章譽(yù)興,吳宏,于黎
綜 述
哺乳動(dòng)物毛色調(diào)控機(jī)制及其適應(yīng)性進(jìn)化研究進(jìn)展
章譽(yù)興,吳宏,于黎
云南大學(xué)生命科學(xué)學(xué)院,省部共建生物資源與利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,昆明 650091
哺乳動(dòng)物類(lèi)群呈現(xiàn)出的豐富毛色是引人注目的一種生物現(xiàn)象,是研究和理解哺乳動(dòng)物適應(yīng)性進(jìn)化的理想模型之一。哺乳動(dòng)物的毛色多態(tài)在躲避天敵、捕食、求偶及抵御紫外線等方面都具有重要作用。哺乳動(dòng)物毛發(fā)的色素化過(guò)程由體內(nèi)黑色素的數(shù)量、質(zhì)量和分布狀況所決定。黑色素的形成過(guò)程復(fù)雜,包括黑素細(xì)胞的分化、成熟,黑素體等細(xì)胞器的形態(tài)發(fā)生及黑色素在黑素細(xì)胞中的合成代謝和轉(zhuǎn)運(yùn)等過(guò)程;而在細(xì)胞色素化的每個(gè)階段/時(shí)相都伴隨著一些重要功能基因的參與,并通過(guò)基因之間的相互作用形成了黑色素生物代謝的復(fù)雜調(diào)控網(wǎng)絡(luò),進(jìn)而形成不同的毛色有助于哺乳動(dòng)物適應(yīng)不同生存環(huán)境。對(duì)哺乳動(dòng)物不同毛色形成機(jī)制的探究一直以來(lái)都是遺傳學(xué)及進(jìn)化生物學(xué)的重要研究領(lǐng)域和聚焦熱點(diǎn)。本文綜述了哺乳動(dòng)物毛色色素化過(guò)程的主要分子機(jī)制以及毛色適應(yīng)性進(jìn)化的遺傳基礎(chǔ),以期為哺乳動(dòng)物毛色多態(tài)及其適應(yīng)性進(jìn)化的分子機(jī)制研究提供參考。
毛色;黑色素生成;遺傳基礎(chǔ);適應(yīng)性進(jìn)化
哺乳動(dòng)物類(lèi)群展現(xiàn)出的豐富多彩的毛色特征是一種普遍且備受關(guān)注的生物現(xiàn)象。毛色多態(tài)性普遍存在于種內(nèi)和種間,比如:孟加拉虎()有4種毛色表型,其中普遍存在的是橙色底黑色條紋,而其變種白虎是白色底黑棕條紋,金虎是金色底紅棕色條紋以及雪虎是幾乎全身雪白的毛色[1]。馬()的毛色繁多,可大致分為黑色、騮毛、栗毛等[2]。不同品種的家犬()毛色也分為多種,例如拉布拉多犬有黑色、巧克力色和黃色[3],德國(guó)牧羊犬有黑色、藍(lán)色和肝臟色等[4]。除了種內(nèi)多態(tài),毛色多態(tài)性還體現(xiàn)在種間,例如金絲猴屬中有幾乎全身為金黃色的川金絲猴(),黑色和白色為主的滇金絲猴()和越南金絲猴(),黑褐色和金黃色為主的黔金絲猴()以及全身黑色為主的怒江金絲猴()[5]。在貓科動(dòng)物中,大部分貓科動(dòng)物類(lèi)群間都可以毛色、斑點(diǎn)或條紋的差異而進(jìn)行區(qū)分[6]。
哺乳動(dòng)物種內(nèi)或種間的體色多態(tài)很大程度上是自然選擇作用的結(jié)果;特定類(lèi)群所呈現(xiàn)的特殊毛色分布模式往往反映了其對(duì)周?chē)h(huán)境的協(xié)調(diào)和適應(yīng),例如躲避天敵、捕食、求偶以及抵御紫外線等[7]。亞利桑那州南部的巖小囊鼠()為了避免被捕食,其毛色類(lèi)型與其棲息地密切相關(guān),火山熔巖附近區(qū)域生活的巖小囊鼠有著深色皮毛,而生活在較遠(yuǎn)且遍布淺色花崗巖地區(qū)的群體其被毛顏色則相對(duì)較淺[8]。分布于喀斯特地貌區(qū)域的石山葉猴()除了頭部、尾部有白色、黃色毛發(fā)外,幾乎全身被黑色毛發(fā)覆蓋,該毛色可能是石山葉猴的一種偽裝適應(yīng)策略[9]。大熊貓()黑白相間的毛色也與偽裝有關(guān),白色的毛發(fā)有助于在積雪的棲息地中隱藏,而黑色毛發(fā)則有助于在森林中隱藏,這有助于大熊貓?jiān)趦煞N不同棲息地中活動(dòng)[10]。不同貓科動(dòng)物類(lèi)群所具有的特殊毛色特征與其捕食行為密切相關(guān),比如鹿和羊,因其僅具有二色視覺(jué)而無(wú)法有效區(qū)分橙色和綠色,因此捕食鹿和羊的老虎()其橙色被毛對(duì)于鹿和羊來(lái)說(shuō)是一種非常有效的偽裝,能夠與所處的環(huán)境融為一體,使其能不動(dòng)聲色地靠近、捕食獵物[11]。Caro等[12]對(duì)鯨類(lèi)()的著色模式研究發(fā)現(xiàn),吃魚(yú)、蝦和烏賊的鯨類(lèi)往往具有醒目的斑塊化體色(例如:白側(cè)腹、白頭和不對(duì)稱(chēng)的白色下頜骨),這些明顯的白色斑塊能夠迷惑獵物,使其聚集在一起,便于鯨類(lèi)捕食。此外,性選擇作用對(duì)于塑造哺乳動(dòng)物類(lèi)群間的毛色多態(tài)也有著重要影響[13]。如雄獅()的鬃毛是性選擇的產(chǎn)物,深色的鬃毛對(duì)雌獅更有吸引力[14]。Cooper等[15]將10只不同亞種的褐狐猴()分別放進(jìn)籠子里,在每個(gè)籠子中提供經(jīng)過(guò)處理的不同色彩的雄猴照片,記錄每只雌猴看照片的時(shí)間,結(jié)果發(fā)現(xiàn)雌猴更喜歡色彩鮮艷的雄性。在抵御紫外線方面,棲息于高海拔地區(qū)的藏豬()通過(guò)其黑色的毛發(fā)來(lái)抵御紫外輻射,能有效避免紫外輻射引起的DNA損傷[16]。
除了自然選擇作用外,由于人類(lèi)文明的興起和發(fā)展,體色作為一種重要的經(jīng)濟(jì)性狀,不同家養(yǎng)動(dòng)物類(lèi)群也受到強(qiáng)烈的人工選擇作用而表現(xiàn)出高度的體色多態(tài)性。例如驢()的毛色可分為三粉、黑色、白色等[17];豬也有豐富的毛色表型,如黑色、紅色、黑斑等[18];綿羊()也具有白色、灰色、棕色等多種毛色[19]。
對(duì)哺乳動(dòng)物不同毛色形成機(jī)制的探究和揭示一直以來(lái)都是遺傳學(xué)及進(jìn)化生物學(xué)的重要研究領(lǐng)域和聚焦熱點(diǎn)。楊廣禮[20]、巫小倩等[21]、王磊等[22]先后對(duì)動(dòng)物的毛色形成機(jī)制進(jìn)行了綜述。對(duì)哺乳動(dòng)物的毛色長(zhǎng)期研究發(fā)現(xiàn),哺乳動(dòng)物的毛色、眼睛顏色和膚色由體內(nèi)黑色素的數(shù)量、質(zhì)量和分布狀況決定[23]。在哺乳動(dòng)物中,一般存在真黑素和褐黑素兩種黑色素:真黑素(棕黑或深色不溶性聚合物)能使皮膚和毛發(fā)表現(xiàn)為黑色或褐色;褐黑素(紅黃色可溶性聚合物)能使皮膚和毛發(fā)表現(xiàn)為紅色和黃色[24]。黑色素在哺乳動(dòng)物的毛色形成中扮演著關(guān)鍵角色,黑色素的形成有著復(fù)雜的調(diào)控機(jī)制,從黑素細(xì)胞的分化成熟到黑色素合成及轉(zhuǎn)運(yùn)的過(guò)程中都有著多個(gè)基因的參與調(diào)控[25]。此外,越來(lái)越多的研究表明,microRNA (miRNAs)也可以調(diào)控黑色素沉積從而影響哺乳動(dòng)物的毛色[21,26]。
本文綜述了哺乳動(dòng)物毛色色素化形成的主要調(diào)控機(jī)制,進(jìn)一步闡述了這些重要功能基因產(chǎn)生的不同遺傳突變對(duì)于哺乳動(dòng)物適應(yīng)性進(jìn)化的重要意義(自然選擇與人工選擇);同時(shí),也對(duì)哺乳動(dòng)物類(lèi)群中毛色多態(tài)與某些重大遺傳疾病之間的關(guān)聯(lián)性進(jìn)行了探討,以期為哺乳動(dòng)物毛色多態(tài)、適應(yīng)性進(jìn)化以及重要遺傳疾病致病機(jī)理的分子機(jī)制研究提供參考。
