龔培盼 李新安 王超 李祥瑞 張?jiān)苹? 李建洪 朱勛
摘要 :麥蚜是為害小麥的一類(lèi)重要害蟲(chóng),廣泛分布于我國(guó)各小麥種植區(qū)。2016年-2018年我國(guó)麥蚜總體偏重發(fā)生,嚴(yán)重影響小麥產(chǎn)量和品質(zhì),造成巨大的經(jīng)濟(jì)損失。擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑是防治麥蚜的主要?dú)⑾x(chóng)劑類(lèi)型之一,但由于化學(xué)農(nóng)藥的長(zhǎng)期使用,麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑產(chǎn)生了不同程度的抗性。本文綜述了擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑作用機(jī)制、麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的抗性現(xiàn)狀以及近年來(lái)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑抗性機(jī)制研究的主要進(jìn)展。
關(guān)鍵詞 :麥蚜; 擬除蟲(chóng)菊酯殺蟲(chóng)劑; 抗藥性
中圖分類(lèi)號(hào): S 481.4
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.2019543
Research advances in pyrethroid insecticide resistance in wheat aphids
GONG Peipan1,2, LI Xinan2, WANG Chao2, LI Xiangrui2, ZHANG Yunhui2, LI Jianhong1*, ZHU Xun2*
(1. Hubei Key Laboratory of Utilization of Insect Resources and Sustainable Pest Management, College of
Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China;
2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of
Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)
Abstract :Wheat aphids are a group of important pests that infect wheat cereal and are widely distributed in China. The overall occurrence of wheat aphids in China in 2016-2018 has seriously affected wheat yield and quality, causing huge economic losses. Pyrethroid insecticides are among the main types of insecticides for controlling the wheat aphid. However, due to the longterm use of chemical insecticides, wheat aphids have developed varying degrees of resistance to pyrethroid insecticides. This article reviewed the mechanisms of action of pyrethroid insecticides, the current status of resistance of wheat aphids to pyrethroid insecticides, and the main advances in the research of pyrethroid insecticide resistance mechanisms in recent years.
Key words :wheat aphids; pyrethroid insecticides; pesticide resistance
