)能原料,采用酸式熱裂解進(jìn)行預(yù)處理,考察了處理液在微生物燃料電池(MFC)中的產(chǎn)電性能.結(jié)果表明:浮萍熱裂解最佳預(yù)處理?xiàng)l件為:反應(yīng)溫度160 ℃,反應(yīng)時(shí)間80 min,草酸投加量3%(質(zhì)量分?jǐn)?shù)).該條件下每克浮萍的還原糖產(chǎn)量為0.272 g,浮萍固體消化率可達(dá)到55%.當(dāng)采用稀釋10倍的熱裂解液時(shí),MFC的最大功率密度為521 mW·m-2,總內(nèi)阻最小值為145.9 Ω,庫(kù)侖效率(CE)最大值為12.1%.浮萍酸式熱裂解液濃度的增加,對(duì)MFC輸出的最大電壓影響不大,化學(xué)需氧量(COD)的去除率均可達(dá)到91%以上,最終pH值在7.7~8.0.三維熒光光譜分析結(jié)果表明:水中的多種有機(jī)物均得到了有效的降解.在稀釋20,10和5倍酸熱裂解液條件下,厭氧醋菌屬(Acetoanaerobium)相對(duì)豐度分別為30.1%,42.2%和33.8%.牦牛瘤胃菌屬(Proteiniclasticum)在稀釋20倍時(shí)相對(duì)豐度最高,為19.5%;在稀釋5倍酸熱裂解液條件下,產(chǎn)乙酸嗜蛋白質(zhì)菌屬(Proteiniphilum)相對(duì)豐度最高達(dá)到16.0%.
關(guān)鍵詞: 浮萍; 熱裂解; 微生物燃料電池(MFC); 生物質(zhì)能; 產(chǎn)電
Abstract: Duckweed, as raw material of biomass energy, was pretreated by using pyrolysis and then used for electricity generation in microbial fuel cell (MFC). Experimental result showed that the optimized conditions for the pretreatment were: reaction temperature of 160 ℃; reaction time of 80 min, oxalic acid dosage of 3%, in which the reducing sugar reached 0.272 g for 1 g duckweed, and digestibility of duckweed reached at 55%. The maximum power density was 521 mW·m-2, the minimum total internal resistance was 145.9 Ω, and maximum Coulombic efficiency (CE) was 12.1%, when the pyrolyzed solution was diluted 10 times. COD removal ratio was more than 91% with concentrations of the pyrolyzed solutions increasing, and final pH was kept at 7.7-8.0, although the maximum voltage output of MFC was not apparently changed. The results of three-dimensional fluorescence spectrum analysis showed that all organic compounds in the influent were effectively biodegraded.The relative abundance of Acetoanaerobium was 30.1%, 42.2% and 33.8% corresponding to the solution dilution of 20, 10 and 5 folds, respectively.The highest relative abundance of Proteiniclasticum was 19.5% under the 20 folds diluted the hydrolyzed solution, while, the highest relative abundance of Proteiniphilum reached 16.0% under the 5 folds diluted the solution.
Key words: duckweed; pyrolysis; microbial fuel cell(MFC); biomass energy; electricity generation
0 ?引 言