細(xì)胞色素化過(guò)程包含多個(gè)時(shí)相和階段,主要分為:黑素細(xì)胞的發(fā)育成熟、黑素細(xì)胞中重要細(xì)胞器的形態(tài)發(fā)生、黑色素的合成代謝及黑色素的胞內(nèi)胞外轉(zhuǎn)運(yùn)和功能行使等[27]。黑素細(xì)胞由黑素母細(xì)胞分化而來(lái),該細(xì)胞起源于胚胎時(shí)期軀干神經(jīng)嵴細(xì)胞[28]。神經(jīng)嵴細(xì)胞是一種多能細(xì)胞,具有分化為黑素細(xì)胞、外周神經(jīng)系統(tǒng)的神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞和腎上腺髓質(zhì)的嗜鉻細(xì)胞等多種細(xì)胞的潛能[29]。神經(jīng)嵴細(xì)胞分化為黑素細(xì)胞主要有兩種途徑:第一種通過(guò)背側(cè)遷移途徑,即沿著體節(jié)和外胚層的間隙遷移。前期神經(jīng)嵴細(xì)胞分化為黑素母細(xì)胞,黑素母細(xì)胞沿著背側(cè)途徑增殖并遷移至胚胎各處。隨后,黑素母細(xì)胞通過(guò)基底膜進(jìn)入表皮層,其中部分黑素母細(xì)胞會(huì)進(jìn)一步遷移至毛囊基質(zhì)中。位于表皮層的黑素母細(xì)胞分化為黑素細(xì)胞后負(fù)責(zé)皮膚色素沉著;而遷移到毛囊基質(zhì)的黑素母細(xì)胞,一部分分化為成熟的黑素細(xì)胞,還有一部分黑素母細(xì)胞則形成黑素細(xì)胞干細(xì)胞(melanocyte stem cells, MSC),負(fù)責(zé)維持體內(nèi)平衡[25]。第二種是腹側(cè)遷移途徑,早期的神經(jīng)嵴細(xì)胞沿腹側(cè)遷移分化為神經(jīng)元和施萬(wàn)細(xì)胞前體(schwann cell precursors, SCPs),SCPs進(jìn)一步分化為施萬(wàn)細(xì)胞和黑素細(xì)胞,黑素細(xì)胞的分化與發(fā)育受神經(jīng)調(diào)節(jié)蛋白1 (neuregulin-1, NRG1)、胰島素樣生長(zhǎng)因子1 (insulin- like growth factor 1, IGF1)和血小板衍生因子(platelet- derived growth factor, PDGF)調(diào)控,NRG1抑制黑素細(xì)胞的分化而IGF1和PDGF促進(jìn)SCPs分化為黑素細(xì)胞[30,31]。黑素體是黑素細(xì)胞中由高爾基體–內(nèi)質(zhì)網(wǎng)–溶酶體形成的不連續(xù)的膜狀細(xì)胞器,是黑色素合成的場(chǎng)所[32]。在黑素體中,酪氨酸首先通過(guò)酪氨酸酶(tyrosinase, TYR)的催化作用形成多巴,再進(jìn)一步氧化生成多巴醌(DOPA quinone, DQ),后經(jīng)一系列酶促反應(yīng)最終生成真黑素;當(dāng)半胱氨酸存在時(shí),DQ便與半胱氨酸反應(yīng)生成半胱氨酸多巴,經(jīng)過(guò)閉環(huán)和脫羧反應(yīng)生成褐黑素[33,22]。此外,真黑素和褐黑素的合成還與黑素體內(nèi)的pH值有關(guān),低pH值有利于褐黑素合成而高pH值則有利于真黑素合成[34]。黑色素合成后,成熟的黑素體通過(guò)各種分子馬達(dá)運(yùn)輸黑色素到周?chē)慕琴|(zhì)細(xì)胞中行使色素功能[35,36]。與皮膚黑色素生成不同的是,毛囊中黑色素的生成與毛發(fā)周期有關(guān),在毛發(fā)生長(zhǎng)期,毛囊黑素細(xì)胞中黑素體合成黑色素,隨后成熟的黑素體轉(zhuǎn)運(yùn)至周?chē)钠咏琴|(zhì)細(xì)胞最終形成有色毛干。與表皮黑色細(xì)胞相比,毛囊黑色細(xì)胞更大,樹(shù)突更多,有更大的高爾基體和內(nèi)質(zhì)網(wǎng),能產(chǎn)生更大的黑素體[30](圖1)。
隨著第一個(gè)毛色基因在小鼠()中被克隆到現(xiàn)在[37],已經(jīng)發(fā)現(xiàn)171個(gè)毛色相關(guān)基因(378個(gè)突變位點(diǎn))在不同階段調(diào)控毛色/膚色的產(chǎn)生(http://www.espcr.org/micemut/)。在黑素細(xì)胞的發(fā)育過(guò)程中,Wnt信號(hào)通路、內(nèi)皮素3-內(nèi)皮素受體B (EDN3/EDNRB)信號(hào)通路以及KIT/KITL信號(hào)通路與神經(jīng)嵴細(xì)胞分化發(fā)育為黑素細(xì)胞的過(guò)程密切相關(guān)[20,26]。與此同時(shí),MITF、SOX10、PAX3等轉(zhuǎn)錄因子也參與調(diào)控黑素細(xì)胞的分化與發(fā)育。
Wnt蛋白是富含半胱氨酸的分泌型糖蛋白,在誘導(dǎo)神經(jīng)嵴細(xì)胞的遷移、增殖和分化過(guò)程中起重要作用[38]。Wnt信號(hào)通路能夠通過(guò)不同方式和途徑影響細(xì)胞存活、增殖、分化和遷移[39]。Wnt信號(hào)通路通過(guò)黑素細(xì)胞中β-catenin的積累而進(jìn)入細(xì)胞核后與淋巴細(xì)胞增強(qiáng)因子(lymphoid enhancer factor 1, LEF1)結(jié)合而增強(qiáng)小眼畸形轉(zhuǎn)錄因子(microphthalmia-asso-ciated transcription factor, MITF)的轉(zhuǎn)錄表達(dá),最終促進(jìn)黑素母細(xì)胞的增殖分化,進(jìn)而影響黑色素合成[40]。此外,Wnt1A和Wnt3A也是Wnt信號(hào)通路中重要的調(diào)控分子;Wnt1可促進(jìn)黑素母細(xì)胞分化為黑素細(xì)胞,Wnt3a促進(jìn)神經(jīng)嵴細(xì)胞向黑素細(xì)胞的分化,維持或上調(diào)黑素母細(xì)胞中的表達(dá)及其下游基因和來(lái)促進(jìn)黑色素的生成[41,42]。
圖1 哺乳動(dòng)物細(xì)胞色素化過(guò)程及其調(diào)控機(jī)制
A:黑色素合成的細(xì)胞過(guò)程;B:黑色素合成信號(hào)通路。根據(jù)參考文獻(xiàn)[33]修改繪制。
內(nèi)皮素(endothelin 3,)及其受體在黑素細(xì)胞的發(fā)育中有著不可或缺的作用。這兩個(gè)基因上發(fā)生的遺傳突變均會(huì)導(dǎo)致黑素細(xì)胞前體的數(shù)量減少和色素稀釋[43]。EDN3在黑素細(xì)胞發(fā)育的整個(gè)過(guò)程中是必需的,它在黑素細(xì)胞發(fā)育早期可以補(bǔ)償KIT的部分作用,輔助影響黑色素的形成,在基因突變的小鼠中的過(guò)表達(dá)能夠減少白斑[44]。
KIT/KITL信號(hào)通路是黑素母細(xì)胞存活所必需。基因編碼酪氨酸激酶受體,其表達(dá)量變化會(huì)影響黑素細(xì)胞的遷移過(guò)程。黑素母細(xì)胞遷移時(shí),KIT與其配體KITL結(jié)合后通過(guò)MAPK使MITF-M的Ser73磷酸化而導(dǎo)致MITF-M功能上調(diào);與此同時(shí),轉(zhuǎn)錄共刺激分子(CBP/p300)也與MITF-M相互作用,進(jìn)一步激活MITF-M的功能[45]。當(dāng)基因發(fā)生突變不能正常表達(dá)時(shí),會(huì)影響黑素細(xì)胞的正常遷移,導(dǎo)致毛根中缺乏黑素細(xì)胞而出現(xiàn)毛色稀釋?zhuān)咨l(fā)或白色斑點(diǎn)表型[45,46]。KIT和MITF能共同調(diào)控黑素細(xì)胞的發(fā)育,二者之間有著復(fù)雜的相互作用,是維持黑素細(xì)胞中表達(dá)所必需的,而信號(hào)傳導(dǎo)則可調(diào)節(jié)黑素細(xì)胞中的活性和穩(wěn)定性。首先在促進(jìn)黑素母細(xì)胞向黑素細(xì)胞的分化中起作用,隨后通過(guò)影響表達(dá)來(lái)促進(jìn)黑素細(xì)胞的存活和遷移[47]。
MITF屬于MiT轉(zhuǎn)錄因子家族成員,參與多種細(xì)胞類(lèi)型的分化發(fā)育,例如黑素細(xì)胞、破骨細(xì)胞和肥大細(xì)胞等[48]?;蛴卸鄠€(gè)啟動(dòng)子,存在多個(gè)具有不同5?外顯子的同工型,其中幾乎只在黑素細(xì)胞和黑素細(xì)胞瘤中表達(dá)。MITF具有螺旋–環(huán)–螺旋–亮氨酸拉鏈結(jié)構(gòu)(bHLHzip),它可以識(shí)別并與E-box(5?-CACGTG-3?)、M-box(5?-TCATGTG-3?)序列相互作用,形成專(zhuān)一的二聚體,對(duì)胚胎神經(jīng)嵴細(xì)胞向黑素細(xì)胞的分化選擇過(guò)程至關(guān)重要。MITF在黑素細(xì)胞發(fā)育過(guò)程中扮演著交通樞紐角色,可以和多種轉(zhuǎn)錄因子結(jié)合進(jìn)而調(diào)節(jié)上游或下游信號(hào)通路。在上游信號(hào)通路中,啟動(dòng)子與LEF1/TCF結(jié)合激活表達(dá),激活Wnt/β-catenin通路轉(zhuǎn)導(dǎo)促進(jìn)黑素細(xì)胞譜系的建立[49]。CREB是一種bZIP轉(zhuǎn)錄因子,可識(shí)別啟動(dòng)子中的TGACGTCA基序促進(jìn)的表達(dá),進(jìn)而響應(yīng)下游的cAMP濃度變化,最終促進(jìn)黑色素的沉著。SOX10能響應(yīng)cAMP信號(hào)而激活,而PAX3通過(guò)與基因的啟動(dòng)子結(jié)合來(lái)調(diào)節(jié)的表達(dá);因此,與對(duì)的表達(dá)有協(xié)同作用,這對(duì)黑色素細(xì)胞的發(fā)育和黑素細(xì)胞干細(xì)胞活化的調(diào)節(jié)是必需的。通過(guò)抑制與啟動(dòng)子的結(jié)合,降低的表達(dá)最終維持黑素細(xì)胞的存活[48~50]。在下游信號(hào)通路中,能夠識(shí)別并結(jié)合TYR家族啟動(dòng)子中的E-box序列,指導(dǎo)該家族成員()在黑素細(xì)胞中的特異性表達(dá),從而產(chǎn)生黑色素[51](圖1)。
方案三:谷物、薯類(lèi)和雜豆統(tǒng)計(jì)為糧食,但不包括大豆??紤]到人們糧食消費(fèi)的多元化,雜豆仍然可以作為糧食的一部分。因此,只將大豆從現(xiàn)有糧食統(tǒng)計(jì)口徑中剔除,其中薯類(lèi)(不含木薯)仍然按5比1折糧。