小麥在世界各地廣泛種植,是我國(guó)主要的糧食作物之一,年播種面積僅次于水稻和玉米。小麥蚜蟲(chóng)是小麥上的重要害蟲(chóng)之一,在我國(guó)為害小麥的蚜蟲(chóng)種類(lèi)主要有麥長(zhǎng)管蚜Sitobion miscanthi (Fabricius)、禾谷縊管蚜 Rhopalosiphum padi (Linnaeus)、麥二叉蚜Schizaphis graminum (Rondani) 和麥無(wú)網(wǎng)長(zhǎng)管蚜 Metopolophium dirhodum (Walker)。麥蚜屬于半翅目 Hemiptera 蚜科 Aphididae,以成蚜、若蚜吸食小麥葉、莖、嫩穗的汁液引起植株?duì)I養(yǎng)惡化,造成小麥籽粒饑瘦或不能結(jié)實(shí),排泄的蜜露覆蓋在葉片表面,影響呼吸和光合作用。此外,麥蚜也是傳播植物病毒的重要昆蟲(chóng)媒介,造成小麥黃矮病[1]。近年來(lái)由于全球氣候變暖,北方地區(qū)冬季溫暖少雨,年后氣溫回升快等氣候條件,麥蚜呈現(xiàn)出蟲(chóng)害發(fā)生提前、為害期長(zhǎng)、峰期蚜量大等特點(diǎn),嚴(yán)重影響小麥品質(zhì)和產(chǎn)量,造成巨大損失[2]。目前生產(chǎn)上對(duì)麥蚜的防治仍以化學(xué)防治為主,而化學(xué)防治引起的抗藥性問(wèn)題是導(dǎo)致防效降低,甚至防治失敗的重要原因。麥蚜對(duì)各類(lèi)常用殺蟲(chóng)劑的抗性報(bào)道也越來(lái)越多[34]。
1 擬除蟲(chóng)菊酯殺蟲(chóng)劑
擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑是從天然除蟲(chóng)菊素衍生而來(lái)的一類(lèi)化學(xué)農(nóng)藥。天然除蟲(chóng)菊素包括除蟲(chóng)菊素Ⅰ(pyrethrins Ⅰ)、除蟲(chóng)菊素Ⅱ(pyrethrins Ⅱ)、瓜葉除蟲(chóng)菊素Ⅰ(cinerin Ⅰ)、瓜葉除蟲(chóng)菊素Ⅱ(cinerin Ⅱ)、茉酮除蟲(chóng)菊素Ⅰ(jasmolin Ⅰ)和茉酮除蟲(chóng)菊素Ⅱ(jasmolin Ⅱ)6種結(jié)構(gòu)相似的化合物,它們的共同特征是具有酯的結(jié)構(gòu)。除了除蟲(chóng)菊素Ⅰ外的其他5種除蟲(chóng)菊素對(duì)蚊、蠅有很高的殺蟲(chóng)活性,其中除蟲(chóng)菊素Ⅱ有較快的擊倒作用?;瘜W(xué)家們?cè)诒3殖x(chóng)菊素基本骨架的基礎(chǔ)上,通過(guò)改變和簡(jiǎn)化菊酸部分的結(jié)構(gòu),先后仿制合成了一系列除蟲(chóng)菊素衍生物——擬除蟲(chóng)菊酯殺蟲(chóng)劑。和除蟲(chóng)菊素相比,擬除蟲(chóng)菊酯類(lèi)化合物具有更高的光穩(wěn)定性和殺蟲(chóng)效力。根據(jù)結(jié)構(gòu)中是否含有氰基以及對(duì)昆蟲(chóng)產(chǎn)生毒性作用的特點(diǎn),擬除蟲(chóng)菊酯殺蟲(chóng)劑可分為Ⅰ型和Ⅱ型兩類(lèi)[5]。Ⅰ型擬除蟲(chóng)菊酯殺蟲(chóng)劑不含α氰基,包括聯(lián)苯菊酯、氯菊酯、胺菊酯等;Ⅱ型擬除蟲(chóng)菊酯殺蟲(chóng)劑含有α氰基,包括氰戊菊酯、甲氰菊酯、氟氰戊菊酯和溴氰菊酯等,擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑自應(yīng)用以來(lái)在全球殺蟲(chóng)劑市場(chǎng)中一直占據(jù)著重要位置。新煙堿類(lèi)殺蟲(chóng)劑銷(xiāo)售額在殺蟲(chóng)劑中占比18.0%~21.8%長(zhǎng)期位居第一[6],然而有研究表明暴露于亞致死濃度新煙堿殺蟲(chóng)劑中會(huì)導(dǎo)致非靶標(biāo)生物如蜜蜂的神經(jīng)疾病[7],部分地區(qū)新煙堿類(lèi)殺蟲(chóng)劑被禁限使用,為擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑提供了機(jī)遇。
有研究發(fā)現(xiàn)VGSC并不是擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的唯一作用靶標(biāo)。棉鈴蟲(chóng)神經(jīng)細(xì)胞上存在大電導(dǎo)鈣激活鉀通道(large conductance calciumactivated potassium channels, BKCa),藏媛媛等通過(guò)全細(xì)胞膜片鉗技術(shù)首次記錄了棉鈴蟲(chóng)中樞神經(jīng)細(xì)胞BKCa通道的電流,并分析了七氟菊酯和溴氰菊酯對(duì)BKCa通道的影響,結(jié)果發(fā)現(xiàn)棉鈴蟲(chóng)神經(jīng)細(xì)胞膜上表達(dá)BKCa通道,而七氟菊酯和溴氰菊酯均能顯著抑制BKCa通道的峰值電流,使BKCa通道激活的電壓依賴(lài)性發(fā)生改變,證實(shí)該通道是七氟菊酯和溴氰菊酯的作用靶標(biāo)[57]。
4 麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的抗性機(jī)制
