李澤 梁穎博 段佳琪 曾洪梅 李廣悅 趙國存 楊秀芬
摘要 :誘導抗病性是實現(xiàn)植物病害綠色防控的重要途徑,大麗輪枝菌蛋白激發(fā)子PevD1能激活植物免疫系統(tǒng),提高本生煙對煙草花葉病毒(TMV)和煙草野火病病原菌Pseudomonas syringae pv. tabaci、棉花對大麗輪枝菌Verticillium dahliae的抗病性,但分子機制不清晰。前期轉(zhuǎn)錄組測序(RNASeq)分析結果顯示,本生煙響應PevD1誘導的差異表達基因顯著富集在倍半萜烯和三萜烯的合成途徑中。本文進一步分析了這些差異表達基因的功能,并通過測定倍半萜植保素辣椒醇合成關鍵基因EAS 和 EAH的轉(zhuǎn)錄表達水平和辣椒醇積累量,證明PevD1能誘導本生煙產(chǎn)生植保素辣椒醇,明確了PevD1誘導植保素辣椒醇的產(chǎn)生是提高植物抗病性的重要機制之一。
關鍵詞 :蛋白激發(fā)子PevD1; 轉(zhuǎn)錄組測序; 植保素; 辣椒醇
中圖分類號: S 432.2
文獻標識碼: A
DOI: 10.16688/j.zwbh.2019605
Elicitor PevD1 induces phytoalexin capsidiol production and accumulation in Nicotiana benthamiana
LI Ze1, LIANG Yingbo1, DUAN Jiaqi1, ZENG Hongmei1, LI Guangyue1, ZHAO Guocun2, YANG Xiufen1*
(1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,
Chinese Academy of Agricultural Sciences, Beijing 100193, China; 2. Hebei Provincial
Pesticide Testing and Monitoring Station, Shijiazhuang 050031, China)
Abstract :Induced disease resistance is an important approach for plant disease management. The Verticillium dahliae protein elicitor PevD1 could trigger plant immune response and improved the disease resistance of tobacco to Tobacco mosaic virus (TMV) and Pseudomonas syringae pv. tabaci, and the resistance of cotton to V.dahliae. However, the molecular mechanism is still unclear. In previous research, the differential expression genes (DEGs) in response to PevD1 in Nicotiana benthamiana were obtained by RNAseq and a lot of DEGs were significantly enriched in the sesquiterpene and triterpene synthesis pathway. In this study, we analyzed the functions of these DEGs in sesquiterpene and triterpene synthesis, and confirmed the transcriptional expression level of the key genes in the sesquiterpene synthesis pathway after PevD1 inducement. The results showed that the expression level of the key genes, EAS and EAH in capsidiol synthesis were significantly elevated. The capsidiol content also increased after PevD1 inducement. Our results indicated that PevD1induced capsidiol production is one of the important mechanism of plant disease resistance improvement.