黑素體在黑素細(xì)胞中的形態(tài)發(fā)生和成熟主要包括4個(gè)階段(I-IV期)。I期黑素體是圓形無(wú)定型的基質(zhì)小囊泡,細(xì)胞器腔內(nèi)開(kāi)始出現(xiàn)早期的蛋白原纖維。II期黑素體包含有序的結(jié)構(gòu)化纖維基質(zhì),黑素體呈橢圓形,無(wú)色素沉著。III期TYR催化L-酪氨酸氧化形成多巴,多巴經(jīng)過(guò)氧化形成多巴醌,后者再經(jīng)過(guò)一系列反應(yīng)在黑素體中生成黑色素。IV期黑色素沉積在蛋白纖維上并充滿整個(gè)黑素體[52~55]。
在黑素體形成前期(I-II期)中,基因編碼一種黑素細(xì)胞特異性蛋白,并形成生理淀粉樣蛋白纖維。前黑素體蛋白(PMEL)首先在內(nèi)質(zhì)網(wǎng)中合成,經(jīng)過(guò)高爾基體和高爾基體網(wǎng)狀結(jié)構(gòu)加工修飾后進(jìn)入黑素體(I期)。其進(jìn)入方式有兩種:(1) PMEL與銜接蛋白-1(AP1)首先形成復(fù)合物,之后通過(guò)網(wǎng)格蛋白包被的囊泡直接分選進(jìn)入黑素體;(2) AP2與PMEL形成的復(fù)合物通過(guò)間接途徑先分選至質(zhì)膜,再重新回到黑素體[56],在II期形成纖維狀結(jié)構(gòu),黑色素最終沉積在黑素體的管腔中?;蚴Щ顣?huì)導(dǎo)致黑素體的形態(tài)發(fā)生改變,導(dǎo)致毛色被稀釋[57]。除外,也是黑素體形成過(guò)程中重要的功能基因。能與形成復(fù)合物,維持在黑素體中穩(wěn)定表達(dá)。將進(jìn)行siRNA處理后,黑素細(xì)胞中的穩(wěn)定性受影響,影響其加工與運(yùn)輸[58]?;蚯贸男∈篌w系中,小鼠的毛色淡化,黑素細(xì)胞中的黑素體形態(tài)結(jié)構(gòu)也發(fā)生改變[59]。是一種糖基化的跨膜蛋白,與的氨基酸序列具有高同源性且在黑素體形成的整個(gè)過(guò)程中表達(dá),將在黑素細(xì)胞中敲除后黑素細(xì)胞中黑素體減少,表明可促進(jìn)早期黑素體的形成[60]。
在黑素體合成后期(III-IV期)中,和從循環(huán)內(nèi)體(recycling endosome)到黑素體中的運(yùn)輸有兩條不同的路徑,依賴于AP-3運(yùn)輸,而依賴于BLOC-1或BLOC-2運(yùn)輸[61]。在該過(guò)程中,Mahanty等[62]研究表明,、或通過(guò)調(diào)節(jié)介導(dǎo)的循環(huán)內(nèi)體來(lái)控制和在黑素體中的轉(zhuǎn)運(yùn)從而影響黑素體的成熟。在黑素體成熟過(guò)程中,基因編碼的蛋白維持著黑素體內(nèi)的環(huán)境穩(wěn)態(tài)。TYR在pH為中性時(shí)活性最高,有利于黑色素的合成[63]。和基因編碼的蛋白均作為一個(gè)Na+/H+交換器,將H+從黑素體中泵出去,將Na+泵進(jìn)來(lái)維持體內(nèi)的pH保持在中性。編碼的離子泵偶聯(lián)V-ATPase可調(diào)控黑素體內(nèi)的陽(yáng)離子濃度(K+/Na+/Ca+/H+)[64](圖1)。
黑素皮質(zhì)受體1()屬于G蛋白偶聯(lián)受體家族,主要在黑素細(xì)胞中表達(dá),是調(diào)節(jié)哺乳動(dòng)物毛色的重要受體。通過(guò)與α-MSH和ACTH結(jié)合,激活細(xì)胞膜上腺苷酸環(huán)化酶系統(tǒng)使三磷酸腺苷(ATP)轉(zhuǎn)變?yōu)榄h(huán)腺苷酸(cAMP);之后啟動(dòng)子區(qū)的cAMP反應(yīng)元件(cAMP-response element, CRE)與cAMP效應(yīng)元件結(jié)合蛋白(cAMP response element-binding protein, CREB)結(jié)合而上調(diào)基因的表達(dá),最終激活TYR而促進(jìn)真黑素產(chǎn)生[65]。此外,角質(zhì)細(xì)胞由于UVB照射導(dǎo)致的DNA損傷可激活P53反應(yīng)機(jī)制而上調(diào)促黑皮質(zhì)激素基因(Pro-opiomelanocortin,)的轉(zhuǎn)錄表達(dá)。該基因是α-MSH和ATCH的前體,α-MSH與結(jié)合激活cAMP,進(jìn)一步激活PKA導(dǎo)致表達(dá)上調(diào)最終促進(jìn)黑色素的合成[66]。是的拮抗劑,可與α-MSH競(jìng)爭(zhēng)性地結(jié)合而抑制TYR表達(dá),從而阻礙真黑素的合成而激活褐黑素合成[67]。
酪氨酸酶TYR是黑色素合成代謝過(guò)程中的關(guān)鍵酶,它能催化酪氨酸羥基化為多巴并隨后形成DQ。哺乳動(dòng)物的毛色類(lèi)型與真黑素和褐黑素二者的比例有關(guān),多巴醌是生成這兩種黑色素的共同前體物,因此TYR控制著黑色素的生成,在毛色形成過(guò)程中扮演著不可缺少的角色。除了TYR,其酪氨酸酶基因家族還有TYRP1和TYRP2,二者在催化真黑素合成過(guò)程中也扮演著重要角色,催化多巴醌進(jìn)一步合成真黑素[68](圖1)。
黑素體成熟后被轉(zhuǎn)移至表皮或毛囊中的角質(zhì)細(xì)胞中,以此吸收紫外線保護(hù)細(xì)胞核免受損害[69]。目前,成熟黑素體的轉(zhuǎn)運(yùn)主要有4種模型和假說(shuō):(1)吞噬作用模型中,黑素細(xì)胞通過(guò)延長(zhǎng)樹(shù)突與角質(zhì)細(xì)胞接觸,角質(zhì)細(xì)胞將黑素細(xì)胞的樹(shù)突包圍、掐斷并吞噬;(2)膜融合模型中,黑素細(xì)胞絲狀偽足與角質(zhì)細(xì)胞膜融合形成瞬時(shí)膜導(dǎo)管,黑素體通過(guò)該瞬時(shí)膜導(dǎo)管轉(zhuǎn)移至角質(zhì)細(xì)胞中;(3)脫落–吞噬作用模型中,黑素體沿著黑素細(xì)胞伸出的絲狀偽足遷移至頂端聚集成色素小球并脫落,之后角質(zhì)細(xì)胞將色素小球包裹并吞噬;(4)胞吐–內(nèi)吞模型中,黑素體膜與黑素細(xì)胞質(zhì)膜融合被分泌至細(xì)胞間隙,隨后周?chē)慕琴|(zhì)細(xì)胞通過(guò)吞噬作用將黑素體吞噬內(nèi)化[70]。角質(zhì)細(xì)胞中黑素體的數(shù)量、分布能影響毛發(fā)、皮膚的色素沉著。等基因編碼的蛋白復(fù)合物是黑素體轉(zhuǎn)運(yùn)所必需的,可協(xié)調(diào)黑素體沿微管的長(zhǎng)距離轉(zhuǎn)運(yùn)和沿肌動(dòng)蛋白絲的短距離轉(zhuǎn)運(yùn),并在隨后的色素沉著中也起到關(guān)鍵作用[71,72],這些基因的遺傳突變均會(huì)導(dǎo)致小鼠的毛色被稀釋[73]。在模型(1)、(2)和(4)中,黑素體的轉(zhuǎn)移均需要角質(zhì)細(xì)胞的吞噬完成,該作用受蛋白酶激活受體2 (recombinant protease activated receptor 2,)調(diào)節(jié),的活化可增強(qiáng)吞噬作用和皮膚色素沉著[74]。
除毛色相關(guān)基因調(diào)節(jié)哺乳動(dòng)物的色素化過(guò)程外,研究發(fā)現(xiàn)miRNA的表達(dá)模式也與黑色素合成有關(guān)[21]。miRNA是一類(lèi)長(zhǎng)約22 nt的非編碼RNA,它們能與細(xì)胞中其他因子結(jié)合形成沉默復(fù)合體(RNA- induced silencing complex, RISC),引起靶基因RNA的降解或翻譯抑制而表現(xiàn)出細(xì)胞功能活性[75]。miRNA不僅可以通過(guò)與Wnt/β-catenin信號(hào)通路、TGF-β信號(hào)通路和cAMP信號(hào)通路中關(guān)鍵基因RNA結(jié)合而調(diào)控黑色素沉積,還能夠通過(guò)調(diào)控、、等基因表達(dá)模式而影響黑色素合成代謝[21,26]。