關(guān)于麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑抗性機(jī)制的研究在現(xiàn)階段并不多,這可能與目前麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑仍處于敏感和低水平抗性有關(guān)。左亞運(yùn)進(jìn)行禾谷縊管蚜抗高效氯氰菊酯品系的篩選,篩選至20代,抗性系數(shù)增長(zhǎng)為9.89。比較禾谷縊管蚜抗性品系和敏感品系羧酸酯酶和多功能氧化酶O脫甲基酶的活性,發(fā)現(xiàn)抗性品系的羧酸酯酶比活力是敏感品系的1.63倍;抗性品系的多功能氧化酶O脫甲基酶比活力是敏感品系的1.90倍,并在抗性監(jiān)測(cè)中發(fā)現(xiàn)河南南陽(yáng)禾谷縊管蚜田間種群中存在M918L突變[58]。Foster等[55]在麥長(zhǎng)管蚜中檢測(cè)到鈉離子通道突變位點(diǎn)L1014F的存在,并證實(shí)該突變與麥長(zhǎng)管蚜對(duì)高效氯氟氰菊酯的抗性相關(guān)。雖然麥蚜對(duì)擬除蟲(chóng)菊酯殺蟲(chóng)劑的抗性不像家蠅、淡色庫(kù)蚊和埃及伊蚊等媒介昆蟲(chóng)那樣嚴(yán)重,但仍存在抗性風(fēng)險(xiǎn),麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑抗性機(jī)制的研究仍處于與解毒酶活性相關(guān)的生理生化水平。
目前,棉蚜和桃蚜已經(jīng)對(duì)擬除蟲(chóng)菊酯產(chǎn)生了較高的抗性,綜合已有文獻(xiàn)報(bào)道可知麥蚜存在對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑產(chǎn)生抗性突變的風(fēng)險(xiǎn)??剐员O(jiān)測(cè)是了解害蟲(chóng)田間種群對(duì)殺蟲(chóng)劑敏感性最直接有效的方法。褐飛虱、棉蚜和桃蚜等很多重要害蟲(chóng)的抗藥性監(jiān)測(cè)工作也一直在開(kāi)展,這些都為麥蚜抗性監(jiān)測(cè)工作的開(kāi)展和抗性機(jī)理的研究提供了寶貴的借鑒經(jīng)驗(yàn)。通過(guò)抗性監(jiān)測(cè)了解麥蚜田間種群對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的抗性水平和相關(guān)解毒酶活性水平的變化情況,從中發(fā)掘出與擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑抗性相關(guān)的解毒酶系及相關(guān)基因;對(duì)于田間發(fā)現(xiàn)的高抗種群,通過(guò)建立一定數(shù)量的單雌系品系進(jìn)一步篩選出純合的高抗品系,測(cè)定其解毒酶活性水平,并對(duì)已在其他害蟲(chóng)中報(bào)道的鈉離子突變位點(diǎn)進(jìn)行檢測(cè),同時(shí)可以利用轉(zhuǎn)錄組測(cè)序技術(shù)分析敏感品系和抗性品系的基因表達(dá)情況等。這些工作對(duì)于田間麥蚜化學(xué)防治用藥策略的調(diào)整具有重要的指導(dǎo)作用,對(duì)于延緩麥蚜對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑抗性發(fā)展速率和開(kāi)展麥蚜抗藥性機(jī)制的研究具有重要意義。
5 展望
麥蚜種類(lèi)多、分布廣泛、生殖方式多樣、生活史相對(duì)復(fù)雜并且具有遷飛性,這使得麥蚜的防治和抗藥性研究變得比較困難。麥蚜抗性問(wèn)題日趨嚴(yán)重,擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑作為防治麥蚜的一類(lèi)主要?dú)⑾x(chóng)劑,研究明確其產(chǎn)生抗藥性的機(jī)制對(duì)于豐富麥蚜的防治手段、提高防治效果、延緩麥蚜抗藥性的發(fā)展和延長(zhǎng)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的使用壽命具有積極意義。
參考文獻(xiàn)
[1] CONNERY J, KENNEDY T F. Grain yield reductions in spring barley due to barley yellow dwarf virus and aphid feeding [J]. Irish Journal of Agricultural and Food Research, 2005, 44(1):111128.
[2] 武銀玉, 曹亞萍, 楊秀麗, 等. 麥蚜抗藥性現(xiàn)狀及抗性治理研究進(jìn)展[J]. 小麥研究, 2017(2): 18.