浮萍是一種漂浮在水面的水生植物,常見有紫背浮萍、少根紫萍和青萍等[1],能夠高效利用廢水中的氮、磷轉(zhuǎn)化為生物質(zhì),具有凈化污水的能力,可用于富營(yíng)養(yǎng)化水體的生態(tài)修復(fù)[2-3].此外,浮萍中淀粉、蛋白質(zhì)含量較高,約1.34~4.54 d生物量可增加1倍,生長(zhǎng)速度快[1,4],可將浮萍進(jìn)行能源化處理[2,4-5].浮萍經(jīng)厭氧消化按每克揮發(fā)性固體計(jì)算,可獲得390 mL的甲烷氣體產(chǎn)量[6];采用1%(質(zhì)量分?jǐn)?shù))的H2SO4預(yù)處理浮萍后,在35 ℃和pH=7的條件下,厭氧暗發(fā)酵,可達(dá)到最大產(chǎn)氫量為169.30 mL·g-1[7].因地制宜開展浮萍的生物質(zhì)能的利用,對(duì)于可再生能源的發(fā)展具有重要的推動(dòng)作用.微生物燃料電池(MFC)能夠在溫和條件下,通過(guò)微生物作用將有機(jī)物中的化學(xué)能直接轉(zhuǎn)化為電能[8-9].目前,秸稈類生物質(zhì)如玉米秸稈、小麥秸稈、稻桿等均可被MFC利用,并產(chǎn)電.在雙室H型MFC中,接種纖維素降解菌,稻稈初始質(zhì)量濃度為1 g·L-1時(shí),功率密度可達(dá)到145 mW·m-2;當(dāng)?shù)静葙|(zhì)量濃度從0.5 g·L-1增加到1 g·L-1時(shí),庫(kù)侖效率(CE)從54.3%下降到45.3%[10].WANG等[11]用稀酸對(duì)稻草進(jìn)行處理,當(dāng)化學(xué)需氧量(COD)值為400 mg·L-1時(shí),MFC最大功率密度為137.6 mW·m-2,將溶液電導(dǎo)率從5.6 mS·cm-1調(diào)整到17 mS·cm-1,最大功率密度提高到293.3 mW·m-2. JABLONSKA等[12]以菜籽秸稈為原料,通過(guò)水熱預(yù)處理與酶解相結(jié)合,當(dāng)還原糖質(zhì)量濃度為150 mg·L-3時(shí),雙室MFC的最大功率密度達(dá)到54 mW·m-2. GURAV等[13]利用Shewanella marisflavi BBL25純菌種,以大麥秸稈、芒草、松樹的水解液為MFC的基質(zhì),MFC最大功率密度分別可達(dá)到52.8,40.9和34.0 mW·m-2.目前采用浮萍為基質(zhì)的MFC產(chǎn)電特性尚未見相關(guān)報(bào)道,因此本研究開展了浮萍經(jīng)預(yù)處理后,其水解液在MFC中的降解及產(chǎn)電的試驗(yàn)分析,以期為浮萍的綜合利用及生物質(zhì)能產(chǎn)電提供新的思路.
1 ?材料和方法
1.1 浮萍預(yù)處理
本研究采用青萍(Lemna minor)為研究對(duì)象,將收集到的新鮮浮萍用清水進(jìn)行洗滌,以去除浮萍表面污垢、沙粒以及雜物,后將其放入烘箱內(nèi)60 ℃烘干.將烘干后的浮萍用粉碎機(jī)粉碎,過(guò)60目篩,60 ℃烘干12 h后待用.熱裂解預(yù)處理[14]:浮萍粉末選擇固液質(zhì)量比1∶20,水解反應(yīng)溫度分別為150,160,170和180 ℃,草酸質(zhì)量分?jǐn)?shù)分別為1.0%,2.0%,3.0%和4.0%,在水熱反應(yīng)釜中進(jìn)行熱裂解預(yù)處理.混合物以8 000 r·min-1的速度離心5 min,取其上層清液,用0.22 μm濾膜進(jìn)行抽濾,濾液稀釋不同倍數(shù)后用于MFC的進(jìn)水.
1.2 MFC的啟動(dòng)與運(yùn)行
1.2.1 陽(yáng)極和陰極制作
碳纖維刷(直徑為3.0 cm,長(zhǎng)度為2.5 cm)450 ℃燒30 min后作為陽(yáng)極使用.陰極由擴(kuò)散層、不銹鋼網(wǎng)支撐層和催化層構(gòu)成.炭黑和聚四氟乙烯乳液輥壓在不銹鋼網(wǎng)支撐層一側(cè),經(jīng)340 ℃燒30 min后,制得擴(kuò)散層;活性炭為催化劑,將活性炭和聚四氟乙烯乳液(PTFE)混合輥壓在不銹鋼網(wǎng)另一側(cè)形成催化層,最終陰極厚度為0.6 mm[15].
1.2.2 反應(yīng)器啟動(dòng)與運(yùn)行
反應(yīng)器有效體積為28 mL,由有機(jī)玻璃組成(長(zhǎng)、寬、高分別為4,4,4 cm),MFC外電路連接1 000 Ω電阻.以廣州瀝滘污水處理廠初沉池出水為接種液,緩沖液為50 mmol·L-1的磷酸鹽緩沖液,以及微量元素和維生素[16],基質(zhì)為1 g·L-1的乙酸鈉,溫度為(30±3) ℃.每隔1~3 d更新緩沖液和基質(zhì),當(dāng)反應(yīng)器電壓能夠連續(xù)穩(wěn)定維持在平臺(tái)期3個(gè)周期以上,視為反應(yīng)器啟動(dòng)成功.反應(yīng)器啟動(dòng)成功后,將底物及50 mmol·L-1的磷酸鹽緩沖液全部更換為不同稀釋倍數(shù)的浮萍預(yù)處理液,選擇NaOH調(diào)節(jié)水解液pH,使MFC的進(jìn)水pH值均控制在6.0~7.0[9,17-18].