Key words :protein elicitor PevD1; RNASeq; phytoalexin; capsidiol
在長期進化過程中,植物為了抵御有害生物侵襲已經(jīng)形成了精細而復雜的免疫防御系統(tǒng),包括病原物/微生物相關分子模式(pathogen/microbeassociated molecular pattern, P/MAMP)誘導的PTI(PAMPtriggered immunity)和效應子誘導的ETI(effectortriggered immunity)[12]。當植物受到病原菌侵染或病原菌產(chǎn)生的激發(fā)子誘導后可以啟動多重免疫防御反應,主要包括活性氧(ROS)暴發(fā)、NO積累、細胞膜通透性改變、病程相關蛋白表達、植物激素積累以及植保素的產(chǎn)生等,使植物產(chǎn)生局部抗性和系統(tǒng)抗性。利用植物誘導抗性提高植物自身免疫力、減輕病害發(fā)生已經(jīng)成為現(xiàn)代植物保護的新技術。植保素是植物受到外界因素誘導產(chǎn)生的小分子植物次生代謝產(chǎn)物,能抑制或殺死多種植物病原微生物,常常被用作植物抗病性的分子標志[3],在植物免疫防御系統(tǒng)中發(fā)揮著重要作用,其化學合成速度及積累量與植物抗病性密切正相關,被譽為植物的“化學武器”。不同植物產(chǎn)生的植保素種類和產(chǎn)物組成不同,其中萜類化合物是植物在代謝過程中產(chǎn)量最高的植保素。倍半萜和三萜次生代謝產(chǎn)物是馬鈴薯、煙草和辣椒等茄科植物重要的植保素,如日齊素(rishitin)、辣椒醇(capsidiol)和二烯酮/香根酮(solavetivone)[45]。香根酮和日齊素是馬鈴薯響應花生四烯酸和歐文氏桿菌Erwinia carotovora 侵染產(chǎn)生的植保素[67],這些植保素能抑制馬鈴薯致病疫霉Phytophthora infestans和歐文氏桿菌的生長。煙草中倍半萜烯植保素主要有東莨菪內(nèi)酯/東莨菪素(scopoletin)[89]和辣椒醇[1011]。辣椒醇能抑制多種真菌菌絲生長和孢子形成,包括辣椒疫霉Phytophthora capsici和灰葡萄孢Botrytis cinerea[1213]。
大量研究已經(jīng)證明,煙草受到病原菌侵染或激發(fā)子誘導后,植株體內(nèi)產(chǎn)生并積累植保素辣椒醇,從而減輕自身受到的侵染和危害。例如煙草Nicotiana attenuata被鏈格孢Alternaria alternata侵染后積累大量辣椒醇[14];被辣椒疫霉菌侵染的辣椒產(chǎn)生的細胞壞死區(qū)域有高濃度辣椒醇積累[1516];隱地蛋白(cryptogein)、麥角甾醇(ergosterols)、致病疫霉P.infestans激發(fā)素INF1或花生四烯酸等PAMP因子均能誘導煙草辣椒醇的產(chǎn)生和積累[1719]。PevD1是作者實驗室從大麗輪枝菌Verticillium dahliae胞外分離的蛋白激發(fā)子,能誘導煙草產(chǎn)生細胞壞死反應,產(chǎn)生NO和H2O2,胼胝質(zhì)、酚類化合物及木質(zhì)素的積累,提高煙草對TMV、煙草野火病以及棉花對大麗輪枝菌的抗性[2022],但是PevD1誘導植物抗病性的分子機制尚不清楚。前期通過RNASeq技術已經(jīng)獲得了PevD1誘導本生煙前后大量差異表達的基因[23],本文將進一步分析倍半萜和三萜合成通路上的差異表達基因的功能,測定倍半萜植保素辣椒醇的積累及其合成關鍵基因的轉(zhuǎn)錄水平,以期明確植保素辣椒醇是PevD1誘導本生煙提高植物抗病性的重要作用機制。
1 材料與方法
1.1 蛋白激發(fā)子PevD1的表達與純化
