姚楓秋,相升海,張德鍵
(沈陽(yáng)理工大學(xué) 裝備工程學(xué)院, 沈陽(yáng) 110159)
車輪型裝藥,又稱“輪孔藥”。它可以看作是星孔藥的延伸,通常作為火箭發(fā)動(dòng)機(jī)推進(jìn)劑燃料或是底排藥劑使用。文獻(xiàn)[1-5]對(duì)國(guó)內(nèi)外火藥和推進(jìn)劑的發(fā)展現(xiàn)狀進(jìn)行了綜述,指出了火藥和推進(jìn)劑的發(fā)展方向。文獻(xiàn)[6]對(duì)星型藥柱的固化降溫過(guò)程進(jìn)行了研究,分析了固化降溫過(guò)程中推進(jìn)劑的溫度場(chǎng)變化的分布情況及應(yīng)力應(yīng)變危險(xiǎn)區(qū)域,為推進(jìn)劑固化降溫提供參考。文獻(xiàn)[7]對(duì)星孔型藥柱進(jìn)行了研究,推導(dǎo)出星孔型藥柱的余藥燃燒面積公式。文獻(xiàn)[8]設(shè)計(jì)了星孔裝藥的燃面退移仿真的可視化系統(tǒng)。文獻(xiàn)[9]研究了星孔型藥柱和車輪型藥柱的減面燃燒規(guī)律,研究結(jié)果表明減面性較大時(shí),優(yōu)先選用星孔型藥柱。文獻(xiàn)[10]基于參數(shù)化建模,建立車輪型藥柱的參數(shù)化有限元分析模型,得到了裝填分?jǐn)?shù)不小于初始設(shè)計(jì)且最大應(yīng)變比初始設(shè)計(jì)小了30%的藥柱形狀。文獻(xiàn)[11]把車輪型裝藥用于底排彈,推導(dǎo)出了底排裝置內(nèi)車輪裝藥燃燒規(guī)律的數(shù)值計(jì)算模型,計(jì)算結(jié)果符合底排裝置內(nèi)的燃?xì)鈮毫ψ兓?guī)律,并與地面實(shí)驗(yàn)結(jié)果數(shù)據(jù)吻合良好。
目前,有關(guān)車輪型藥柱燃燒規(guī)律的研究文獻(xiàn)公開(kāi)發(fā)表很少,因此本文建立了車輪型藥柱燃燒面積公式,劃分車輪型藥柱的燃燒階段以及對(duì)影響燃燒規(guī)律的因素進(jìn)行了分析研究。
車輪型藥柱作為星孔裝藥的延伸,可以通過(guò)改變藥形尺寸,獲得不同燃燒特性。如圖1所示,其結(jié)構(gòu)主要的幾何參數(shù)有:外徑D、長(zhǎng)度L、輪臂數(shù)n、1/2輪臂厚e1、最大有效肉厚e2、特征長(zhǎng)度l、輪臂高h(yuǎn)、角分?jǐn)?shù)ε、輪臂角θ、輪頂角圓弧半徑r、輪底角圓弧半徑r1、輪臂過(guò)渡半徑r2。
本文采用幾何燃燒定律[12]。
本文研究的車輪型藥柱外側(cè)表面和兩端面有包覆層,僅內(nèi)側(cè)表面燃燒。按照幾何燃燒規(guī)律和裝藥形狀特征分析,可將其分為3個(gè)燃燒階段。
第1階段:從原始輪孔燃燒開(kāi)始,到輪臂消失結(jié)束,此時(shí)藥柱為單孔花形藥柱。
第2階段:燃燒從單孔花形藥柱開(kāi)始,燃去肉厚推進(jìn)到藥柱的最大有效肉厚值結(jié)束。燃燒結(jié)束時(shí)分裂為多個(gè)小三角棱柱。
第3階段:也是余藥階段,燃燒從多個(gè)小棱柱開(kāi)始,到全部裝藥燃燒完為止,剩下包覆層。
車輪型藥柱內(nèi)孔尺寸參數(shù)較多,為簡(jiǎn)化起見(jiàn),假設(shè)裝藥外圍及兩端包覆,輪孔為等截面,且所有輪臂的形狀相同,即厚度和高度相等,則半個(gè)輪角的周長(zhǎng)變化規(guī)律就可以代替整個(gè)輪形裝藥燃燒面積的變化規(guī)律。