1.3 分析與計(jì)算方法
采用重鉻酸鉀滴定法測(cè)定COD,3,5-二硝基水楊酸比色法測(cè)定還原糖質(zhì)量濃度.MFC的極化曲線通過(guò)變電阻法測(cè)得[19-20].電化學(xué)阻抗譜(EIS)測(cè)定中陽(yáng)極為工作電極,陰極為對(duì)電極和參比電極(DH7001,江蘇東華分析儀器有限公司),掃描范圍為100~1×104 kHz,由高頻向低頻掃描,振幅為10 mV[21].三維熒光光譜儀(RF6000,日本島津)測(cè)定不同時(shí)間MFC的出水[22].在MFC的產(chǎn)電曲線達(dá)到平臺(tái)期后,對(duì)陽(yáng)極碳纖維刷取樣,DNA試劑盒進(jìn)行DNA提取,1%的瓊脂糖凝膠電泳檢測(cè)成功后,使用通用引物338F(5'-ACTCCTACGGGAGCA-3')和806R(5'-GGACTACHVGGGTWTCTAAT-3'),對(duì)V3-V4區(qū)域的16S rDNA基因進(jìn)行聚合酶鏈反應(yīng)(PCR)擴(kuò)增,擴(kuò)增產(chǎn)物通過(guò)Illumina HiSeq測(cè)序平臺(tái)進(jìn)行測(cè)序及信息分析(北京百邁克生物科技有限公司)[9,23].MFC的庫(kù)侖效率、功率密度等的計(jì)算方法見參考文獻(xiàn)[24-25].
2 ?結(jié)果與分析
2.1 浮萍的預(yù)處理效果分析
不同反應(yīng)時(shí)間下水解的溫度和草酸的質(zhì)量濃度對(duì)每克浮萍的還原糖產(chǎn)量的影響如圖1所示.從圖1中可以看出,當(dāng)反應(yīng)時(shí)間為40 min時(shí),隨著溫度的升高,每克浮萍的還原糖產(chǎn)量逐漸升高,在草酸投加量為1 %(質(zhì)量分?jǐn)?shù))的條件下,當(dāng)溫度從150 ℃升高到180 ℃時(shí),還原糖產(chǎn)量從0.022 g(干重,下同)增加到0.046 g;隨著草酸質(zhì)量分?jǐn)?shù)的增加,還原糖產(chǎn)量升高,在溫度180 ℃的條件下,當(dāng)草酸從1%增加到4%,還原糖產(chǎn)量從0.046 g增加到0.139 g.當(dāng)反應(yīng)時(shí)間為80 min,溫度為160 ℃,草酸為3%時(shí),還原糖最大產(chǎn)量為0.272 g;溫度180 ℃,草酸為4%時(shí),每克浮萍的還原糖產(chǎn)量反而下降至0.202 g.當(dāng)反應(yīng)時(shí)間為100 min,溫度150 ℃,草酸為3%時(shí),還原糖最大產(chǎn)量為0.269 g.綜合上述結(jié)果,溫度160 ℃,反應(yīng)時(shí)間80 min,草酸質(zhì)量分?jǐn)?shù)為3%,為最優(yōu)酸式熱裂解反應(yīng)條件,該條件下浮萍固體消化率可達(dá)到55%.需要特別說(shuō)明的是,浮萍酸式熱裂解后的殘?jiān)M(jìn)行纖維素酶水解預(yù)實(shí)驗(yàn)結(jié)果表明:纖維素酶對(duì)浮萍酸式熱裂解后的殘?jiān)鼪]有顯著的水解作用,可能的原因是,浮萍自身纖維素含量很低,且浮萍酸式熱裂解后的殘?jiān)袩o(wú)機(jī)物含量很高(質(zhì)量分?jǐn)?shù)約為50%),有機(jī)物含量較低,因此纖維素酶難以對(duì)殘?jiān)M(jìn)行有效的纖維素水解反應(yīng).根據(jù)預(yù)實(shí)驗(yàn)結(jié)果,浮萍僅采用酸式熱裂解處理,對(duì)其處理液進(jìn)行MFC的產(chǎn)電實(shí)驗(yàn).