一般而言,哺乳動(dòng)物成年個(gè)體的毛色是相對(duì)穩(wěn)定的,不會(huì)出現(xiàn)明顯的變化,但也有特例。由于真黑素/褐黑素的含量變化,使其毛色能夠隨著季節(jié)而變化。例如雪鞋兔()為了適應(yīng)冬季的冰雪環(huán)境以此達(dá)到躲避天敵的偽裝目的,它們?cè)诙就嗜プ厣耐庖罗D(zhuǎn)變?yōu)榘咨玔76]。隨著全球變暖,部分地區(qū)降雪減少,雪鞋兔為躲避捕食者,它們打破在冬季換裝的規(guī)律,仍保留其棕色毛發(fā)。Jones等[77]研究發(fā)現(xiàn)北美雪鞋兔不同毛發(fā)顏色的轉(zhuǎn)換與基因的順式調(diào)控作用相關(guān)。白色毛發(fā)和棕色毛發(fā)中基因的表達(dá)量存在顯著差異,白色雪鞋兔5?非編碼區(qū)存在1Kb左右的堿基插入,而北美雪鞋兔的棕色表型則是黑尾長(zhǎng)耳大野兔基因適應(yīng)性滲透的結(jié)果。北極狐()的毛色也能夠隨季節(jié)而變化,在冬季其毛色由棕灰色毛發(fā)蛻變?yōu)榘咨l(fā)以便更好地在雪地里偽裝。有學(xué)者通過(guò)白色北極狐和其藍(lán)色變種來(lái)研究其毛色變化機(jī)制,發(fā)現(xiàn)基因的遺傳突變?cè)谄涿{(diào)控中發(fā)揮了主要作用,其中兩個(gè)非同義突變位點(diǎn)(p.C5G、p.C280F)影響黑色素的合成水平[78]。非洲條紋鼠()背部有兩對(duì)深色淺色交替分布的條紋,其背部的條紋可能有利于躲避捕食者[79],研究發(fā)現(xiàn)背部的深淺條紋受調(diào)控,在淺色條紋中高水平表達(dá),通過(guò)與的啟動(dòng)子結(jié)合,抑制活性,干擾黑素細(xì)胞分化以及黑色素的合成[80]。巖小囊鼠的毛色與其棲息地背景高度匹配,火山熔巖附近區(qū)域生活的巖小囊鼠有著深色皮毛,而生活在較遠(yuǎn)且遍布淺色花崗巖地區(qū)的群體其被毛顏色則相對(duì)較淺[8]。Nachman等[81]對(duì)不同來(lái)自棲息地的巖小囊鼠的和基因進(jìn)行測(cè)序分析發(fā)現(xiàn),棲息于亞利桑那州中南部Pinacate地區(qū)熔巖中的巖小囊鼠其黑色毛發(fā)受基因調(diào)控(p.R18C、p.R109W、p.R160W和p.Q233H) (表1)。
白靈熊()的錯(cuò)義突變(p.Y298C)使白靈熊呈現(xiàn)出白色毛發(fā)[82],這讓它在森林和灌叢中顯得格外醒目。但白靈熊主要以鮭魚(yú)為食,白色毛發(fā)更能與天空背景融為一體,便于捕食蛙魚(yú),有報(bào)道也證實(shí)了在白天白色毛發(fā)的白靈熊比黑熊更容易捕食到鮭魚(yú)[83]。非洲野犬()毛色多樣,通常由黑色、白色和黃色組成形態(tài)各異的斑紋。其多樣的毛色可能與偽裝有關(guān),有利于其捕食高角羚()等獵物。Chavez等[84]研究發(fā)現(xiàn)其毛色受、和三個(gè)基因的調(diào)節(jié),其中和通過(guò)調(diào)節(jié)黑素體的轉(zhuǎn)運(yùn)從而調(diào)節(jié)黑、白毛色,而通過(guò)調(diào)節(jié)黑色素的合成從而調(diào)節(jié)黃、黑色毛發(fā)。Allen等[85]表明貓科(Felidae)動(dòng)物的毛色與其生存環(huán)境息息相關(guān),其斑點(diǎn)圖案有助于在樹(shù)木、灌木叢中偽裝,便于捕食獵物。Kaelin等[86]發(fā)現(xiàn)和基因共同調(diào)控貓科動(dòng)物的斑紋形成,在毛囊發(fā)育前期決定深淺斑紋形成區(qū)域,負(fù)責(zé)該區(qū)域黑、黃毛色的形成(表1)。
紫外線對(duì)皮膚有穿透作用,皮膚在紫外線強(qiáng)烈照射下會(huì)導(dǎo)致皮膚變黑、老化、炎癥甚至引發(fā)皮膚癌[87]。強(qiáng)紫外線照射能誘導(dǎo)環(huán)丁烷嘧啶二聚體(cyclobutane pyrimidine dimers, CPD)和嘧啶(6-4)嘧啶酮光產(chǎn)物(6,4-photoproducts,(6-4)PP)的產(chǎn)生而造成DNA損傷[88],也會(huì)誘導(dǎo)皮膚中活性氧自由基(ROS)過(guò)量產(chǎn)生對(duì)細(xì)胞及DNA結(jié)構(gòu)造成損傷而導(dǎo)致細(xì)胞癌變[89]。對(duì)哺乳動(dòng)物而言毛發(fā)中黑色素的沉積是哺乳動(dòng)物抵御紫外線損傷的第一道防線,黑色素能夠減少紫外線對(duì)皮膚的穿透作用而有效降低紫外輻射對(duì)細(xì)胞的損傷[90]。青藏高原高海拔地區(qū)有較強(qiáng)的紫外輻射,Li等[16]認(rèn)為棲息于青藏高原的藏豬的黑色毛發(fā)可能用于抵御紫外輻射,避免紫外輻射引發(fā)的DNA損傷,作者基于基因組分析從藏豬中篩選出了多個(gè)與抵御紫外線相關(guān)的適應(yīng)性進(jìn)化基因,其中包含與黑色素合成有關(guān)的基因。Guo等[91]通過(guò)全基因組分析篩選出調(diào)控波爾山羊、美姑山羊、金堂黑山羊、南江黃羊、臧山羊和西藏絨山羊6種山羊毛色、高海拔適應(yīng)、生長(zhǎng)繁殖的正選擇基因,其中在西藏絨山羊中篩選出可能調(diào)控其黑色毛發(fā)的基因,可能通過(guò)調(diào)控黑素細(xì)胞的分化和遷移來(lái)調(diào)控黑色素的生成,從而幫助西藏絨山羊抵御青藏高原強(qiáng)烈的紫外線輻射(表1)。
家養(yǎng)動(dòng)物類(lèi)群的毛色也是人類(lèi)高度關(guān)注的經(jīng)濟(jì)表型性狀,家養(yǎng)動(dòng)物的毛色高度多樣化很大程度上反應(yīng)了人們的喜好差異,或者某些特殊毛色因?yàn)楹湍承╆P(guān)鍵馴化性狀偶聯(lián),包括溫順、產(chǎn)崽率以及生長(zhǎng)發(fā)育速率等而被搭載選擇,導(dǎo)致群體/品系固定。例如,敲除基因的黑色鹿鼠()與正常黃色鹿鼠相比,基因的鹿鼠表現(xiàn)得更溫順,攻擊性也較低[92];幾乎所有突變的純合白斑小鼠都是不育的[93];Avy基因型小鼠有黃色、黑斑、鼠灰色3種表型,而鼠灰色小鼠體重增加速率明顯低于其他兩種表型[94]。
表1 毛色表型與適應(yīng)性進(jìn)化遺傳基礎(chǔ)研究總結(jié)
人工選擇是家養(yǎng)動(dòng)物表型進(jìn)化的主要驅(qū)動(dòng)力,家養(yǎng)動(dòng)物相較于野生哺乳動(dòng)物類(lèi)群往往呈現(xiàn)出了更多的毛色多態(tài)性。在中國(guó)家豬品系中,有黑色、白色和黑白花色等多種表型,其中黑色家豬在中國(guó)較為常見(jiàn),該毛色也被認(rèn)為是馴化出來(lái)的性狀。Li等[95]認(rèn)為黑色家豬的馴化與中國(guó)特殊的祭祀文化有關(guān)。與野豬()種群相比,中國(guó)家豬在瓶頸效應(yīng)與人工選擇共同作用下導(dǎo)致了中國(guó)家豬基因區(qū)遺傳多樣性的顯著下降,最終使的兩個(gè)錯(cuò)義突變(p.V95M和p.L102P)在家豬中固定。除了黑或白的純色家豬,黑眼圈白毛、烏云蓋雪、兩頭烏等家豬品系均在中國(guó)有分布。通過(guò)全基因組關(guān)聯(lián)分析發(fā)現(xiàn)兩頭烏群體與非兩頭烏群體間在和基因處有顯著信號(hào)和遺傳差異[96]。對(duì)中國(guó)滇南小耳豬的全基因組測(cè)序和分析,發(fā)現(xiàn)其六白毛色表型(四蹄、頭和尾尖白色)與等基因區(qū)的遺傳突變相關(guān)。其中,基因上游調(diào)控序列中的CEBPB識(shí)別基序發(fā)生突變,影響了該基因的表達(dá);基因上一個(gè)高度保守的非同義替換位點(diǎn)突變(p.E396D)可能消除功能,通過(guò)介導(dǎo)黑素細(xì)胞的凋亡而影響黑色素的合成[97]。與黑色家豬相似,受葬禮文化或宗教的影響,白色水牛()在中國(guó)等亞洲國(guó)家也受到特別的偏愛(ài)。基于全基因組測(cè)序分析發(fā)現(xiàn),基因上游LINE-1轉(zhuǎn)座子的插入使基因強(qiáng)表達(dá),使黑色素合成受阻導(dǎo)致水牛表現(xiàn)出白色[98]。Yusnizar等[99]研究發(fā)現(xiàn)在水牛中基因突變(c.328C>T;c.840+2T>A)會(huì)造成白斑表型。此外,狗()是最早被馴化的家養(yǎng)動(dòng)物,目前已有超過(guò)400個(gè)不同性狀的家犬品系,毛色豐富的家犬受多種色素相關(guān)基因如和等調(diào)控[100,101]。例如昆明犬有狼青、黑背和草黃3種毛色表型,通過(guò)對(duì)昆明犬和三個(gè)色素調(diào)控基因進(jìn)行測(cè)序和進(jìn)化分析,發(fā)現(xiàn)(p.S90G、p.A105T、p.P159Q、p.M264V)在昆明犬狼青和黑背這兩個(gè)群體中具有高度雜合性,可能通過(guò)平衡選擇作用導(dǎo)致昆明犬的毛色差異[102]。另外,家馬()大約包含900個(gè)品種,其黑色、栗色和騮毛等基礎(chǔ)毛色主要受基因調(diào)節(jié),而奶酪色、珍珠毛色等淡化毛色則由等相關(guān)基因的不同突變類(lèi)型調(diào)節(jié)[103~105]。家兔()基因3?UTR的缺失使黑色素含量減少,導(dǎo)致灰色毛色[106]。Yao等[107]發(fā)現(xiàn)基因和基因在黑色綿羊和白色綿羊中表現(xiàn)出顯著差異。美洲駝()中基因的突變(c.532T>C)造成白色斑點(diǎn)[108]。阿拉伯駱駝()中的一個(gè)移碼突變導(dǎo)致基因轉(zhuǎn)錄–翻譯提前終止,而出現(xiàn)白斑表型[109]。藍(lán)狐基因中第12內(nèi)含子的第一個(gè)堿基由G突變?yōu)門(mén),改變mRNA剪切方式從而導(dǎo)致該基因的第12號(hào)外顯子缺失,藍(lán)狐出現(xiàn)了顯性白色表型[110]。基因在不同毛色的獺兔()中差異表達(dá),在黑色毛發(fā)中表達(dá)量最高,并且基因?qū)ζ渌嚓P(guān)基因如和的表達(dá)也有影響[111]。