[3] ZHANG Liuping, LU Hong, GUO Kun, et al. Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi [J]. Science China Life Sciences, 2017, 60(8): 927930.
[4] 于曉慶, 張帥, 宋姝娥, 等. 小麥蚜蟲(chóng)對(duì)六種殺蟲(chóng)劑的抗藥性及田間藥效評(píng)價(jià)[J]. 昆蟲(chóng)學(xué)報(bào), 2016, 59(11): 12061212.
[5] 陳夢(mèng)麗. 基于鈉離子通道突變體的擬除蟲(chóng)菊酯殺蟲(chóng)劑抗性的機(jī)理研究[D].杭州:浙江大學(xué), 2017.
[6] 李新. 擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑研發(fā)及市場(chǎng)概況[J]. 農(nóng)化市場(chǎng)十日訊, 2016(27): 1719.
[7] COOK S C. Compound and dosedependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology [J/OL]. Insects, 2019, 10(1): 18.DOI:10.3390/insects10010018.
[8] FENG Xuechun, LI Ming, LIU Nannan. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica [J]. Insect Biochemistry and Molecular Biology, 2018, 92: 3039.
[9] JOHNSON B J, FONSECA D M. Insecticide resistance alleles in wetland and residential populations of the west nile virus vector Culex pipiens in New Jersey [J]. Pest Management Science, 2016, 72(3): 481488.
[10]ZUO Yayun, WANG Kang, ZHANG Meng, et al. Regional susceptibilities of Rhopalosiphum padi (Hemiptera: Aphididae) to ten insecticides [J]. Florida Entomologist, 2016, 99(2): 269275.
[11]劉燕承. 禾谷縊管蚜抗藥性及呋蟲(chóng)胺對(duì)其亞致死效應(yīng)研究[D]. 雅安:四川農(nóng)業(yè)大學(xué), 2016.
[12]黃彥娜. 陜西關(guān)中地區(qū)禾谷縊管蚜抗藥性監(jiān)測(cè)及共生菌檢測(cè)[D]. 楊凌:西北農(nóng)林科技大學(xué), 2018.
[13]李曉倩,張亞鑫,解曉平,等. 兩種麥蚜對(duì)殺蟲(chóng)藥劑的抗藥性監(jiān)測(cè)[J].大麥與谷類(lèi)科學(xué), 2018, 35(4): 61.
[14]陳澄宇,史雪巖,髙希武. 昆蟲(chóng)對(duì)擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑的代謝抗性機(jī)制研究進(jìn)展[J].農(nóng)藥學(xué)學(xué)報(bào), 2016, 18(5): 545555.
[15]MIAH M A, ELZAKI M E A, HUSNA A, et al. An overexpressed cytochrome P450 CYP439A1v3 confers deltamethrin resistance in Laodelphax striatellus Fallén (Hemiptera: Delphacidae) [J/OL]. Archives of Insect Biochemistry and Physiology, 2019, 100(2): e21525.DOI:10.1002/arch.21525.
[16]ZHANG Xueyao, DONG Jie, WU Haihua, et al. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria [J]. Chemosphere, 2019, 223: 4857.
[17]梁曉, 伍春玲, 陳青, 等. 擬除蟲(chóng)菊酯類(lèi)殺蟲(chóng)劑對(duì)赤擬谷盜 CYP4 基因的誘導(dǎo)表達(dá)特性[J]. 熱帶作物學(xué)報(bào), 2018,39(7): 149156.
[18]YAN Zhengwen, HE Zhengbo, YAN Zhengtian, et al. Genomewide and expressionprofiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae) [J]. Pest Management Science, 2018, 74(8): 18101820.
[19]WONDJI C S, IRVING H, MORGAN J, et al. Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector [J]. Genome Research, 2009, 19(3): 452459.
[20]LIAO Chongyu, FENG Yingcai, LI Gang, et al. Antioxidant role of PcGSTd1 in fenpropathrin resistant population of the citrus red mite, Panonychus citri (McGregor) [J/OL]. Frontiers in Physiology, 2018, 9: 314.DOI:10.3389/fphys.2018.00314.
[21]LABADE C P, JADHAV A R, AHIRE M, et al. Role of induced glutathioneStransferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST8 in detoxification of pesticides [J]. Ecotoxicology and Environmental Safety, 2018, 147: 612621.