2.2 不同稀釋倍數(shù)的預(yù)處理液對(duì)MFC產(chǎn)電的影響分析
不同稀釋倍數(shù)的熱裂解液的MFC進(jìn)水水質(zhì)如表1所示.其對(duì)MFC產(chǎn)電曲線的影響結(jié)果如圖2所示.從圖2中可知,當(dāng)采用稀釋20倍的浮萍熱裂解液時(shí),MFC可穩(wěn)定產(chǎn)電,輸出最大電壓約為(490±50) mV,產(chǎn)電周期平均為(48±6) h;當(dāng)采用稀釋10的浮萍熱裂解液時(shí),MFC的輸出最大電壓基本保持不變,仍為(490±40) mV,但運(yùn)行的產(chǎn)電周期延長(zhǎng)至(72±8) h;當(dāng)采用稀釋倍數(shù)為5倍的熱裂解液時(shí),MFC的輸出最大電壓達(dá)到(510±60) mV,產(chǎn)電周期延長(zhǎng)至(120±10) h.浮萍熱裂解液濃度的增加,對(duì)MFC的輸出最大電壓影響不顯著,但使得運(yùn)行周期延長(zhǎng)了約2.5倍.
2.3 不同稀釋倍數(shù)的預(yù)處理液條件下的MFC電化學(xué)特性分析
不同稀釋倍數(shù)的熱裂解液條件下MFC的極化曲線如圖3所示.從圖3中可以看出,當(dāng)采用稀釋20倍的熱裂解液時(shí),還原糖初始質(zhì)量濃度為1.36 g·L-1,MFC在電流密度為1 452 mA·m-2時(shí),達(dá)到最大功率密度443 mW·m-2;當(dāng)采用稀釋10倍的熱裂解液時(shí),MFC的最大功率密度為521 mW·m-2,此時(shí)電流密度為1 928 mA·m-2;當(dāng)采用稀釋5倍的熱裂解液時(shí),MFC在電流密度為1 480 mA·m-2的條件下,達(dá)到最大功率密度461 mW·m-2.稀釋20,10和5倍的熱裂解液在MFC的開路電壓分別為594,523和553 mV.浮萍中除多糖外還含有蛋白質(zhì)等其他組分,在預(yù)處理后,浮萍水解液的組成適合產(chǎn)電微生物的生長(zhǎng),因此浮萍水解液運(yùn)行的反應(yīng)器產(chǎn)電性能良好.
不同稀釋倍數(shù)的裂解液條件下MFC的EIS如圖4所示.將數(shù)據(jù)通過(guò)等效電路擬合可得:當(dāng)稀釋倍數(shù)為10倍時(shí),MFC的歐姆電阻和電荷轉(zhuǎn)移電阻均達(dá)到最小值,相應(yīng)的MFC總內(nèi)阻最小值為145.9 Ω.
2.4 MFC對(duì)有機(jī)物去除的變化分析
不同稀釋倍數(shù)的熱裂解液條件下MFC的COD值隨時(shí)間的變化如圖5所示.從圖5中可以看出,當(dāng)采用稀釋5倍的熱裂解液時(shí),隨著反應(yīng)時(shí)間的延長(zhǎng),COD值不斷降低,當(dāng)反應(yīng)時(shí)間從0 h增加到48 h時(shí),COD值從初始的5 499 mg·L-1降低至626 mg·L-1,反應(yīng)時(shí)間達(dá)到120 h時(shí),出水COD值為220 mg·L-1.當(dāng)采用稀釋10倍的熱裂解液時(shí),在72 h內(nèi),COD值從初始2870 mg·L-1降低至133 m·L-1;當(dāng)采用稀釋20倍的熱裂解液時(shí),48 h內(nèi)COD值可從1 577 mg·L-1降低至135 mg·L-1.在不同熱裂解液的條件下,COD去除率均可達(dá)到91%以上,但庫(kù)侖效率在稀釋倍數(shù)為10時(shí),達(dá)到最大值12.1%,最終出水pH值穩(wěn)定在7.7~8.0之間,出水電導(dǎo)率因進(jìn)水濃度不同而差異較大.