車輪型藥柱分為兩種不同的形狀,如圖2所示。
圖2 兩種不同輪形裝藥示意圖
當(dāng)e1 當(dāng)e1=e2時(shí),藥柱燃燒沒(méi)有第2階段,只有輪臂消失前和余藥燃燒。 因?yàn)樵谌紵^(guò)程中輪臂數(shù)n和藥柱長(zhǎng)度L是不變的,所以燃燒面積可以直接用半個(gè)輪形的周長(zhǎng)來(lái)代替計(jì)算。 為了推導(dǎo)方便,先假設(shè)r1=r2=0,則輪孔半角β=π/n。 車輪型藥柱燃燒面的變化如圖3所示,從圖3中可以看出:半個(gè)輪形的周長(zhǎng)是由兩個(gè)不斷增長(zhǎng)的圓弧AB、BC和兩條不斷縮短的直線CD、DE、組成,初始燃燒周長(zhǎng)為c0: (1) 當(dāng)燃燒面積推進(jìn)到H點(diǎn)時(shí),輪臂消失,即直線段消失。這時(shí)一般情況下燃燒面積突然下降,然后進(jìn)入下一燃燒階段[13-15]。 輪臂消失的條件如式(1)所示: (2) 根據(jù)劃分的燃燒階段,推導(dǎo)各個(gè)階段的燃燒面積公式,其中各個(gè)階段的燃燒面積的位置如圖3所示。 圖3 車輪型藥柱燃燒變化示意圖 該階段燃去肉厚e的變化范圍是e=0到e=e1=lsin(εβ)-r,由圖3可以看出,半個(gè)輪形的周長(zhǎng)為 (3) 根據(jù)幾何關(guān)系整理可得 (4) 以上推導(dǎo)的是r1=r2=0時(shí)的輪形裝藥第1階段燃燒面積,實(shí)際用的輪形裝藥其輪臂是有圓弧過(guò)渡的,這些圓弧可以減小應(yīng)力集中,也可以在加工藥柱時(shí)容易脫模,不損害尖角。 對(duì)于輪臂有過(guò)渡圓弧的輪孔藥柱,其第1階段的總周長(zhǎng)為 (5) 總的燃燒面積為 (6) 對(duì)于e1=e2情況的車輪型藥柱,輪臂消失時(shí),直接進(jìn)入余藥燃燒階段。 對(duì)于e1 由圖3可以看出 (7) 經(jīng)整理可得: c2=l(l-ε)β+(r+e)β+ (8) 第2階段總的燃燒面積為 Ab 2= 2nL·l(l-ε)β+ 2nL(r+e)β+ (9) 圖4 余藥階段燃燒周長(zhǎng)變化示意圖 (10) 所以余藥燃燒結(jié)束時(shí)的肉厚為 (11) 則余藥階段的周長(zhǎng)為 c3=2n(e+r)∠GO′F= 2n(e+r)(∠O′OG+∠OO′F) 經(jīng)整理得: (12) 總的余藥燃燒面積為 2nL(r+e)(π-εβ)+ (13) 通過(guò)使用MATLAB軟件對(duì)藥柱燃燒面積3個(gè)階段的表達(dá)式進(jìn)行編程,得到車輪型藥柱e1 圖5 兩種肉厚形式的燃燒面積與燃去肉厚關(guān)系曲線 從圖5中可以看出:當(dāng)e1 對(duì)車輪型藥柱燃燒規(guī)律進(jìn)一步研究。根據(jù)車輪型藥柱燃燒面積的計(jì)算公式,設(shè)第1階段燃燒面積Ab1為f1(e),第2階段燃燒面積Ab2為f2(e)。將燃燒面積f1(e)、f2(e)對(duì)燃去肉厚e求導(dǎo),可得: (14) 整理式(13)可得: (15) 根據(jù)式(15)所示,對(duì)第1階段燃燒面積變化規(guī)律產(chǎn)生影響的結(jié)構(gòu)參數(shù)為n,l,L,θ。對(duì)第2階段燃燒面積變化規(guī)律產(chǎn)生影響的結(jié)構(gòu)參數(shù)為n、l、ε、r。 要探究車輪型藥柱的恒面燃燒條件,則需df(e)/de恒為0,即式(15)恒為0,求解:第1階段n≈4.078,第2階段n≈-0.367。