野驢的毛色主要為灰色,在人工選擇下出現(xiàn)了黑色和栗色的家驢,Wang等[112]基于全基因組數(shù)據(jù)分析發(fā)現(xiàn)家驢的黑色和栗色毛色的出現(xiàn)是由基因的轉(zhuǎn)錄因子結(jié)合位點(diǎn)下游約18.6 kb處有1 bp缺失所導(dǎo)致。Guo等[91]通過(guò)全基因組分析在南江黃羊(和)和美姑山羊(和)中篩選出了分別調(diào)控其黃色/黃褐色、黑色毛發(fā)的正選擇基因。除了基因突變以外,在羊駝()中,Tian等[113]基于Illumina測(cè)序技術(shù)對(duì)白色羊駝和棕色羊駝皮膚中的miRNA全面分析,發(fā)現(xiàn)分別有35個(gè)和13個(gè)miRNA在白色羊駝和棕色羊駝中高表達(dá)。Ji等[114]研究發(fā)現(xiàn)可通過(guò)靶向的3′UTR區(qū)域調(diào)節(jié)TGF-β激活酶1信號(hào)通路的表達(dá),抑制表達(dá)從而促進(jìn)羊駝黑素細(xì)胞的增殖和遷移。Zhu等[115]通過(guò)實(shí)驗(yàn)驗(yàn)證發(fā)現(xiàn)和通過(guò)與靶基因的3′UTR結(jié)合,調(diào)節(jié)及其下游基因(和)的表達(dá),抑制黑色素的形成。Liu等[116]研究發(fā)現(xiàn)是的靶基因,通過(guò)下調(diào)影響β-catenin和的轉(zhuǎn)錄和翻譯,進(jìn)而影響下游基因、和的表達(dá)抑制黑色素的形成(表1)。綜上所述,在人工選擇過(guò)程中,家養(yǎng)動(dòng)物的毛色受多個(gè)基因的調(diào)控,但在黑素細(xì)胞發(fā)育、黑色素合成過(guò)程中主要受、、、等主效基因調(diào)控,此外在黑色素轉(zhuǎn)運(yùn)過(guò)程中相關(guān)基因突變(如)也能夠?qū)е录茵B(yǎng)動(dòng)物毛色改變(表1)。
毛色相關(guān)基因的突變一方面能夠?qū)е旅硇统尸F(xiàn)多樣化,實(shí)現(xiàn)對(duì)周?chē)姝h(huán)境的適應(yīng)或應(yīng)對(duì)極端的人工選擇壓力,另一方面,越來(lái)越多的研究也發(fā)現(xiàn)哺乳動(dòng)物中一些毛色相關(guān)基因的突變往往會(huì)偶聯(lián)著一些比較明顯的生理缺陷和病癥。比如:在視覺(jué)上,基因外顯子2的第975位胞嘧啶缺失,導(dǎo)致密碼子提前終止使貓()患有白化病,表現(xiàn)為粉紅色眼睛和白色毛發(fā)[117];日本黑牛()基因(p.H2015R)突變引起Chediak- Higashi綜合征癥,表現(xiàn)為眼皮膚白化病,伴有免疫缺陷,并且毛色變淺[118]。在聽(tīng)覺(jué)上,斑點(diǎn)狗基因的非編碼區(qū)突變與先天性神經(jīng)性耳聾(canine co-ngenital sensorineural deafness, CCSD)有關(guān)[119]。毛色相關(guān)基因的突變還與癌癥偶聯(lián),黑色素瘤是由黑素細(xì)胞惡變引發(fā)的腫瘤,紫外線在黑色素瘤的發(fā)展中起著重要作用[81]?;疑R匹的毛色會(huì)隨著年齡的增長(zhǎng)而逐漸變白,該表型與內(nèi)含子6的4.6 kb重復(fù)有關(guān),的突變可能通過(guò)調(diào)節(jié)黑素體的產(chǎn)生或是運(yùn)輸而影響黑色素的沉著,從而導(dǎo)致馬毛色變白。體內(nèi)缺乏黑色素的馬匹因而不能有效抵御紫外線的照射,增加了其患黑色素瘤的風(fēng)險(xiǎn)[120,121]。毛色相關(guān)基因突變還能夠引發(fā)皮膚疾病,例如基因第2外顯子的突變會(huì)導(dǎo)致杜賓犬毛色被稀釋?zhuān)瑫r(shí),還伴隨著色素稀釋性脫毛(color dilution alopecia, CDA),表現(xiàn)為毛發(fā)逐漸脫落,并有時(shí)伴有毛囊炎[122]。此外,毛色相關(guān)基因的突變對(duì)哺乳動(dòng)物的存活也有影響。除了參與黑素細(xì)胞的發(fā)育調(diào)控外,在腸神經(jīng)元發(fā)育中也具有重要作用。在家馬中,基因的突變與致死性白色馬駒綜合癥密切相關(guān),基因編碼的第118位氨基酸由異亮氨酸變?yōu)橘嚢彼幔瑫?huì)導(dǎo)致患病的小馬駒毛色全白或幾乎全白,并且在幾天內(nèi)因腸神經(jīng)節(jié)病變而死亡[123]。同樣,在小鼠中敲除基因會(huì)引起小鼠出現(xiàn)白斑表型并伴隨著巨結(jié)腸[124]。
目前,關(guān)于哺乳動(dòng)物毛色性狀的遺傳學(xué)和進(jìn)化生物學(xué)研究主要基于全基因組或CDS區(qū)上的點(diǎn)突變位點(diǎn)遺傳標(biāo)記來(lái)展開(kāi)。通過(guò)對(duì)某物種/群體的基因組進(jìn)行測(cè)序分析,篩選出單核苷酸多態(tài)性(single nuc-leotide polymorphisms,SNPs)位點(diǎn)進(jìn)行保守性分析、功能富集等推測(cè)出影響該物種毛色變化的毛色相關(guān)基因。但對(duì)基于小片段插入或缺失(insertion-deletions, Indels)或大片段的基因組結(jié)構(gòu)性變異(structural variations, SVs)展開(kāi)的毛色多態(tài)性分子機(jī)制研究則相對(duì)較少;同時(shí),大多數(shù)的研究都主要集中于模式物種類(lèi)群,迄今為止在小鼠中已經(jīng)發(fā)現(xiàn)有171個(gè)毛色相關(guān)基因(378個(gè)突變位點(diǎn)) (http://www.espcr.org/ micemut/),但是對(duì)非模式物種毛色的研究還相對(duì)欠缺。此外,在以往的研究中,人們一般僅通過(guò)生物信息學(xué)手段在全基因組范圍內(nèi)掃描和篩選出信號(hào)顯著的遺傳區(qū)域從而推測(cè)某些突變點(diǎn)與毛色表型之間的關(guān)聯(lián)性,缺乏后續(xù)完整可靠的功能實(shí)驗(yàn)加以驗(yàn)證和支撐。
隨著全基因組測(cè)序技術(shù)的不斷發(fā)展和普及,針對(duì)模式和非模式物種,基于更多種類(lèi)分子標(biāo)記如插入缺失、拷貝數(shù)變異(copy number variations, CNVs)與基因組結(jié)構(gòu)性變異的比較基因組學(xué)或群體基因組學(xué)研究將是哺乳動(dòng)物毛色多樣化研究的重要發(fā)展方向;此外,基因組編輯(如CRISPR/Cas9)等技術(shù)的日趨完善和成熟,有望從細(xì)胞水平或個(gè)體水平來(lái)深入探究候選基因不同突變類(lèi)型在細(xì)胞層面或個(gè)體層面導(dǎo)致的細(xì)胞色素化或毛色差異,而不再僅局限于分析某不同毛色的物種中毛色相關(guān)基因在其組織中的相對(duì)表達(dá)量差異,可通過(guò)編輯細(xì)胞對(duì)非模式物種的毛色相關(guān)基因進(jìn)行研究。
目前,對(duì)哺乳動(dòng)物的毛色研究主要體現(xiàn)在兩方面:從進(jìn)化生物學(xué)角度探究哺乳動(dòng)物毛色形成模式的作用和從分子生物學(xué)角度探究哺乳動(dòng)物毛色形成的分子機(jī)制,但將二者結(jié)合進(jìn)行研究的相對(duì)較少。我們既需要在已知哺乳動(dòng)物毛色進(jìn)化意義的情況下,進(jìn)一步從分子水平層面探究其分子機(jī)制(如巖小囊鼠[81]);也需要在已知其分子機(jī)制情況下探究其毛色形成的演化意義(如黑色家豬[95])。
此外,人工選擇在促進(jìn)了家養(yǎng)動(dòng)物毛色多樣性的同時(shí),也伴隨著部分生理缺陷或疾病的產(chǎn)生,導(dǎo)致出現(xiàn)視覺(jué)障礙、聽(tīng)覺(jué)障礙、癌癥等[117,119,121]。而在人類(lèi)中,也發(fā)現(xiàn)了由毛色相關(guān)基因突變引發(fā)的類(lèi)似疾病,比如基因突變常引起眼皮膚白化病I型(OCA1),表現(xiàn)為皮膚、頭發(fā)和眼睛中的黑色素減少或者喪失,還會(huì)伴隨著眼球震顫、視力下降的癥狀[106]。其他毛色相關(guān)基因如和能分別導(dǎo)致眼皮膚白化病II、III和IV型的產(chǎn)生[125~127]。因此,對(duì)不同哺乳動(dòng)物類(lèi)群毛色多態(tài)性分子調(diào)控機(jī)制的揭示,也能夠?yàn)槿藗兲骄咳巳褐心承┲卮筮z傳疾病的發(fā)病機(jī)理提供重要線索和啟發(fā)。
[1] Xu X, Dong GX, Schmidt-Küntzel A, Zhang XL, Zhuang Y, Fang R, Sun X, Hu XS, Zhang TY, Yang HD, Zhang DL, Marker L, Jiang ZF, Li RQ, Luo SJ. The genetics of tiger pelage color variations., 2017, 27(7): 954–957.