構建PevD1真核表達載體pPICZαAPevD1,轉(zhuǎn)化畢赤酵母細胞后通過甲醇誘導表達,采用NiNTA純化介質(zhì)(ProteinIsoNiNTA Resin,北京全式金)親和純化PevD1His重組蛋白,利用SDSPAGE與Western blot技術驗證PevD1His重組蛋白的正確性,具體方法參照文獻[24]。
1.2 PevD1處理本生煙
本生煙種子由本實驗室保存,將種子播種在裝有營養(yǎng)土的培養(yǎng)缽中,在25℃下培養(yǎng)。選取4周齡的本生煙,用去掉針頭的1 mL注射器在本生煙葉片背部注射20 μL PevD1蛋白液(蛋白濃度10 μmol/L),以注射20 μL TrisHCl(濃度20 mmol/L,pH 8.0)為對照,每個處理10片葉。處理后分別在6、12、24 h對全葉片進行取樣,液氮速凍后于-80℃保存用于轉(zhuǎn)錄組測序。
1.3 轉(zhuǎn)錄組測序
用EasyPure Plant RNA Kit試劑盒提取植株葉片總RNA,質(zhì)檢合格后通過華大BGISEQ500平臺建庫測序。
1.4 差異表達基因的篩選
通過DEGseq 進行差異表達基因的檢測,DEGseq方法基于泊松分布[25]。將差異倍數(shù)為2倍以上(Fold Change≥2)并且Qvalue≤0.001的基因確定為差異顯著的差異表達基因。
1.5 差異表達基因KEGG富集分析
根據(jù)KEGG pathway注釋來分類,通過R軟件中的phyper函數(shù)進行富集分析,通常情況下FDR≤0.01的功能被認為是顯著富集。
1.6 差異表達基因的qRTPCR檢測
參考茄科數(shù)據(jù)庫(https:∥solgenomics.net/)的目的基因序列,通過Beacon Designer 8.0軟件設計熒光定量PCR的特異性引物(表1)。以上述樣品提取的總RNA反轉(zhuǎn)錄后的cDNA為熒光定量PCR的模板,以Actin基因為內(nèi)參基因,通過熒光定量PCR試劑盒(北京全式金)來特異性擴增每個目的基因。最后參照2-ΔΔCt計算方法,對每個mRNA進行相對定量分析[26]。
1.7 植保素辣椒醇的檢測
取PevD1滲入本生煙葉片處理后9、12 h和16 h的葉片200 mg,液氮研磨后用1 mL 二氯甲烷提取,振蕩10 min后離心(3 000 g, 5 min)收集上清液,沉淀物進行第二次提取,合并提取液旋轉(zhuǎn)蒸發(fā)去除有機溶劑,用1 mL甲醇溶解后用HPLC(Agilent 1260, USA)檢測,具體檢測條件參照文獻[14]。辣椒醇標準品由中國科學院昆明植物所吳勁松研究員饋贈,將標準品稀釋6個濃度(6.25、12.5、25、50、100、200 μg/mL),以標準品濃度為橫坐標,HPLC產(chǎn)生的峰面積為縱坐標,制作辣椒醇標準曲線,根據(jù)標準曲線方程計算樣品中辣椒醇濃度。
2 結果與分析
2.1 PevD1蛋白的表達純化及驗證
將獲得的酵母表達菌株用無菌甲醇誘導培養(yǎng)3~4 d后收集發(fā)酵上清液。用親和柱層析過濾發(fā)酵液,收集表達的PevD1重組蛋白。蛋白稀釋后進行SDSPAGE凝膠電泳并染色,在分子量17 kDa左右處可見一條蛋白條帶,并且與PevD1His重組蛋白的理論分子量一致(圖1)。為了進一步確定表達的蛋白是PevD1His重組蛋白,進行了Western blot檢測,以抗His標簽的鼠單克隆抗體為一抗,以辣根過氧化物酶HRP標記的羊抗鼠IgG為二抗。根據(jù)結果顯示只有單一條帶能夠與抗His標簽的抗體結合并發(fā)生顯色反應,并且條帶大小與SDSPAGE顯示的大小一致,說明成功表達了PevD1His重組蛋白(圖1)。
2.2 PevD1誘導的大量差異表達基因富集于倍半萜和三萜次生代謝產(chǎn)物合成通路