若按照恒面燃燒的條件,輪臂數(shù)須為正整數(shù),則計(jì)算得到的第一階段和第二階段的n值均不滿足要求,因此,車輪型藥柱燃燒過(guò)程不具有恒面性。 燃燒面積變化率df1(e)/de、df2(e)/de與輪臂數(shù)n的關(guān)系如圖6所示。圖6中網(wǎng)格平面為df(e)/de=0。 通過(guò)圖6(a)可以看出:當(dāng)n=4.1時(shí),df1(e)/de=0,但輪角數(shù)必須為正整數(shù),所以,以n取4為分界點(diǎn),進(jìn)行討論。當(dāng)輪臂數(shù)n≤4時(shí),車輪型藥柱燃燒第一階段呈增面燃燒規(guī)律,當(dāng)輪臂數(shù)n≥5時(shí),車輪型藥柱燃燒第一階段呈減面燃燒規(guī)律。圖6(b)可以看出:燃燒第二階段,當(dāng)輪臂數(shù)較小時(shí),燃燒面積變化率逐漸減小,當(dāng)輪臂數(shù)較大時(shí),燃燒面積變化率趨于平穩(wěn),但df2(e)/de恒大于0,車輪型藥柱呈增面燃燒規(guī)律。 圖6 df(e)/de與n的關(guān)系曲線 圖7給出了輪臂數(shù)在3~6時(shí),車輪型藥柱的面積曲線。從圖7中可以看出:當(dāng)n=3,燃燒只有2個(gè)階段,除此之外的3條曲線都存在3個(gè)燃燒階段,n=4時(shí),第1階段呈增面燃燒,且增面變化率較小。n=5,6時(shí),第1階段呈減面燃燒,第2階段呈增面燃燒,第3階段呈減面燃燒。當(dāng)n=4時(shí),燃燒第1階段更接近恒面。因此,取n=4進(jìn)行下一步研究。 圖7 輪臂數(shù)對(duì)燃燒面積的影響曲線 燃燒面積變化率df1(e)/de與輪臂角θ的關(guān)系如圖8所示。圖8中網(wǎng)格面代表df1(e)/de=0。 圖8 df1(e)/de與θ的關(guān)系曲線 從圖8中可以看出:當(dāng)θ∈(π/3,π/2)時(shí),隨著θ的減小,藥柱燃燒面積變化率逐漸趨于平穩(wěn),且恒大于0,車輪型藥柱呈增面燃燒規(guī)律。根據(jù)恒面燃燒的需求,選取θ=π/3進(jìn)行下一步研究。 燃燒面積變化率df2(e)/de與角分?jǐn)?shù)ε的關(guān)系如圖9所示。圖9中網(wǎng)格面代表df2(e)/de=0。 圖9 df2(e)/de與ε的關(guān)系曲線 從圖9中可以看出:燃燒面積變化率曲面變化趨勢(shì)平穩(wěn),且恒大于0,由此可見(jiàn),角分?jǐn)?shù)ε的變化對(duì)第2階段燃燒規(guī)律無(wú)明顯影響。 當(dāng)取輪臂數(shù)n=4,輪臂角θ=π/3,角分?jǐn)?shù)ε=0.8時(shí),分析結(jié)構(gòu)參數(shù)l、L、h、r、r1和r2對(duì)燃面變化率df1(e)/de和df2(e)/de的影響。 由圖10(a)可知,對(duì)第1階段燃燒面積變化率df1(e)/de最敏感的結(jié)構(gòu)參數(shù)為l和L,圖10(b)可知,對(duì)第2階段燃面變化率df2(e)/de最敏感的結(jié)構(gòu)參數(shù)為l。下一步將重點(diǎn)研究df1(e)/de、df2(e)/de與l、L及l(fā)的關(guān)系。 以藥柱直徑D為基準(zhǔn)對(duì)L做無(wú)量綱處理,得到燃燒面積變化率df1(e)/e與藥柱長(zhǎng)度L/D的關(guān)系如圖11所示。