當(dāng)采用稀釋20倍浮萍熱裂解液時(shí),MFC出水在不同時(shí)間內(nèi)的三維熒光光譜結(jié)果如圖6所示.從圖6可以看出,三維熒光光譜在出水的不同時(shí)間內(nèi)不斷發(fā)生變化,根據(jù)三維熒光平行因子分析,可以確定進(jìn)水中包含有酪氨酸類、色氨酸類、溶解性微生物產(chǎn)物(SMP)類以及腐殖酸類有機(jī)物,在反應(yīng)時(shí)間0~18 h內(nèi),主要是SMP類和腐殖酸類有機(jī)物發(fā)生降解.
2.5 MFC的陽(yáng)極微生物群落變化分析
不同稀釋倍數(shù)的酸式熱裂解條件下MFC陽(yáng)極菌落主要指數(shù)分析結(jié)果如表2所示.基因測(cè)序后的OTU數(shù)在270~355之間,隨著熱裂解液稀釋倍數(shù)增加,ACE指數(shù)和Chao1指數(shù)增大,陽(yáng)極群落總數(shù)變多;稀釋10倍條件下Simpson指數(shù)和Shannon指數(shù)為最小,群落多樣性變低.
不同稀釋倍數(shù)的浮萍酸熱裂解液條件下MFC的陽(yáng)極生物膜菌落結(jié)構(gòu)在門水平和屬水平上分布如圖7所示.在門水平上,主要菌群為Firmicutes和Bacteroidetes.在稀釋20,10和5倍酸熱裂解液的條件下,F(xiàn)irmicutes相對(duì)豐度分別為55.7%,51.8%和50.8%,Bacteroidetes相對(duì)豐度分別為23.4%,23.6%和25.6%.浮萍酸熱裂解液中以Firmicutes相對(duì)豐度最高.在屬水平上,未發(fā)現(xiàn)典型產(chǎn)電細(xì)菌Geobacter,而厭氧醋菌屬(Acetoanaerobium)相對(duì)豐度較高,在稀釋20,10和5倍酸熱裂解液條件下,分別為30.1%,42.2%,33.8%.牦牛瘤胃菌屬(Proteiniclasticum)在稀釋20倍時(shí)相對(duì)豐度最高為19.5%;在稀釋5倍的酸熱裂解液條件下,乙酸嗜蛋白質(zhì)菌屬(Proteiniphilum)相對(duì)豐度最高達(dá)到16.0%.
3 ?結(jié) ?論
1) 浮萍熱裂解最佳預(yù)處理?xiàng)l件為:反應(yīng)溫度160 ℃,反應(yīng)時(shí)間80 min,草酸質(zhì)量分?jǐn)?shù)3%.該條件下每克浮萍的還原糖產(chǎn)量為0.272 g,浮萍固體消化率可達(dá)到55%.
2) 當(dāng)采用稀釋10倍的熱裂解液時(shí),MFC的最大功率密度為521 mW·m-2,此時(shí)電流密度為1 928 mA·m-2,MFC總內(nèi)阻有最小值為145.9 Ω,庫(kù)侖效率有最大值為12.1%.浮萍酸式熱裂解液質(zhì)量分?jǐn)?shù)的增加,對(duì)MFC輸出的最大電壓影響不顯著,COD去除率均可達(dá)到91%以上,最終出水pH值在7.7~8.0.三維熒光光譜分析結(jié)果表明,進(jìn)水中的多種有機(jī)物均得到了有效的降解.
3) 在稀釋20,10和5倍酸熱裂解液條件下,Acetoanaerobium相對(duì)豐度分別為30.1%,42.2%和33.8%.Proteiniclasticum在稀釋20倍時(shí)相對(duì)豐度最高,為19.5%;在稀釋5倍酸熱裂解液條件下,Proteiniphilum相對(duì)豐度最高達(dá)到16.0%.
參考文獻(xiàn):
[1] 楊晶晶, 趙旭耀, 李高潔, 等. 浮萍的研究及應(yīng)用 [J]. 科學(xué)通報(bào),2021,66(9):1026-1045.
YANG J J, ZHAO X Y, LI G J, et al. Research and application in duckweeds: a reviews [J]. Chinese Science Bulletin,2021,66(9):1026-1045.
[2] 趙新勇, 王友霜, 王健康, 等. 浮萍植物的應(yīng)用價(jià)值及綜合開發(fā)利用 [J]. 熱帶生物學(xué)報(bào),2020,11(2):251-256.
ZHAO X Y, WANG Y S, WANG J K, et al. Application value and comprehensive utilization of duckweed [J]. Journal of Tropical Biology,2020,11(2):251-256.