PevD1誘導本生煙6、12 h和24 h差異表達基因KEGG pathway富集分析顯示,排在前4位的有植物與病原菌互作、MAPK信號通路、苯丙烷合成途徑和倍半萜和三萜次生代謝產(chǎn)物合成通路(圖2a, b,c)。為了進一步明確PevD1誘導后不同時間富集在倍半萜和三萜次生代謝產(chǎn)物合成通路上的差異表達基因情況,根據(jù)差異基因KEGG富集氣泡圖,統(tǒng)計了誘導不同時間后的差異基因數(shù)量。結果顯示,PevD1處理6 h共有34個差異表達基因,其中32個上調(diào);PevD1處理12 h時,共有38個差異表達基因,其中33個基因上調(diào);PevD1處理24 h時,共篩選到28個差異表達基因,全部為上調(diào)表達基因(圖3),說明PevD1蛋白激發(fā)子誘導了本生煙倍半萜和三萜次生代謝產(chǎn)物合成通路上的大量差異表達基因上調(diào)表達。提取部分差異表達上調(diào)基因的序列,并在NCBI的Nr數(shù)據(jù)庫進行BLAST序列比對及注釋(表2),發(fā)現(xiàn)多數(shù)基因與辣椒醇植保素合成代謝相關。如5馬兜鈴烯合成酶(5epiaristolochene synthase,EAS)催化反式法尼基焦磷酸(Farnesyl pyrophosphate,F(xiàn)PP)的環(huán)化,形成雙環(huán)的中間體5馬兜鈴烯,是轉(zhuǎn)化成倍半萜類植保素辣椒醇的初始步驟[27]。螺二烯加氧酶(premnaspirodiene oxygenase,CYP71)是一種細胞色素P450單加氧酶,不僅能夠使三萜類底物羥基化從而增強三萜類化合物的活性,而且在5馬兜鈴烯羥基化形成辣椒素的過程中也起到一定的作用。
2.3 PevD1誘導倍半萜和三萜次生代謝合成關鍵基因轉(zhuǎn)錄上調(diào)表達
本研究選取倍半萜和三萜次生代謝產(chǎn)物合成途徑中的6個關鍵基因進行qPCR檢測(表3,圖4)。結果表明,PevD1誘導后這些基因的表達模式與轉(zhuǎn)錄組數(shù)據(jù)基本吻合,PevD1誘導后的基因表達水平明顯高于未誘導的對照,說明倍半萜和三萜次生代謝產(chǎn)物合成途徑參與了PevD1誘導的本生煙抗病性。轉(zhuǎn)錄組分析PevD1誘導了大量的EAS基因上調(diào)表達,誘導6 h時32個上調(diào)表達基因中有14個與EAS有關,誘導12 h時33個上調(diào)表達基因中有16個與EAS基因有關,誘導24 h時上調(diào)的28個上調(diào)表達基因中有11個與EAS有關,說明富集在倍半萜和三萜次生代謝合成途徑上的差異表達基因中有近40%~50% 的基因與辣椒醇合成關鍵基因EAS有關,qPCR檢測EAS基因上調(diào)表達近70倍,暗示了PevD1可能誘導了植保素辣椒醇的產(chǎn)生和積累。
2.4 PevD1誘導植保素辣椒醇合成關鍵基因上調(diào)表達和產(chǎn)物積累
EAS和EAH是植保素辣椒醇合成通路上的兩個關鍵酶,沉默NbEAS或NbEAH的本生煙植株接種致病疫霉后3 d均比未沉默植株的辣椒醇含量降低,而且對致病疫霉的抗性也降低[14]。在辣椒醇合成過程中,EAS先將法尼烯焦磷酸(FPP)環(huán)化成馬兜鈴烯,經(jīng)馬兜鈴烯二羥基化酶(5epiaristolochene dihydroxylase,EAH) 催化2個羥基化反應,形成終產(chǎn)物辣椒醇[2829]。本研究分析發(fā)現(xiàn),PevD1誘導6~12 h富集在倍半萜和三萜次生代謝產(chǎn)物合成通路上的基因中有50%以上的差異表達基因與EAS相關,意味著PevD1可能誘導辣椒醇的產(chǎn)生。為了驗證該推測,用PevD1分別誘導本生煙葉片9 h和12 h后取樣,用HPLC檢測辣椒醇的含量。結果表明,PevD1誘導的葉片均能檢測到辣椒醇的積累,而未誘導的對照檢測不到辣椒醇,同時PevD1誘導的葉片EAS和EAH基因轉(zhuǎn)錄水平也大幅度提高(圖5),說明PevD1確實誘導了植保素辣椒醇的積累。
