王倩 邵鳳鳳 張昉 李和興
摘 ?要: 綠色化學(xué)是實(shí)現(xiàn)化工生產(chǎn)源頭控制的必由之路.水介質(zhì)有機(jī)反應(yīng)是重要的發(fā)展方向,可有效地去除有機(jī)溶劑揮發(fā)和排放造成的污染.通常采用均相催化劑,但由于其難以回收,導(dǎo)致成本較高,甚至存在重金屬離子污染的風(fēng)險(xiǎn).非均相催化可克服上述缺點(diǎn),但催化效率較低,需要解決傳質(zhì)吸附和活性位微環(huán)境的問(wèn)題.報(bào)道了一種新型的三維有序立方介孔短孔道有機(jī)金屬銠(Rh)催化劑(PMO-Rh(I)),有機(jī)金屬Rh均勻鑲嵌于乙烷修飾的二氧化硅(SiO2)孔壁.所制備的催化劑在水介質(zhì)Heck類反應(yīng)中顯示出高活性、優(yōu)選擇性和長(zhǎng)壽命的特點(diǎn),主要?dú)w因于其擴(kuò)散吸附優(yōu)化、Rh(I)活性位環(huán)境匹配及穩(wěn)定性增強(qiáng).
關(guān)鍵詞: 綠色化學(xué); 有機(jī)金屬銠(Rh)催化劑; 無(wú)機(jī)-有機(jī)雜化二氧化硅(SiO2); 有序立方介孔短孔道結(jié)構(gòu); 水介質(zhì)清潔有機(jī)反應(yīng); Heck類反應(yīng)
Abstract: Green chemistry isan ultimate way to control pollution production of chemical reactions from the beginning, in which the water-mediumorganic reactions represent an important way to avoid the pollution of discharge and evaporation of organic solvents. Those reactions are usually performed by using homogeneous catalysts, which are difficult to recycle and reuse, leading to high cost and even the pollution of heavy metal ions. Heterogeneous catalysts can solve those problems, but they usually display low catalytic efficiencies due to the limits of diffusion, adsorption and microenvironment of active sites. This work developed a novel Rh-organometal catalyst (PMO-Rh(I)) in three-dimensional ordered cubic mesporous short-channelswith Rh(I) organometal embedded into the -CH2-CH2- doped SiO2 wall. The as-prepared catalyst exhibited high activity, good selectivity and long lifetime for water-medium Heck-type reactions, which could be attributed to the improved diffusion, enhanced adsorption, matchable microenvironment of Rh(I) active sites and enhanced stability.
Key words: green chemistry; Rh(I) organometal catalyst; organic-organic hybrid SiO2; ordered mesoporous cubic short-channels; water-medium organic clean reactions; Heck-type reaction
0 ?引 言
有機(jī)金屬催化C-C偶聯(lián)反應(yīng)被廣泛應(yīng)用于精細(xì)化工、藥物化工生產(chǎn),最常見的是鈀催化碳-碳偶聯(lián)反應(yīng),已有不少文獻(xiàn)報(bào)道了相關(guān)研究成果[1-7].自1997年MASAAKI等[8]首次報(bào)道有機(jī)金屬銠(Rh)催化α,?-不飽和酮與1,4-共軛加成反應(yīng)以來(lái),其在碳-碳偶聯(lián)反應(yīng)中的催化作用被逐漸開發(fā)[9].目前,絕大多數(shù)Rh催化碳-碳偶聯(lián)反應(yīng)均以有機(jī)溶劑為介質(zhì),其排放和揮發(fā)是化學(xué)污染的重要來(lái)源,開發(fā)水介質(zhì)清潔有機(jī)合成是綠色化學(xué)的重要發(fā)展方向.2001年LAUTENS等[10]首次報(bào)道了Rh催化的水介質(zhì)烯烴與芳基硼酸的Heck類偶聯(lián)反應(yīng).相對(duì)傳統(tǒng)均相催化劑,非均相催化劑具有易回收循環(huán)利用、低成本、無(wú)污染等優(yōu)點(diǎn),為提高催化活性和選擇性,需要設(shè)計(jì)具有獨(dú)特形貌、孔道結(jié)構(gòu)和化學(xué)微環(huán)境的固體催化劑,YANG等[11]報(bào)道了有序介孔結(jié)構(gòu)有機(jī)金屬Rh(I)有利于反應(yīng)物的傳質(zhì)和擴(kuò)散,提高催化效率.但形貌不規(guī)則、孔道長(zhǎng)短不均勻、容易堵塞,導(dǎo)致催化劑活性和使用壽命下降.本文作者采用原位共組裝合成三維有序立方介孔短孔道有機(jī)金屬Rh催化劑(PMO-Rh(I)),其中,Rh(I)有機(jī)金屬活性位均相鑲嵌于有機(jī)-有機(jī)雜化的二氧化硅(SiO2)孔壁,在催化水介質(zhì)Heck類反應(yīng)中,顯示高活性、優(yōu)選擇性和良好的使用壽命.