[3] 何瑩, 楚夢(mèng)瑋, 劉洋, 等. 銅及氧化銅納米顆粒對(duì)浮萍、藻類的毒性效應(yīng)及機(jī)理研究進(jìn)展 [J]. 生態(tài)毒理學(xué)報(bào),2020,15(4):59-68.
HE Y, CHU M W, LIU Y, et al. Toxicity and the underlying mechanisms of copper and copper oxide nanoparticles to Duckweed and algae: a review [J]. Asian Journal of Ecotoxicology,2020,15(4):59-68.
[4] 姜楠, 任洪艷, 阮文權(quán), 等. 乙醇廢水培養(yǎng)浮萍及其沼氣發(fā)酵利用 [J]. 食品與生物技術(shù)學(xué)報(bào),2019,38(7):122-127.
JIANG N, REN H Y, RUAN W Q, et al. Research on the duckweed cultivation in alcohol wastewater and energy utilization [J]. Journal of Food Science and Biotechnology,2019,38(7):122-127.
[5] 于忠娜, 王軍, 劉桂伶, 等. 響應(yīng)面法優(yōu)化超聲波提取浮萍多糖工藝研究 [J]. 中國(guó)獸藥雜志,2019,53(11):57-65.
YU Z N, WANG J, LIU G L, et al. Study on the optimization of ultrasonic extraction duckweed polysaccharide technique with response surface method [J]. Chinese Journal of Veterinary Drug,2019,53(11):57-65.
[6] CALICIOGLU O, BRENNAN R A. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed [J]. Bioresource Technology,2018,257:344-348.
[7] MU D, LIU H, LIN W, et al. Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production [J]. Bioresource Technology,2020,302:122879.
[8] XU H, SONG H L, SINGH R P, et al. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell [J]. Bioresource Technology,2021,320(Pt A):124285.
[9] LI X, LU Y, LUO H, et al. Effect of pH on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate [J]. Chemosphere,2021,265(Suppl.):129088.
[10] HASSAN S H A, EL-RAB S M F G, RAHIMNEJAD M, et al. Electricity generation from rice straw using a microbial fuel cell [J]. International Journal of Hydrogen Energy,2014,39(28):15864.
[11] WANG Z J, LEE T, LIM B, et al. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate [J]. Biotechnology for Biofuels,2014,7(1):9.
[12] JABLONSKA M A, RYBARCZYK M K, LIEDER M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells [J]. Bioresource Technology,2016,208:117-122.
[13] GURAV R, BHATIA S K, CHOI T R, et al. Utilization of different lignocellulosic hydrolysates as carbon source for electricity generation using novel Shewanella marisflavi BBL25 [J]. Journal of Cleaner Production,2020,277:124084.
[14] LIU S S, LIU X H, WANG Y, et al. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell [J]. Bioresource Technology,2016,222:226-231.
[15] DONG H, YU H B, WANG X, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells [J]. Water Research,2012,46(17):5777-5787.
[16] CHEN S S, LIU G L, ZHANG R D, et al. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions [J]. Environmental Science & Technology,2012,46(4):2467-2472.
[17] LI X, LU Y, LUO H, et al. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method [J]. Bioresource Technology,2017,241:384-390.
[18] XU G, ZHENG X, LU Y, et al. Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell [J]. Science of the Total Environment,2019,665:641-648.
[19] QIN B, LUO H, LIU G, et al. Nickel ion removal from wastewater using the microbial electrolysis cell [J]. Bioresource Technology,2012,121:458-461.
[20] LUO H, YU S, LIU G, et al. Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate [J]. Fuel,2016,182:732-739.
[21] LIU G, ZHOU Y, LUO H, et al. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production [J]. Bioresource Technology,2015,198:87-93.
[22] LAN J, REN Y, LU Y, et al. Combined microbial desalination and chemical-production cell with Fenton process for treatment of electroplating wastewater nanofiltration concentrate [J]. Chemical Engineering Journal,2019,359:1139-1149.
[23] CUI W, LU Y, ZENG C, et al. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages [J]. Science of the Total Environment,2021,780:146597.
[24] CUSICK R D, BRYAN B, PARKER D S, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater [J]. Applied Microbiology and Biotechnology,2011,89(6):2053-2063.
[25] LIU G L, YATES M D, CHENG S A, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments [J]. Bioresource Technology,2011,102(15):7301-7306.
(責(zé)任編輯:郁慧)