[22]HU Bo, HUANG He, WEI Qi, et al. Transcription factors CncC/Maf and AhR/ARNT coordinately regulate the expression of multiple GSTs conferring resistance to chlorpyrifos and cypermethrin in Spodoptera exigua [J]. Pest Management Science, 2019, 75(7): 20092019.
[23]YING Xiaoli, CHI Qingping, GE Mengying, et al. Analysis of UB and L40, related to deltamethrin stress in the diamondback moth, Plutella xylostella (L.) [J]. Gene, 2019, 684: 149153.
[24]NIKOU D, RANSON H, HEMINGWAY J. An adultspecific CYP6 P450 gene is overexpressed in a pyrethroidresistant strain of the malaria vector, Anopheles gambiae [J]. Gene, 2003, 318: 91102.
[25]DJOUAKA R F, BAKARE A A, COULIBALY O N, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria [J/OL]. BMC Genomics, 2008, 9(1): 538.DOI:10.1186/147121649538.
[26]STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed [J]. Insect Biochemistry and Molecular Biology, 2011, 41(7): 492502.
[27]GUO Qin, HUANG Yun, ZOU Feifei, et al. The role of mir2~13~71 cluster in resistance to deltamethrin in Culex pipiens pallens [J]. Insect Biochemistry and Molecular Biology, 2017, 84: 1522.
[28]DUSFOUR I, ZORRILLA P, GUIDEZ A, et al. Deltamethrin resistance mechanisms in Aedesaegypti populations from three French overseas territories worldwide [J]. PLoS Neglected Tropical Diseases, 2015, 9(11): e0004226.DOI:10.1371/journal.pntd.0004226.
[29]IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector [J]. PLoS Genetics, 2015, 11(10): e1005618.DOI:10.1371/journal.pgen.1005618.
[30]JOUΒEN N, AGNOLET S, LORENZ S, et al. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3 [J]. Proceedings of the National Academy of Sciences, 2012, 109(38): 1520615211.
[31]RASOOL A, JOUΒEN N, LORENZ S, et al. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan [J]. Insect Biochemistry and Molecular Biology, 2014, 53: 5465.
[32]AROURI R, LE GOFF G, HEMDEN H, et al. Resistance to lambdacyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain [J]. Pest Management Science, 2015, 71(9): 12811291.
[33]ZIMMER C T, BASS C, WILLIAMSON M S, et al. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus [J]. Insect Biochemistry and Molecular Biology, 2014, 45: 1829.
[34]劉月慶. 粘蟲(chóng)細(xì)胞色素 P450 的克隆和特性分析[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué), 2017.
[35]SHI Li, XU Zhifeng, SHEN Guangmao, et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval) [J]. Pesticide Biochemistry and Physiology, 2015, 119: 3341.
[36]MUTHUSAMY R, SHIVAKUMAR M S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga Walker) [J]. Pesticide Biochemistry and Physiology, 2015, 117: 5461.
[37]PAN Jing, YANG Chan, LIU Yan, et al. Novel cytochrome P450 (CYP6D1) and voltage sensitive sodium channel (Vssc) alleles of the house fly (Musca domestica) and their roles in pyrethroid resistance [J]. Pest Management Science, 2018, 74(4): 978986.
[38]PAURON D, BARHANIN J, AMICHOT M, et al. Pyrethroid receptor in the insect sodium channel: alteration of its properties in pyrethroidresistant flies [J]. Biochemistry, 1989, 28(4): 16731677.
[39]SCOTT J G. Life and death at the voltagesensitive sodium channel: evolution in response to insecticide use [J]. Annual Review of Entomology, 2019, 64: 243257.
[40]MACKENZIE T D B, ARJU I, POIRIER R, et al. A genetic survey of pyrethroid insecticide resistance in aphids in New Brunswick, Canada, with particular emphasis on aphids as vectors of Potato virus Y [J]. Journal of Economic Entomology, 2018, 111(3): 13611368.
[41]BALVN O, BOOTH W. Distribution and frequency of pyrethroid resistanceassociated mutations in host lineages of the bed bug (Hemiptera: Cimicidae) across Europe [J]. Journal of Medical Entomology, 2018, 55(4): 923928.