1 ?實(shí)驗(yàn)
1.1 試劑與藥品
實(shí)驗(yàn)采用:(1,5環(huán)辛二烯)二氯化銠[Rh(COD)Cl]2(阿拉丁試劑,質(zhì)量分?jǐn)?shù)≥98%);甲苯(中國(guó)醫(yī)藥集團(tuán),上?;瘜W(xué)試劑公司);濃鹽酸(HCl,質(zhì)量分?jǐn)?shù)為36%);氫氟酸(上海申博化工有限公司,質(zhì)量分?jǐn)?shù)≥40%);2-二苯基膦乙基三乙氧基硅烷(上海邁瑞爾化學(xué)技術(shù)有限公司,質(zhì)量分?jǐn)?shù)為97%);十六烷基三甲基溴化銨(CTAB,阿拉丁試劑,質(zhì)量分?jǐn)?shù)為99%);1,2-二(三乙氧基硅基)乙烷(Adamas,質(zhì)量分?jǐn)?shù)≥97%);正庚烷(阿拉丁試劑,質(zhì)量分?jǐn)?shù)為99%);乙醇(阿拉丁試劑,質(zhì)量分?jǐn)?shù)≥99%);乙酸乙酯(阿拉丁試劑,質(zhì)量分?jǐn)?shù)≥99.5%);苯硼酸(Sigma-Aldrich Co.,Ltd.,質(zhì)量分?jǐn)?shù)為95%);丙烯酸正丁酯(北京伊諾凱科技有限公司,質(zhì)量分?jǐn)?shù)≥99%);無(wú)水石油醚(阿拉丁試劑,質(zhì)量分?jǐn)?shù)≥99%);氨水(江蘇強(qiáng)盛功能化學(xué)股份有限公司,質(zhì)量分?jǐn)?shù)為25%~28%);去離子水.
1.2 催化劑制備
1.2.1 有機(jī)金屬硅烷RhCl [PPh2(CH2)2Si(OEt)3]3的制備
將0.27 g(1,5環(huán)辛二烯)二氯化銠([Rh(COD)Cl]2)加入到20 mL的無(wú)水甲苯中,在氬氣保護(hù)下,加入1.4 mL PPh2CH2CH2Si(OEt)3,室溫下攪拌24 h.旋蒸除去甲苯后,加入25 mL無(wú)水石油醚,冷卻至-20 ℃,得到深紅色油狀物,再在60 ℃下真空干燥過(guò)夜.根據(jù)電感耦合等離子體光譜(ICP)、傅里葉變換紅外光譜(FTIR)和固體核磁共振(NMR)表征分析,所制備樣品的結(jié)構(gòu)式如圖1所示.
1.2.2 PMO-Rh(I)的制備
圓底燒瓶中分別加入0.42 g CTAB,187 mL H2O以及13 mL NH3·H2O溶液(質(zhì)量分?jǐn)?shù)為27%),室溫下攪拌1 h,升溫至50℃,再加入710 μL 1,2-二(三乙氧基硅基)乙烷和所需量的RhCl[PPh2(CH2)2Si(OEt)3]3,在此溫度下反應(yīng)6 h,冷卻靜置過(guò)夜,離心、洗滌烘干后,用含0.5 mol·L-1鹽酸的乙醇溶液于60 ℃下萃取24 h,除去表面活性劑,經(jīng)洗滌后,真空干燥,即得有序立方介孔短孔道有機(jī)金屬銠催化劑PMO-Rh(I)-x,其中,x表示Rh的理論負(fù)載量,分別為8%,15%及20%(質(zhì)量分?jǐn)?shù),下同),通過(guò)調(diào)節(jié)RhCl[PPh2(CH2)2Si(OEt)3]3的加入量而獲得.
1.3 催化劑表征
用X射線衍射(XRD)測(cè)定催化劑的結(jié)構(gòu)和物相組成;使用Micromeritics TriStar II自動(dòng)物理吸附儀測(cè)定77 K下樣品的N2-吸脫附等溫線測(cè)定(BET),由此計(jì)算比表面積、孔徑和孔容;用透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)測(cè)定催化劑的形貌、尺寸和孔道結(jié)構(gòu);用拉曼光譜(Raman),F(xiàn)TIR和NMR分析測(cè)定催化劑的精細(xì)組成及修飾基團(tuán);用ICP測(cè)定催化劑中金屬負(fù)載量和材料的組成;用X射線光電子能譜(XPS)測(cè)定催化劑表面電子態(tài).