3 討論
植保素是植物防御病原物的主要生化壁壘,在病原菌侵染點周圍產(chǎn)生并積累, 殺死病原物或抑制其侵染,是植物抗性的重要機制。萜類化合物是植物代謝過程中產(chǎn)生最多的一類化合物[30],根據(jù)其結構可分為半萜、單萜、倍半萜、二萜、三萜以及多聚萜等。異戊二烯(IPP)是萜類化合物的基本結構單位,萜類化合物的合成途徑非常復雜,目前已經(jīng)克隆了萜類化合物合成路徑中的一些關鍵基因并進行了功能分析。5馬兜鈴烯合成酶(EAS)是最早被研究的倍半萜合成酶,能夠催化法尼基焦磷酸(FPP)合成倍半萜類植保素辣椒醇的前體物質(zhì)5馬兜鈴烯[31],是辣椒醇合成的關鍵酶之一,萜烯合成酶(terpenoid synthase,TPS)是異戊二烯、單萜、倍半萜烯和二萜等低分子量萜類形成的關鍵酶,TPS轉(zhuǎn)錄水平的提高伴隨著萜類物質(zhì)的大量積累[32]。α法尼烯是揮發(fā)性倍半萜類次生代謝物,蘋果中的α法尼烯的代謝水平直接影響到蘋果虎皮病害的發(fā)展[3334]。α法尼烯合成酶(AFS)是合成α法尼烯的限速酶,主要功能是催化法尼烯基焦磷酸(FPP)合成α法尼烯。3羥基3甲基戊二酸單酰輔酶A還原酶(HMGCR/HMGR)、法尼基焦磷酸合成酶(FPS)以及馬兜鈴烯合成酶(EAS)是倍半萜生物合成途徑中的關鍵酶[35]。當煙草中的HMGCR表達受到抑制后,植株體內(nèi)的倍半萜化合物的含量會明顯下降。FPS催化IPP與其他化合物生成FPP,F(xiàn)PP不僅是多萜醇、甾體和泛醌等重要初生代謝物的合成前體,它還能在倍半萜環(huán)化酶的作用下生成倍半萜類植保素等物質(zhì)[28]。馬兜鈴烯二羥基化酶EAH是5馬兜鈴烯羥基化形成辣椒醇的另一個重要酶, 法尼烯二磷酸鹽經(jīng)過EAH和EAS兩步催化形成辣椒醇[34]。
辣椒醇屬于倍半萜植保素,其產(chǎn)生受多個途徑的調(diào)控。漸狹葉煙草N.attenuata被鏈格孢侵染后可以誘導產(chǎn)生辣椒醇植保素,用VIGS技術沉默EAS或EAH基因的表達則辣椒醇積累顯著減少,同時降低了對鏈格孢病原菌侵染的抗性,而且辣椒醇的產(chǎn)生不依賴于茉莉酸(JA)和乙烯(ET)信號途徑,其合成受到轉(zhuǎn)錄因子ERF2的正調(diào)控[14]。用纖維素酶/花生四烯酸處理或灰葡萄孢侵染野生煙草N.plumbaginifolia ABA合成缺陷型煙草突變體,其辣椒醇含量比野生型高2倍以上[9],說明ABA負調(diào)控辣椒醇植保素的合成。此外,大量研究表明,植保素產(chǎn)生依賴于活性氧和HR[3637]。前期研究表明,PevD1能誘導MAPK激活和大量ERF轉(zhuǎn)錄因子轉(zhuǎn)錄上調(diào),MAPK和ERF轉(zhuǎn)錄因子是否參與PevD1誘導辣椒素的合成,從而提高煙草抗病性有待于進一步研究。另外,PevD1轉(zhuǎn)化擬南芥能顯著提高對灰葡萄孢菌和丁香假單胞菌的抗性,而且JA含量明顯提高,ABA響應通路中的3個重要負調(diào)控因子基因WRKY40, PP2CA 和 HAI2顯著上調(diào)表達,意味著PevD1抑制了ABA響應通路[38]。JA和ABA通路是否參與PevD1誘導辣椒醇的積累有待于深入探討。
參考文獻
[1] DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plantpathogen interactions [J]. Nature Reviews Genetics, 2010, 11(8): 539548.