[2] Li JF. Classification of the coat color of domestic animals of the genus Equus., 1985, (1): 44–47.李積福. 馬屬家畜的毛色分類(lèi). 鄭州牧業(yè)工程高等專(zhuān)科學(xué)校學(xué)報(bào), 1985, (1): 44–47.
[3] Yan ZQ. The coat color inheritance of Labrador retrievers., 2003, 35(5): 23–24.顏澤清. 拉布拉多犬的毛色遺傳. 畜牧與獸醫(yī), 2003, 35(5): 23–24.
[4] Xun XG, Ding XL, Ma DJ, Sun L. German shepherd dog’s coat patterns, colors, lengths and types., 2014, 33(3): 33–43.尋欣國(guó), 丁曉鱗, 馬大君, 孫磊. 德國(guó)牧羊犬的被毛模式,顏色,長(zhǎng)度和類(lèi)型. 畜牧獸醫(yī)雜志, 2014, 33(3): 33–43.
[5] Geissmann T, Lwin N, Aung SS, Aung TN, Aung ZM, Hla TH, Grindley M, Momberg F. A new species of snub-nosed monkey, genus, 1872 (,), from northern Kachin state, northeastern Myanmar., 2011, 73(1): 96–107.
[6] Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Küntzel A, Roelke ME, Pino J, Pontius J, Cooper GM, Manuel H, Swanson WF, Marker L, Harper CK, Van Dyk A, Yue B, Mullikin JC, Warren WC, Eizirik E, Kos L, O'Brien SJ, Barsh GS, Menotti- Raymond M. Specifying and sustaining pigmentation patterns in domestic and wild cats., 2012, 337(6101): 1536–1541.
[7] Protas ME, Patel NH. Evolution of coloration patterns., 2008, 24: 425–446.
[8] Hoekstra HE, Drumm KE, Nachman MW. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes., 2004, 58(6): 1329–1341.
[9] Liu ZJ, Zhang LY, Yan ZZ, Ren ZJ, Han FM, Tan XX, Xiang ZY, Dong F, Yang ZM, Liu GJ, Wang ZM, Zhang JL, Que TC, Tang CH, Li YF, Wang S, Wu JY, Li LG, Huang CM, Roos C, Li M. Genomic mechanisms of physiological and morphological adaptations of lime-stone langurs to karst habitats., 2020, 37(4): 952–968.
[10] Caro T, Walker H, Rossman Z, Hendrix M, Stankowich T. Why is the giant panda black and white?, 2017, 28(3): 657–667.
[11] Fennell JG, Talas L, Baddeley RJ, Cuthill IC, Scott- Samuel NE. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system., 2019, 16(154): 20190183.
[12] Caro T, Beeman K, Stankowich T, Whitehead H. The functional significance of colouration in cetaceans., 2011, 25(6): 1231.
[13] Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals., 2014, 23(22): 5398–5414.
[14] West PM, Packer C. Sexual selection, temperature, and the lion's mane., 2002, 297(5585): 1339–1343.
[15] Cooper VJ, Hosey GR. Sexual dichromatism and female preference in Eulemur fulvus subspecies., 2003, 24(6): 1177–1188.
[16] Li MZ, Tian SL, Jin L, Zhou GY, Li Y, Zhang Y, Wang T, Yeung CKL, Chen L, Ma JD, Zhang JB, Jiang A, Li J, Zhou CW, Zhang J, Liu YK, Sun XQ, Zhao HW, Niu ZX, Lou P, Xian LJ, Shen XY, Liu SQ, Zhang SH, Zhang MW, Zhu L, Shuai SR, Bai L, Tang GQ, Liu HF, Jiang YZ, Mai MM, Xiao J, Wang X, Zhou Q, Wang ZQ, Stothard P, Xue M, Gao XL, Luo ZG, Gu YR, Zhu HM, Hu XX, Zhao YF, Plastow GS, Wang JY, Jiang Z, Li K, Li N, Li XW, Li RQ. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars., 2013, 45(12): 1431–1438.
[17] Yang Z. Introduce the classification of donkey fur color., 1963, (4): 27.楊再. 介紹驢的毛色分類(lèi). 中國(guó)獸醫(yī)雜志, 1963, (4): 27.
[18] Zhang J, Chen W, Wang H, Ceng YQ. Advances in studies on the genetic mechanism of pigmentation., 2013, 30(1): 100–103.張建, 陳偉, 王慧, 曾勇慶. 豬毛色遺傳機(jī)制的研究進(jìn)展. 豬業(yè)科學(xué), 2013, 30(1): 100–103.
[19] Sun XY, Fu L, Chen CC, Ren HX. Physiological activity of natural polysaccharides and its application in poultry., 2019, (9): 41–44.孫曉燕, 付琳, 陳燦燦, 任航行. 綿羊毛色相關(guān)基因MC1R和ASIP的研究進(jìn)展. 黑龍江畜牧獸醫(yī), 2019, (9): 41–44.
[20] Yang GL. Study on the regulation mechanism of fur color formation in animals., 2014, (5): 45–48.楊廣禮. 動(dòng)物毛色形成的調(diào)控機(jī)制研究. 黑龍江畜牧獸醫(yī), 2014, (5): 45–48.
[21] Wu XQ, Liu CD, Du JJ, Luo J, Zhu L, Zhang SH. Research progress of the role of microRNA in the regulation of animal coat and skin color., 2016, 47(6): 1086–1092.巫小倩, 劉辰東, 堵晶晶, 羅嘉, 朱礪, 張順華. microRNA調(diào)控動(dòng)物毛色和膚色的研究進(jìn)展. 畜牧獸醫(yī)學(xué)報(bào), 2016, 47(6): 1086–1092.
[22] Wang L, Liu J. Research progress on molecular mechanism in the formation of melanin., 2019, 36(4): 468–474.王磊, 劉軍. 黑色素形成分子機(jī)制研究進(jìn)展. 新疆大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 36(4): 468–474.
[23] Bonaventure J, Domingues MJ, Larue L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells., 2013, 26(3): 316–325.
[24] Lamoreux ML, Wakamatsu K, Ito S. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin., 2001, 14(1): 23–31.
[25] Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond., 2019, 76(10): 1919–1934.
[26] WU DBL, Wu TC, Li YR, Li C, Wu JH, Hu SL, Liu B, Gao SX. Research progress on molecular basis and applicability of coat color formation in livestock., 2019, 46(9): 2665–2675.勿都巴拉, 吳鐵成, 李玉榮, 麗春, 吳江鴻, 胡斯樂(lè), 劉斌, 高樹(shù)新. 家畜毛色形成分子基礎(chǔ)及應(yīng)用研究進(jìn)展. 中國(guó)畜牧獸醫(yī), 2019, 46(9): 2665–2675.
[27] Cieslak M, Reissmann M, Hofreiter M, Ludwig A. Colours of domestication., 2011, 86(4): 885–899.
[28] D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling Pathways in Melanogenesis., 2016, 17(7): 1144.
[29] Mohlin S, Kunttas E, Persson CU, Abdel-Haq R, Castillo A, Murko C, Bronner ME, Kerosuo L. Main-taining multipotent trunk neural crest stem cells as self-renewing crestospheres., 2019, 447(2): 137–146.
[30] Slominski A. Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ. Hair follicle pigmentation., 2005, 124(1): 13–21.
[31] Larue L, de Vuyst F, Delmas V. Modeling melanoblast development., 2013, 70(6): 1067–1079.
[32] Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress., 2007, 21(4): 976–994.
[33] Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis., 2017, 40: 99–115.
[34] Maloy S, Hughes K. Brenner's Encyclopedia of Genetics (Second Edition). San Diego: Academic Press, 2013: 58–60.
[35] Seiberg M. Keratinocyte-melanocyte interactions during melanosome transfer., 2001, 14(4): 236–242.
[36] Coudrier E. Myosins in melanocytes: to move or not to move?, 2007, 20(3): 153–160.
[37] Caro T, Mallarino R. Coloration in Mammals., 2020, 35(4): 357–366.
[38] Bellei B, Pitisci A, Catricalà C, Larue L, Picardo M. Wnt/β-catenin signaling is stimulated by α-melanocyte- stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation., 2011, 24(2): 309–325.
[39] Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S, Hong S. Neural stem cells inhibit melanin production by activation of Wnt inhibitors., 2013, 72(3): 274–283.
[40] Tsang TF, Chan B, Tai WCS, Huang GX, Wang JR, Li XA, Jiang ZH, Hsiao WLW. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways., 2019, 60: 153008.