1.4 催化性能評(píng)價(jià)
Heck類反應(yīng)式如圖2所示[12].在10 mL圓底燒瓶中加入含0.004 mmol Rh(I)的催化劑,0.106 mmol苯硼酸和6 mL水,攪拌均勻后加入0.520 mmol丙烯酸正丁酯,在90 ℃下回流攪拌反應(yīng)3 h后,用乙酸乙酯萃取,離心分離后,取上層清液,采用內(nèi)標(biāo)法通過(guò)氣相色譜進(jìn)行定量分析,并由此計(jì)算反應(yīng)物的轉(zhuǎn)化率和生成物的產(chǎn)率.
2 ?結(jié)果與討論
2.1 催化劑的結(jié)構(gòu)特性
圖3(a)為有序立方短孔道材料PMO和3種PMO-Rh(I)催化劑的小角XRD譜,可以看出,PMO出現(xiàn)200,210和211晶面的特征衍射峰[13],2.5°~4.0°之間也出現(xiàn)3個(gè)不同的特征峰分別對(duì)應(yīng)320,310和400晶面[14],這些衍射峰證實(shí)制得的樣品具有長(zhǎng)程有序的三維立方孔道結(jié)構(gòu)[15].PMO-Rh(I)與PMO呈現(xiàn)相似的XRD譜,表明依然保持立方有序介孔結(jié)構(gòu),但隨著Rh負(fù)載量增加,介孔結(jié)構(gòu)的有序性略微有所下降.
圖3(b)為PMO和3種PMO-Rh(I)催化劑的N2-吸脫附等溫曲線.4種材料均呈現(xiàn)第IV類型吸附曲線,并在高壓處有H1滯后回環(huán),顯示所有樣品均具有典型的介孔結(jié)構(gòu)[16],有機(jī)金屬Rh加入對(duì)N2-吸脫附等溫線特征沒(méi)有明顯改變,但當(dāng)加入過(guò)量有機(jī)金屬Rh時(shí),N2-吸脫附等溫線的介孔特征明顯下降,歸因于有機(jī)金屬加入對(duì)表面活性劑自組裝有序介孔存在一定的干擾[17].由N2-吸脫附等溫線計(jì)算出BET比表面積、孔徑和孔容,結(jié)果如表1所示,同時(shí)給出了ICP測(cè)定的實(shí)際Rh負(fù)載量.從表1可見,從PMO-Rh(I)-8%,PMO-Rh(I)-15%到PMO-Rh(I)-20%,Rh的實(shí)際負(fù)載量逐漸增加,PMO,PMO-Rh(I)-8%及MO-Rh(I)-15%具有相似的BET比表面積、孔徑和孔容,表明加入Rh(I)有機(jī)金屬后不改變?cè)械慕榭捉Y(jié)構(gòu)和占據(jù)孔道,主要?dú)w因于Rh(I)有機(jī)金屬嵌入有序介孔SiO2的孔壁,但PMO-Rh(I)-20%的BET比表面積、孔徑和孔容均大幅度下降,可能是少量Rh(I)有機(jī)金屬占據(jù)了孔道[18].
圖4(a)是PMO-Rh(I)-20%的SEM形貌,可見催化劑呈現(xiàn)三維球狀形貌,平均粒徑為300 nm左右,形貌和粒徑分布較均勻.圖4(b)的TEM圖證實(shí),催化劑具有三維有序立方介孔短孔道結(jié)構(gòu).
圖5(a)為PMO-Rh(I)-20%的Raman光譜圖,相對(duì)于PMO,PMO-Rh(I)在997,1 028和1 598 cm-1出現(xiàn)3個(gè)新振動(dòng)峰,分別對(duì)應(yīng)P-Rh峰和P-C峰[19].圖5(b)為PMO-Rh(I)-20%的FTIR光譜,表明與PMO相比,PMO-Rh-20%在694和1 435 cm-1處出現(xiàn)2個(gè)新振動(dòng)峰,分別對(duì)應(yīng)苯環(huán)上C—H鍵和P-CH2的特征振動(dòng)[3].Raman和FTIR光譜證明有機(jī)金屬Rh被成功固載到三維有序介孔SiO2孔壁.圖5(c)和5(d)分別是PMO-Rh(I)-20%的固態(tài)核磁共振磷譜與固態(tài)核磁碳譜.在31P核磁譜圖的38×10-6處觀察到Rh-P峰[4],在13C核磁譜圖的137×10-6處觀察到苯環(huán)中的碳峰[5],在11×10-6和20×10-6處分別觀察到PPh2-CH2-CH2-基團(tuán)中的2個(gè)碳峰[5],在56×10-6處有一個(gè)弱的峰,歸因于沒(méi)有水解的乙基中的碳原子[20],其余為旋轉(zhuǎn)邊帶峰[15].上述表征結(jié)果充分證明:有機(jī)金屬Rh已被成功固載到有機(jī)硅材料上,成為三維有序立方介孔孔壁的組成部分.