[2] ZIPFEL C. Early molecular events in PAMPtriggered immunity [J]. Current Opinion in Plant Biology, 2009, 12(4): 414420.
[3] AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17: 7390.
[4] DESJARDINS A E, MCCORMICK S P, CORSINI D L. Diversity of sesquiterpenes in 46 potato cultivars and breeding selections [J]. Journal of Agricultural and Food Chemistry, 1995, 43(8):22672272.
[5] ENGSTRM K, WIDMARK A K, BRISHAMMAR S, et al. Antifungal activity to Phytophthora infestans of sesquiterpenoids from infected potato tubers [J]. Potato Research,1999, 42:4350.
[6] LYON G D, BAYLISS C E. The effect of rishitin on Erwinia carotovora var. atroseptica and other bacteria [J]. Physiological and Molecular Plant Pathology, 1975, 6(2):177186.
[7] EL OIRDI M, TRAPANI A, BOUARAB K. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen [J]. Environmental Microbiology, 2010, 12(1): 239253.
[8] SUN Huanhuan, SONG Na, MA Lan, et al. Ethylene signalling is essential for the resistance of Nicotiana attenuata against Alternaria alternata and phytoalexin scopoletin biosynthesis [J]. Plant Pathology, 2017, 66(2): 277284.
[9] MIALOUNDAMA A S, HEINTZ D, DEBAYLE D, et al. Abscisic acid negatively regulates elicitorinduced synthesis of capsidiol in wild tobacco [J]. Plant Physiology, 2009, 150:15561566.
[10]SHIBATA Y, KAWAKITA K, TAKEMOTO D. Agerelated resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethyleneand salicylic acidmediated signaling pathways [J]. Molecular Plant Microbe Interactions, 2010, 23(9): 11301142.
[11]GROSSKINSKY D K, NASEEM M, ABDELMOHSEN U R, et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling [J]. Plant Physiology, 2011, 157(2): 815830.
[12]STOESSL A, UNWIN C H, WARD E W B. Postinfectional inhibitors from plants I. capsidiol, an antifungal compound from capsicum frutescens [J]. Phytopathology, 1972, 74(2): 141152.
[13]WARD E W B, UNWIN C H, STOESSL A. Postinfectional inhibitors from plants. XIII. Fungitoxicity of the phytoalexin, capsidiol, and related sesquiterpenes [J]. Canadian Journal of Botany, 1974, 52(12): 24812488.
[14]SONG Na, MA Lan, WANG Weiguang, et al. An ERF2like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection [J]. Journal of Experimental Botany, 2019, 70(20): 58955908.
[15]MOLOT P M, MAS P, CONUS M, et al. Relations between capsidiol concentration, speed of fungal invasion and level of induced resistance in cultivars of pepper (Capsicum annuum) susceptible or resistant to Phytophthora capsici [J]. Physiological Plant Pathology, 1981, 18(3): 379389.
[16]EGEA C, ALCAZAR M D, CANDELA M E. Capsidiol: its role in the resistance of Capsicum annuum to Phytophthora capsici [J]. Physiologia Plantarum, 1996, 98(4): 737742.
[17]HOSHINO T, CHIDA M, YAMAURA T, et al. Phytoalexin induction in green pepper cell cultures treated with arachidonic acid [J]. Phytochemistry, 1994, 36(6): 14171419.
[18]KELLER H, CZERNIC P, PONCHET M, et al. Sesquiterpene cyclase is not a determining factor for elicitorand pathogeninduced capsidiol accumulation in tobacco [J]. Planta, 1998, 205: 467476.
[19]TUGIZIMANA F, STEENKAMP P A, PIATER L A, et al. Ergosterolinduced sesquiterpenoid synthesis in tobacco cells [J]. Molecules, 2012, 17(2): 16981715.
[20]WANG Bingnan, YANG Xiufen, ZENG Hongmei, et al. The purification and characterization of a novel hypersensitivelike responseinducing elicitor from Verticillium dahliae that induces resistance responses in tobacco [J]. Applied Microbiology & Biotechnology 2012, 93(1):191201.