[41] Lim XH, Nusse R. Wnt signaling in skin development, homeostasis, and disease., 2013, 5(2): a008029.
[42] Guo HY, Yang K, Deng F, Ye JX, Xing YZ, Li YH, Lian XH, Yang T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes., 2012, 420(4): 799–804.
[43] Dupin E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest., 2003, 22(20): 3016–3023.
[44] Aoki H, Motohashi T, Yoshimura N, Yamazaki H, Yamane T, Panthier JJ, Kunisada T. Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development., 2005, 233(2): 407–417.
[45] Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K. Microphthalmia- associated transcription factor (MITF): multiplicity in structure, function, and regulation., 2001, 6(1): 99–104.
[46] Jiang S, Yu XJ, Dong CS. MiR-137 affects melanin synthesis in mouse melanocyte by repressing the expression of c-Kit and Tyrp2 in SCF/c-Kit signaling pathway., 2016, 80(11): 2115–2121.
[47] Hou L, Panthier JJ, Arnheiter H. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF., 2000, 127(24): 5379–5389.
[48] Kawakami A, Fisher DE. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology., 2017, 97(6): 649–656.
[49] Goding CR, Arnheiter H. MITF-the first 25 years., 2019, 33(15–16): 983–1007.
[50] Wan P, Hu YQ, He L. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors., 2011, 354(1–2): 241–246.
[51] Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene., 2006, 12(9): 406–414.
[52] Bissig C, Rochin L, van Niel G. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation., 2016, 17(9): 1438.
[53] Ishishita S, Takahashi M, Yamaguchi K, Kinoshita K, Nakano M, Nunome M, Kitahara S, Tatsumoto S, Go Y, Shigenobu S, Matsuda Y. Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail., 2018, 8(1): 16732.
[54] Sun LJ, Hu L, Zhang P, Li HJ, Sun JY, Wang HF, Xie X, Hu J. Silencing of PMEL attenuates melanization via activating lysosomes and degradation of tyrosinase by lysosomes., 2018, 503(4): 2536–2542.
[55] D'Alba L, Shawkey MD. Melanosomes: biogenesis, properties, and evolution of an ancient organelle., 2019, 99(1): 1–19.
[56] Valencia JC, Watabe H, Chi A, Rouzaud F, Chen KG, Vieira WD, Takahashi K, Yamaguchi Y, Berens W, Nagashima K, Shabanowitz J, Hunt DF, Appella E, Hearing VJ. Sorting of Pmel17 to melanosomes through the plasma membrane by AP1 and AP2: evidence for the polarized nature of melanocytes., 2006, 119(Pt 6): 1080–1091.
[57] Hellstr?m AR, Watt B, Fard SS, Tenza D, Mannstr?m P, Narfstr?m K, Ekesten B, Ito S, Wakamatsu K, Larsson J, Ulfendahl M, Kullander K, Raposo G, Kerje S, Hallb??k F, Marks MS, Andersson L. Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation., 2011, 7(9): e1002285.
[58] Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ. MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes., 2005, 280(14): 14006–14016.
[59] Aydin IT, Hummler E, Smit NPM, Beermann F. Coat color dilution in mice because of inactivation of the melanoma antigen MART-1., 2012, 25(1): 37–46.
[60] Zhang P, Liu W, Zhu CS, Yuan XY, Li DG, Gu WJ, Ma HM, Xie X, Gao TW. Silencing of GPNMB by siRNA inhibits the formation of melanosomes in melanocytes in a MITF-independent fashion., 2012, 7(8): e42955.
[61] Dennis MK, Mantegazza AR, Snir OL, Tenza D, Acosta-Ruiz A, Delevoye C, Zorger R, Sitaram A, de Jesus-Rojas W, Ravichandran K, Rux J, Sviderskaya EV, Bennett DC, Raposo G, Marks MS, Setty SRG. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery., 2015, 209(4): 563–577.
[62] Mahanty S, Ravichandran K, Chitirala P, Prabha J, Jani RA, Setty SRG. Rab9A is required for delivery of cargo from recycling endosomes to melanosomes., 2016, 29(1): 43–59.
[63] Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells., 2001, 268(1): 26–35.
[64] Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, Smith AM, Kazi S, Szerencsei RT, Winkfein RJ, Schnetkamp PPM, Green MR. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis., 2008, 283(9): 5486–5495.
[65] Herraiz C, Garcia-Borron JC, Jimenez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications., 2017, 1863 (10 Pt A):2448–2461.
[66] D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin., 2013, 14(6): 12222–12248.
[67] Haitina T, Ringholm A, Kelly J, Mundy NI, Schi?th HB. High diversity in functional properties of melanocortin 1 receptor (MC1R) in divergent primate species is more strongly associated with phylogeny than coat color., 2007, 24(9): 2001–2008.
[68] Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation., 2018, 40(4): 328–347.
[69] Boissy RE. Melanosome transfer to and translocation in the keratinocyte., 2003, 12(Suppl.2): 5–12.
[70] Wu XF, Hammer JA. Melanosome transfer: it is best to give and receive., 2014, 29: 1–7.
[71] Matesic LE, Yip R, Reuss AE, Swing DA, O'Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice., 2001, 98(18): 10238–10243.
[72] Yoshida-Amano Y, Hachiya A, Ohuchi A, Kobinger GP, Kitahara T, Takema Y, Fukuda M. Essential role of RAB27A in determining constitutive human skin color., 2012, 7(7): e41160.
[73] Yamaguchi YJ, Hearing VJ. Physiological factors that regulate skin pigmentation., 2009, 35(2): 193–199.
[74] Tadokoro R, Takahashi Y. Intercellular transfer of organelles during body pigmentation., 2017, 45: 132–138.
[75] Ge GH, Ta Y, Yang Q, Yang DH, Pu HZ, Zhang SH, Zhu L. Research progress of microRNA regulating hair follicle growth and development and hair color in animals., 2017, 38(9): 1–6.葛桂華, 譚婭, 楊瓊, 楊大洪, 蒲紅州, 張順華, 朱礪. MicroRNA調(diào)控動(dòng)物毛囊生長(zhǎng)發(fā)育及毛色的研究進(jìn)展. 家畜生態(tài)學(xué)報(bào), 2017, 38(9): 1–6.
[76] Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J, Davis BM, Hackl?nder K, Alves PC, Good JM, Melo-Ferreira J, Dietz A, Abramov AV, Lopatina N, Fay K. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change., 2018, 359(6379): 1033–1036.
[77] Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM, Lafferty DJR, Jiggins FM, Jensen JD, Melo-Ferreira J, Good JM. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares., 2018, 360(6395): 1355–1358.
[78] V?ge DI, Fuglei E, Snipstad K, Beheim J, Landsem VM, Klungland H. Two cysteine substitutions in the MC1R generate the blue variant of the Arctic fox () and prevent expression of the white winter coat., 2005, 26(10): 1814–1817.
[79] Mallarino R, Pillay N, Hoekstra HE, Schradin C. African striped mice., 2018, 28(7): R299– R301.
[80] Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE. Developmental mechanisms of stripe patterns in rodents., 2016, 539(7630): 518–523.
[81] Nachman MW, Hoekstra HE, D'Agostino SL. The genetic basis of adaptive melanism in pocket mice., 2003, 100(9): 5268–5273.
[82] Ritland K, Newton C, Marshall HD. Inheritance and population structure of the white-phased "Kermode" black bear., 2001, 11(18): 1468–1472.
[83] Klinka DR, Reimchen TE. Adaptive coat colour polymorphism in the Kermode bear of coastal British Columbia.2009, 98(3): 479–488.
[84] Chavez DE, Gronau I, Hains T, Kliver S, Koepfli KP, Wayne RK. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog ()., 2019, 9(1): 8329.
[85] Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R. Why the leopard got its spots: relating pattern development to ecology in felids., 2011, 278(1710): 1373–1380.
[86] Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Küntzel A, Roelke ME, Pino J, Pontius J, Cooper GM, Manuel H, Swanson WF, Marker L, Harper CK, Van Dyk A, Yue BS, Mullikin JC, Warren WC, Eizirik E, Kos L, O'Brien SJ, Barsh GS, Menotti- Raymond M. Specifying and sustaining pigmentation patterns in domestic and wild cats., 2012, 337(6101): 1536–1541.
[87] Del Bino S, Bernerd F. Variations in skin colour and the biological consequences of ultraviolet radiation exposure., 2013, 169(Suppl.3) : 33–40.
[88] Miyamura Y, Coelho SG, Wolber R, Miller SA, Wakamatsu K, Zmudzka BZ, Ito S, Smuda C, Passeron T, Choi W, Batzer J, Yamaguchi Y, Beer JZ, Hearing VJ. Regulation of human skin pigmentation and responses to ultraviolet radiation., 2007, 20(1): 2–13.
[89] Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin., 2015, 5(2): 545–589.
[90] Visscher MO. Skin Color and Pigmentation in Ethnic Skin., 2017, 25(1): 119–125.
[91] Guo JZ, Tao HX, Li PF, Li L, Zhong T, Wang LJ, Ma JY, Chen XY, Song TZ, Zhang HP. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds., 2018, 8(1): 10405.
[92] Hayssen V. Effects of the nonagouti coat-color allele on behavior of deer mice (Peromyscus maniculatus): a comparison with Norway rats (Rattus norvegicus)., 1997, 111(4): 419–423.
[93] Ohta H, Tohda A, Nishimune Y. Proliferation and differentiation of spermatogonial stem cells in the W/WVmutant mouse testis., 2003, 69(6): 1815–1821.
[94] Wolff GL. Body composition and coat color correlation in different phenotypes of “viable yellow” mice., 1965, 147(3662): 1145–1147.
[95] Li J, Yang H, Li JR, Li HP, Ning T, Pan XR, Shi P, Zhang YP. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication.,2010, 105(3): 274–281.
[96] Wang C, Wang HY, Zhang Y, Tang ZL, Li K, Liu B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs., 2015, 15(2): 414–424.