圖6的Rh 3d5/2能級(jí)XPS譜顯示,催化劑前驅(qū)體[Rh(COD)Cl]2在電子結(jié)合能為307.3 eV處出現(xiàn)特征峰,說(shuō)明Rh都以+1價(jià)的形態(tài)存在[10].PMO-Rh(I)-20%在電子結(jié)合能為307.6 eV處出現(xiàn)同樣的特征峰,表明Rh依然以與+1價(jià)存在,但與[Rh(COD)Cl]2相比,電子結(jié)合能明顯發(fā)生了負(fù)移,主要?dú)w因于PMO-Rh(I)-20%中膦配體的強(qiáng)給電子作用[21],導(dǎo)致Rh(I)富電子.
2.2 催化性能測(cè)試
選擇PMO-Rh(I)-20%為催化劑,分別考察各種條件變化對(duì)催化效率的影響,由于反應(yīng)產(chǎn)物選擇性均接近100%,所以催化效率主要體現(xiàn)在轉(zhuǎn)化率.如表2所示,從第一組實(shí)驗(yàn)1a-1e可見,隨著催化劑(以Rh含量為計(jì)算單位)加入量增加,反應(yīng)轉(zhuǎn)化率逐漸升高,當(dāng)Rh含量為0.006 0 mmol時(shí)產(chǎn)率達(dá)到最高,但相對(duì)于0.004 0 mmol的Rh含量,其轉(zhuǎn)化率并沒(méi)有顯著提高,可能是過(guò)多催化劑不利于反應(yīng)物的傳質(zhì)吸附,因此選擇0.004 0 mmol為催化劑最佳用量.從第二組實(shí)驗(yàn)2a-2e可見,當(dāng)反應(yīng)時(shí)間增加時(shí),轉(zhuǎn)化率逐漸提高,反應(yīng)3 h時(shí)轉(zhuǎn)化率最高.第三組實(shí)驗(yàn)3a-3f顯示,隨著反應(yīng)溫度升高,轉(zhuǎn)化率逐漸升高,當(dāng)反應(yīng)溫度為90 ℃時(shí),轉(zhuǎn)化率達(dá)到最高值59%,繼續(xù)增加反應(yīng)溫度,轉(zhuǎn)化率不再升高,可能是熱力學(xué)平衡所致.第四組實(shí)驗(yàn)4a-4e表明,水為反應(yīng)介質(zhì)時(shí)轉(zhuǎn)化率最高,歸因于短孔道有序立方介孔結(jié)構(gòu)以及孔壁中有機(jī)基團(tuán)的修飾,可以消除有機(jī)反應(yīng)物在催化劑上的傳質(zhì)吸附限制.
在優(yōu)化的條件下,考察了PMO-Rh(I)-20%催化劑的循環(huán)穩(wěn)定性,結(jié)果如圖7所示.可以看出,該催化劑循環(huán)使用4次后活性沒(méi)有發(fā)生顯著下降,說(shuō)明有機(jī)金屬被嵌入到SiO2孔壁中,有利于抑制活性位的流失.
3 ?結(jié)論
采用表面活性劑結(jié)構(gòu)誘導(dǎo)有機(jī)金屬硅源與有機(jī)硅源共組裝法,成功制備了有機(jī)金屬鑲嵌于SiO2孔壁中的有序立方介孔短孔道有機(jī)金屬Rh催化劑.在Heck類反應(yīng)中顯示優(yōu)異的選擇性和較高的轉(zhuǎn)化率,歸因于高比表面積、有序介孔孔道和均勻分布的活性位.催化劑可循環(huán)重復(fù)使用,顯示良好的穩(wěn)定性,歸因于鑲嵌于SiO2孔壁中的有機(jī)金屬可有效抑制活性位的流失.