[21]BU Bingwu, QIU Dewen, ZENG Hongmei, et al. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton [J]. Plant Cell Reports, 2014, 33(3): 461470.
[22]王炳楠, 楊秀芬, 曾洪梅, 等. 大麗輪枝菌分泌蛋白激發(fā)子的分離純化及生物功能研究[J]. 生物技術通報, 2011(11): 166171.
[23]梁穎博,李澤,邱德文,等.本生煙響應蛋白激發(fā)子PEVD1的差異表達基因鑒定與分析[J].中國農(nóng)業(yè)科學, 2019, 52(21):37943805.
[24]ZHANG Yi, GAO Yuhan, LIANG Yingbo, et al. Verticillium dahliae PevD1, an Alt a 1like protein, targets cotton PR5like protein and promotes fungal infection [J]. Journal of Experimental Botany. 2019,70(2):613626.
[25]WANG Likun, FENG Zhixing, WANG Xi, et al. DEGseq: an R package for identifying differentially expressed genes from RNAseq data [J]. Bioinformatics, 2010,26(1):136138.
[26]SCHMITTGEN T D, LEE E J, JIANG Jinmai. Highthroughput realtime PCR [J]. Methods in Molecular Biology, 2008, 429: 8998.
[27]STARKS C M, BACK K, CHAPPELL J, et al. Structural basis for cyclic terpene biosynthesis by tobacco 5epiaristolochene synthase [J]. Science, 1997, 277(5333): 18151820.
[28]FACCHINI P J, CHAPPELL J. Gene family for an elicitorinduced sesquiterpene cyclase in tobacco [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(22): 1108811092.
[29]RALSTON L, KWON S T, SCHOENBECK M, et al. Cloning, heterologous expression, and functional characterization of 5epiaristolochene1,3dihydroxylase from tobacco (Nicotiana tabacum) [J]. Archives of Biochemistry and Biophysics, 2001, 393(2): 222235.
[30]DIXON R A. Natural products and plant disease resistance [J]. Nature, 2001, 411(6839): 843847.
[31]WHITEHEAD L M, THRELFAL D R, EWING D F. 5epiaristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol [J]. Phytochemistry,1989, 28(3): 775779.
[32]GAO Yang, HONZATKO R, PETERS R. Terpenoid synthase structures: a so far incomplete view of complex catalysis [J]. Natural product reports, 2012, 29:11531175.
[33]PECHOUS S W, WHITAKER B D. Cloning and functional expression of an (E, E)alphafarnesene synthase cDNA from peel tissue of apple fruit [J]. Planta, 2004, 219(1): 8494.
[34]ROWAN D D, HUNT M B, FIELDER S, et al. Conjugated triene oxidation products of alphafarnesene induce symptoms of superficial scald on stored apples [J]. Journal of Agricultural & Food Chemistry, 2001, 49(6): 27802787.
[35]CHOI D, WARD B L, BOSTOCK R M. Differential induction and suppression of potato 3hydroxy3methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid [J]. Plant Cell, 1992, 4(10): 13331344.
[36]PERRONE S T, MCDONALD K L, SUTHERLAND M W, et al. Superoxide release is necessary for phytoalexin accumulation in Nicotiana tabacum cells during the expression of cultivarrace and nonhost resistance towards Phytophthora spp. [J]. Physiological and Molecular Plant Pathology, 2003, 62(3): 127135.
[37]ARACELI A C, ELDA C M, EDMUNDO L G, et al. Capsidiol production in pepper fruits (Capsicum annuum L.) induced by arachidonic acid is dependent of an oxidative burst [J]. Physiological and Molecular Plant Pathology, 2007, 70(13): 6976.
[38]LIU Mengjie, KHAN N U, WANG Ningbo, et al. The Protein elicitor PevD1 enhances resistance to pathogens and promotes growth in Arabidopsis [J]. International journal of biological sciences, 2016, 12(8): 931943.
(責任編輯:田 喆)