[97] Lü MD, Han XM, Ma YF, Irwin DM, Gao Y, Deng JK, Adeola AC, Xie HB, Zhang YP. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs., 2016, 6: 27534.
[98] Liang D, Zhao PJ, Si JF, Fang LZ, Pairo-Castineira E, Hu XX, Xu Q, Hou YL, Gong Y, Liang ZW, Tian B, Mao HM, Yindee M, Faruque MO, Kongvongxay S, Khamphoumee S, Liu GE, Wu DD, Barker JSF, Han JL, Zhang Y. Genomic analysis revealed a convergent evolution of LINE-1 in coat color A case study in water buffaloes ()., 2020, msaa279.
[99] Yusnizar Y, Wilbe M, Herlino AO, Sumantri C, Noor RR, Boediono A, Andersson L, Andersson G. Microphthalmia- associated transcription factor mutations are associated with white-spotted coat color in swamp buffalo., 2015, 46(6): 676–682.
[100] Leegwater PA, Van Hagen MA, Van Oost BA. Localization of white spotting locus in Boxer dogs on CFA20 by genome-wide linkage analysis with 1500 SNPs., 2007, 98(5): 549–552.
[101] Schmutz SM, Berryere TG. Genes affecting coat colour and pattern in domestic dogs: a review., 2007, 38(6): 539–549.
[102] Wang GD, Cheng LG, Fan RX, Irwin DM, Tang SS, Peng JG, Zhang YP. Signature of balancing selection at the MC1R gene in Kunming dog populations., 2013, 8(2): e55469.
[103] Haase B, Brooks SA, Tozaki T, Burger D, Poncet PA, Rieder S, Hasegawa T, Penedo C, Leeb T. Seven novel KIT mutations in horses with white coat colour phenotypes., 2009, 40(5): 623–629.
[104] Negro S, Imsland F, Valera M, Molina A, Solé M, Andersson L. Association analysis of KIT, MITF, and PAX3 variants with white markings in Spanish horses., 2017, 48(3): 349–352.
[105] Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Tao KT, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C, Bai DY, Dugarjaviin M. Overview of the genetic control of horse coat color patterns., 2018, 40(5): 357–368.趙若陽(yáng), 趙一萍, 李蓓, 格日樂(lè)其木格, 張心壯, 陶克濤, 圖格琴, 旭仁其木格, 青柏, 李超, 白東義, 芒來(lái). 馬毛色遺傳機(jī)理研究進(jìn)展. 遺傳, 2018, 40(5): 357–368.
[106] Song YN, Xu YX, Deng JC, Chen M, Lu Y, Wang Y, Yao HB, Zhou LN, Liu ZQ, Lai LX, Li ZJ. CRISPR/ Cas9-mediated mutation of tyrosinase (Tyr) 3? UTR induce graying in rabbit., 2017, 7(1): 1569.
[107] Yao LD, Bao A, Hong WJ, Hou CX, Zhang ZL, Liang XP, Aniwashi J. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin., 2019, 7: e8077.
[108] Anello M, Daverio MS, Silbestro MB, Vidal-Rioja L, Di Rocco F. Characterization and expression analysis of KIT and MITF-M genes in llamas and their relation to white coat color., 2019, 50(2): 143–149.
[109] Holl H, Isaza R, Mohamoud Y, Ahmed A, Almathen F, Youcef C, Gaouar S, Antczak DF, Brooks S. A frameshift mutation in KIT is associated with white spotting in the Arabian camel.,2017, 8(3): 102.
[110] Yan SQ, Hou JN, Bai CY, Jiang Y, Zhang XJ, Ren HL, Sun BX, Zhao ZH, Sun JH. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox ()., 2014, 45(2): 293–296.
[111] Hu SS, Chen Y, Zhao BH, Yang NS, Chen S, Shen JY, Bao GL, Wu XS. KIT is involved in melanocyte proliferation, apoptosis and melanogenesis in the Rex Rabbit., 2020, 8: e9402.
[112] Wang CF, Li HJ, Guo Y, Huang JM, Sun Y, Min JM, Wang JP. Fang XD, Zhao ZC, Wang S, Zhang YL, Liu QF, Jiang Q, Wang XG, Guo YJ, Yang CH, Wang YC, Tian F, Zhuang GL, Fan YN, Gao QC, Li YH, Ju ZH, Li JB, Li RL, Hou MH, Yang GW, Liu GQ, Liu WQ, Guo J, Pan SS, Fan GY, Zhang W, Zhang RT, Yu J, Zhang XH, Yin Q, Ji CL, Jin YC, Yue GD, Liu M, Xu JK, Liu SM, Jordana J, Noce A, Amills M, Wu DD, Li SC, Zhou XS, Zhong JF. Donkey genomes provide new insights into domestication and selection for coat color., 2020, 11(1): 6014.
[113] Tian X, Jiang JB, Fan RW, Wang HD, Meng XL, He XY, He JP, Li HQ, Geng JJ, Yu XJ, Song YF, Zhang DL, Yao JB, Smith GW, Dong CS. Identification and characterization of microRNAs in white and brown alpaca skin., 2012, 13: 555.
[114] Ji KY, Zhang PQ, Zhang JZ, Fan RW, Liu Y, Yang SS, Hu SP, Liu XX, Dong CS. MicroRNA 143-5p regulates alpaca melanocyte migration, proliferation and mela-nogenesis., 2018, 27(2): 166–171.
[115] Zhu ZW, Ma YY, Li Y, Cheng ZX, Li HF, Zhang LH, Xu DM, Li PF. Comparison of miRNA-101a-3p and miRNA-144a-3p regulation with the key genes of alpaca melanocyte pigmentation., 2019, 20(1): 19.
[116] Liu XX, Du B, Zhang PQ, Zhang JZ, Zhu ZW, Liu B, Fan RW. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas ()., 2019, 20(1): 962.
[117] Imes DL, Geary LA, Grahn RA, Lyons LA. Albinism in the domestic cat () is associated with a tyrosinase (TYR) mutation., 2006, 37(2): 175–178.
[118] Kunieda T, Nakagiri M, Takami M, Ide H, Ogawa H. Cloning of bovine LYST gene and identification of a missense mutation associated with Chediak-Higashi syndrome of cattle., 1999, 10(12): 1146–1149.
[119] Stritzel S, W?hlke A, Distl O. A role of the microphthalmia-associated transcription factor in congenital sensorineural deafness and eye pigmentation in Dalmatian dogs., 2009, 126(1): 59–62.
[120] Rosengren Pielberg G, Golovko A, Sundstr?m E, Curik I, Lennartsson J, Seltenhammer MH, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Str?mberg S, Grabherr M, Wade C, Lindblad-Toh K, Pontén F, Heldin CH, S?lkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse., 2008, 40(8): 1004–1009.
[121] Teixeira RBC, Rendahl Ak, Anderson SM, Mickelson JR, Sigler D, Buchanan BR, Coleman RJ, McCue ME. Coat color genotypes and risk and severity of melanoma in gray quarter horses., 2013, 27(5): 1201–1208.
[122] Philipp U, Hamann H, Mecklenburg L, Nishino S, Mignot E, Günzel-Apel AR, Schmutz SM, Leeb T. Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs., 2005, 6: 34.
[123] Metallinos DL, Bowling AT, Rine J. A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome: an equine version of Hirschsprung disease., 1998, 9(6): 426– 431.
[124] Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons., 1994, 79(7): 1277–1285.
[125] Zühlke C, Stell A, K?smann-Kellner B. Genetics of oculocutaneous albinism., 2007, 104(8): 674–680.
[126] Wang Y, Wang Z, Chen MP, Fan N, Yang J, Liu L, Wang Y, Liu XY. Mutational analysis of the TYR and OCA2 genes in four Chinese families with oculocutaneous albinism., 2015, 10(4): e0125651.
[127] Lin Y, Chen XH, Yang Y, Che FY, Zhang SJ, Yuan LJ, Wu YM. Mutational analysis of TYR, OCA2, and SLC45A2 genes in Chinese families with oculocutaneousalbinism., 2019, 7(7): e00687.
Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals
Yuxing Zhang, Hong Wu, Li Yu
The various coat colorations exhibited in different mammalian groups is an attractive biological phenomenon, and is also one of the excellent models for studying and understanding mammalian adaptive evolution. Coat color polymorphism in mammals plays an important role in avoiding predator, predation, courtship, and protection against UV radiation. The coloration of hair or coat in mammal is determined by the quantity, quality and distribution of melanin in the body. Pigmentation in cells is a complicated cell process, including the differentiation and maturation of melanocytes, the morphogenesis of melanosome, the anabolism of melanin and the transportation of melanin in melanocytes. Every stage or phase of pigmentation in cells can always proceed with the participation of some important functional genes. The complex regulatory network formed through interactions between these genes has greatly led to different coat colors. With the coat color polymorphisms, mammals can adapt to various environments. Revealing the genetic basis of different coat colors in mammals has been an important research focus in genetics and evolutionary biology. In this review, we summarize the main advance in molecular mechanisms of pigmentation in cells and the genetic basis of coloration-related adaptations in mammals. Our review is expected to provide new clues for molecular mechanism studies on coat color polymorphism and adaptive evolutions in mammals.
coat color; melanogenesis; genetic basis; adaptive evolution
2020-11-18;
2021-01-12
國(guó)家杰出青年科學(xué)基金項(xiàng)目(編號(hào):31925006)和國(guó)家自然科學(xué)基金重大研究計(jì)劃項(xiàng)目(編號(hào):91731311)資助[Supported by the National Science Foundation for Distinguished Young Scholars (No. 31925006) and the National Natural Science Foundation of China (No. 917313311)]
章譽(yù)興,在讀碩士研究生,專(zhuān)業(yè)方向:遺傳學(xué)。E-mail: yuxingzhang2018@163.com
于黎,博士,研究員,研究方向:動(dòng)物遺傳與進(jìn)化。E-mail: yuli@ynu.edu.cn 吳宏,博士后,研究方向:動(dòng)物遺傳與進(jìn)化。E-mail: whzxsg@126.com
10.16288/j.yczz.20-390
2021/2/2 16:58:00
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210202.1335.004.html
(責(zé)任編委: 呂雪梅)