[42]GONZ LEZlCABRERA J, BUMANN H, RODRGUEZVARGAS S, et al. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor [J]. Journal of Pest Science, 2018, 91(3): 11371144.
[43]YESSINOU R E, AKPO Y, OSS R, et al. Molecular characterization of pyrethroids resistance mechanisms in field populations of Rhipicephalus microplus (Acari: Ixodidae) in district of Kpinnou and Opkara, Benin [J]. International Journal of Acarology, 2018, 44(45): 198203.
[44]LOPEZMONROY B, GUTIERREZRODRIGUEZ S M, VILLANUEVASEGURA O K, et al. Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico [J]. Pest Management Science, 2018, 74(9): 21762184.
[45]GRANADA Y, MEJAJARAMILLO A, STRODE C, et al. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λcyhalothrin in Colombia [J/OL]. Insects, 2018, 9(1): 23.DOI:10.3390/insects9010023.
[46]RASLI R, LEE H, WASI AHMAD N, et al. Susceptibility status and resistance mechanisms in permethrinselected, laboratory susceptible and fieldcollected Aedes aegypti from Malaysia [J/OL]. Insects, 2018, 9(2): 43.DOI:10.3390/insects9020043.
[47]CHEN Mengli, DU Yuzhe, NOMURA Y, et al. Mutations of two acidic residues at the cytoplasmic end of segment IIIS6 of an insect sodium channel have distinct effects on pyrethroid resistance [J]. Insect Biochemistry and Molecular Biology, 2017, 82: 110.
[48]CHEN Xuewei, TIE Minyuan, CHEN Anqi, et al. Pyrethroid resistance associated with M918L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China [J]. Pest Management Science, 2017, 73(11): 23532359.
[49]CARLETTO J, MARTIN T, VANLERBERGHEMASUTTI F, et al. Insecticide resistance traits differ among and within host races in Aphis gossypii [J]. Pest Management Science: Formerly Pesticide Science, 2010, 66(3): 301307.
[50]MARSHALL K L, MORAN C, CHEN Y, et al. Detection of kdr pyrethroid resistance in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), using a PCRRFLP assay [J]. Journal of Pesticide Science, 2012, 37(2): 169172.
[51]MARTINEZTORRES D, FOSTER S P, FIELD L M, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) [J]. Insect Molecular Biology, 1999, 8(3): 339346.
[52]PANINI M, ANACLERIO M, PUGGIONI V, et al. Presence and impact of allelic variations of two alternative skdr mutations, M918T and M918L, in the voltagegated sodium channel of the green peach aphid Myzus persicae [J]. Pest Management Science, 2015, 71(6): 878884.
[53]ELEFTHERIANOS I, FOSTER S P, WILLIAMSON M S, et al. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peachpotato aphid, Myzus persicae (Sulzer) [J]. Bulletin of Entomological Research, 2008, 98(2): 183191.
[54]CASSANELLI S, CERCHIARI B, GIANNINI S, et al. Use of the RFLPPCR diagnostic test for characterizing MACE and kdr insecticide resistance in the peach potato aphid Myzus persicae [J]. Pest Management Science: Formerly Pesticide Science, 2005, 61(1): 9196.
[55]FOSTER S P, PAUL V L, SLATER R, et al. A mutation (L1014F) in the voltagegated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides [J]. Pest Management Science, 2014, 70(8): 12491253.
[56]ZUO Yayun, PENG Xiong, WANG Kang, et al. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltagegated sodium channel genes [J/OL]. Scientific Reports, 2016, 6(1): 30166.DOI:10.1038/srep30166.
[57]藏媛媛, 盧潔, 劉藝, 等. 七氟菊酯和溴氰菊酯對(duì)棉鈴蟲(chóng)神經(jīng)細(xì)胞大電導(dǎo)鈣激活鉀通道電流的影響[J]. 南開(kāi)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 51(1): 2633.
[58]左亞運(yùn). 禾谷縊管蚜抗藥性監(jiān)測(cè)及其對(duì)高效氯氰菊酯的抗藥性機(jī)理初步研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2015.
(責(zé)任編輯:田 喆)