參考文獻(xiàn):
[1] PAULY T R, YU L, PINNAVAIA T J, et al. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures [J]. Journal of the American Chemical Society,1999,121(38):8835-8842.
[2] CINTA S, VENTER M, FICKERT C, et al. FT-Raman studies on new triphenylphosphin-copper(I) triazenido complexes [J]. Journal of Molecular Structure,1998,446(3):209-214.
[3] JI X, HU Q, HAMPSEY J E, et al. Synthesis and characterization of functionalized mesoporous silica by aerosol-assisted self-assembly [J]. Chemistry of Materials,2006,18(9):2265-2274.
[4] NELSON J H, RAHN J A, BEARDEN W H. Cross-polarization magic angle spinning phosphorus-31 NMR spectra of some(R3P)2MCl2 (M=palladium, platinum) complexes [J]. Inorganic Chemistry,1987,26(14):2192-2193.
[5] INAGAKI S, GUAN S, FUKUSHIMA Y, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks [J]. Jamchemsoc,1999,121(41):9611-9614.
[6] ZHANG F, LIU G, HE W, et al. Mesoporous silica with multiple catalytic functionalities [J]. Advanced Functional Materials,2008,18(22):3590-3597.
[7] FAGNOU K, LAUTENS M. Rhodium-catalyzed carbon-carbon bond forming reactions of organometallic compounds [J]. Chemical Reviews,2003,103(1):169-196.
[8] MASAAKI S, HIROYUKI H, NORIO M, et al. Rhodium-catalyzed conjugate addition of aryl- or 1-alkenylboronic acids to enones [J]. Organometallics,1997,16(20):4229-4231.
[9] SREEKANTH P, KIM S W, HYEON T, et al. A novel mesoporous silica-supported lew is acid catalyst for C=C bond formation reactions in water [J]. Advanced Synthesis & Catalysis,2003,345(8):936-938.
[10] LAUTENS M, ROY A, KEITH F, et al. Rhodium-catalyzed coupling reactions of arylboronic acids to olefins in aqueous media [J]. Journal of the American Chemical Society,2001,123(22):5358-5359.
[11] YANG X, ZHU F, HUANG J, et al. Phenyl@Rh(I)-bridged periodic mesoporous organometalsilica with high catalytic efficiency in water-medium organic reactions [J]. Chemistry of Materials,2009,21(20):4925-4933.
[12] MEHNERT C P, WEAVER D W, YING J Y. Heterogeneous Heck catalysis with palladium-grafted molecular sieves [J]. Journal of the American Chemical Society,1998,120(47):12289-12296.
[13] LUAN Z, HARTMANN M, ZHAO D, et al. Alumination and ion exchange of mesoporous SBA-15 molecular sieves [J]. Chemistry of Materials,1999,11(6):1621-1627.
[14] CHO E B, KIM D, G?RKA J, et al. Three-dimensional cubic (Im3m) periodic mesoporous organosilicas with benzene- and thiophene-bridging groups [J]. Journal of Materials Chemistry,2009,19(14):2076-2081.
[15] ZHU F, SUN X, ZHOU J, et al. An active and recyclable bicontinuous cubic Ia3d mesostructural Rh(I) organometal catalyst for 1,4-conjugate addition reaction in aqueous medium [J]. Green Chemistry Letters and Reviews,2014,7(3):250-256.
[16] LU Q, GAO F, KOMARNENI S, et al. Ordered SBA-15 nanorod arrays inside a porous alumina membrane [J]. Journal of the American Chemical Society,2004,126(28):8650-8651.
[17] KANG C, HUANG J, HE W, et al. Periodic mesoporous silica-immobilized palladium(ii) complex as an effective and reusable catalyst for water-medium carbon-carbon coupling reactions [J]. Journal of Organometallic Chemistry,2010, 695(1):120-127.
[18] FANG Z, YIN J, WEI C, et al. Self-assembly of palladium nanoparticles on periodic mesoporous organosilica using an in situ reduction approach: catalysts for ullmann reactions in water [J]. Chemistry and Sustainable Chemistry,2010,3(6):724-727.
[19] GUAN B, CUI Y, REN Z, et al. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures [J]. Nanoscale,2012,4(20):6588-6596.
[20] FU Z, HUI W, CUI Q, et al. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid [J]. Reaction Kinetics Mechanisms & Catalysis,2011,104(2):313-321.
[21] POSSET T, BL?MEL J. New mechanistic insights regarding Pd/Cu catalysts for the Sonogashira reaction: HRMAS NMR studies of silica-immobilized systems [J]. Journal of the American Chemical Society,2006,128(26):8394-8395.
(責(zé)任編輯:郁慧)