網(wǎng)格面代表df1(e)/de=0。 圖10 燃面變化率與結(jié)構(gòu)參數(shù)的關(guān)系曲線 圖11 df(e)/de與長(zhǎng)徑比的關(guān)系曲線 由圖11可以看出:當(dāng)L/D∈(0.1,0.3)時(shí),燃燒面積變化率趨勢(shì)逐漸增大,且恒大于0,車輪型藥柱呈增面燃燒規(guī)律。根據(jù)恒面燃燒的需求,選取L/D=0.1的藥柱進(jìn)一步研究其燃燒規(guī)律。 燃燒面積變化率df(e)/de與特征長(zhǎng)度l的關(guān)系如圖12示,網(wǎng)格面代表df(e)/e=0。 由圖12(a)可以看出:當(dāng)l<0.3時(shí),燃燒面變化率逐漸增大,當(dāng)l>0.3時(shí),燃燒面積變化率趨于平穩(wěn)。但df1(e)/de恒大于0,車輪型藥柱始終呈增面燃燒規(guī)律。由圖12(b)可以看出:當(dāng)l<0.3時(shí),燃燒面變化率趨勢(shì)平穩(wěn),隨著l增大逐漸減小,df2(e)/de大于0,車輪型藥柱呈單增面燃燒。當(dāng)l>0.3時(shí),燃燒面變化率趨勢(shì)下降較快,df2(e)/de小于0,車輪型藥柱呈單減面燃燒。 圖12 df(e)/de與l的關(guān)系曲線 根據(jù)對(duì)車輪型藥柱燃燒規(guī)律的分析結(jié)果,選取一組車輪型藥柱結(jié)構(gòu)參數(shù)進(jìn)行計(jì)算驗(yàn)證,參數(shù)見(jiàn)表1。 表1 車輪型藥柱參數(shù) 以藥柱直徑D為基準(zhǔn),進(jìn)行無(wú)量綱處理,得到L=0.1,D=1,n=4,ε=0.8,l=0.3,h=0.07,r=0.02,r1=0.04,r2=0.02,θ=π/3。將無(wú)量綱處理的參數(shù)代入e1、e2計(jì)算公式得e1=0.1635,e2=0.172 7,e1 將上述參數(shù)代入燃燒面積計(jì)算式(3)、式(5)和式(8)中。計(jì)算結(jié)果如圖13所示。燃燒存在3個(gè)階段,且第1階段接近恒面燃燒,第2階段藥柱呈增面燃燒,第3階段為減面燃燒,算例結(jié)果與理論研究結(jié)果相吻合。 圖13 燃燒面積變化曲線 當(dāng)e1 當(dāng)輪臂數(shù)n為4時(shí),藥柱燃燒第1階段呈增面性。燃燒第2階段呈單增面性,且增面變化率變化較大。當(dāng)n大于等于5時(shí),藥柱燃燒第1階段呈減面性,燃燒第2階段呈單增面性,且增面變化率變化平穩(wěn)。其他結(jié)構(gòu)參數(shù)對(duì)車輪型藥柱的燃燒規(guī)律影響很小。 算例證明,當(dāng)輪臂數(shù)n=4,輪臂角θ=π/3,藥柱長(zhǎng)徑比為0.1時(shí),燃燒過(guò)程中出現(xiàn)近似的恒面燃燒,且出現(xiàn)在燃燒的第1階段。3 燃燒面積公式推導(dǎo)
3.1 第1階段(輪臂消失前)燃燒面積
3.2 第2階段(輪臂消失后)燃燒面積
3.3 第3階段(余藥)燃燒面積
3.4 計(jì)算結(jié)果與分析
4 恒面燃燒規(guī)律研究
4.1 恒面燃燒判斷條件與分析
4.2 輪臂數(shù)的選擇
4.3 輪臂角對(duì)第一階段燃燒面積的影響
4.4 角分?jǐn)?shù)對(duì)第二階段燃燒面積的影響
4.5 敏感度分析
4.6 藥柱長(zhǎng)度對(duì)第一階段燃燒面積的影響
4.7 特征長(zhǎng)度對(duì)燃燒面積的影響
4.8 算例
5 結(jié)論