劉楓鳳 楊利琦
[摘要] 目的 研究不同程度肥胖兒童的代謝特征、維生素D及IGF-1(胰島素樣生長因子-1)的水平及與肥胖的關(guān)系。方法 收集2018年1月至2021年3月就診于我院兒科并確診為單純性肥胖的兒童125例,其中輕度肥胖25例,中度肥胖55例,重度肥胖45例,同時選取入院行青春發(fā)育期相關(guān)檢查的健康非肥胖兒童55例作為對照組,記錄年齡、性別,測量身高、體重,檢測血糖(FBG)、血清胰島素(FINS)、三酰甘油(TG)、總膽固醇(TC)、尿酸(UA)、維生素D、IGF-1等指標(biāo)。并計算體質(zhì)量指數(shù)(BMI)、胰島素抵抗指數(shù)(HOMA-IR)及根據(jù)性別、年齡調(diào)整后的IGF-1(aIGF-1)。結(jié)果 ①肥胖組的BMI、HOMA-IR、TG、UA水平均高于對照組,維生素D 水平低于對照組,aIGF-1水平為輕度肥胖組高于其他三組。②肥胖組兩兩比較結(jié)果:BMI、HOMA-IR、TG、UA水平是重度肥胖組>中度肥胖組>輕度肥胖組,維生素D、aIGF-1水平是輕度肥胖組>中度肥胖組>重度肥胖組。③肥胖組BMI的多元線性回歸分析結(jié)果顯示,UA、HOMA-IR與BMI呈正相關(guān),aIGF-1及維生素D與BMI呈負(fù)相關(guān),因此UA、HOMA-IR是肥胖兒童BMI增加的危險因素,aIGF-1、維生素D是保護(hù)因素。結(jié)論 隨著肥胖程度的增加,發(fā)生胰島素抵抗、高尿酸血癥等代謝紊亂、維生素D缺乏、IGF-1低水平可能性增加,這些會不利于兒童的生長發(fā)育。
[關(guān)鍵詞] 肥胖兒童;代謝特征;維生素D;胰島素樣生長因子-1
[中圖分類號] R589.2? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2021)33-0031-04
[Abstract] Objective To study the metabolic characteristics of children with different degrees of obesity, the levels of vitamin D and IGF-1 and their relationship with obesity. Methods A total of 125 children who were diagnosed as simple obesity in the Department of Pediatrics of our hospital from January 2018 to March 2021 in our hospital were collected, including 25 cases of mild obesity, 55 cases of moderate obesity and 45 cases of severe obesity. Meanwhile, 55 healthy non-obese children who were admitted to hospital for related examinations during puberty were selected as the control group. Their age and gender were recorded, and their height and weight were measured, and their fasting blood glucose (FBG), fasting serum lisulin (FINS), triacylglycerol (TC), uric acid (UA), vitamin D, and IGF-1 were measured. Body mass index (BMI), insulin resistance index (HOMA-IR) and IGF-1 (aIGF-1) adjusted according to gender and age were calculated. Results ①The levels of BMI, HOMA-IR, TG and UA in the obesity group were higher than those in the control group, while the level of vitamin D was lower than that in control group, and the level of aIGF-1 was higher in the mild obesity group than in other three groups. ②Based on the results of pairwise comparison of obese groups, the levels of BMI, HOMA-IR, TG and UA were the highest in the severe obesity group, followed by the moderate obesity group and the mild obesity group. The levels of vitamin D and aIGF-1 in the mild obesity group were the highest, followed by the moderate obesity group and the severe obesity group. ③The results of multiple linear regression analysis of BMI in the obesity group showed that UA and HOMA-IR were positively correlated with BMI, while aIGF-1 and vitamin D were negatively correlated with BMI. Therefore, UA and HOMA-IR were the risk factors of BMI increase in obese children, while aIGF-1 and vitamin D were the protective factors. Conclusion With the increase of obesity, the possibility of insulin resistance, hyperuricemia and other metabolic disorders, vitamin D deficiency and low level of IGF-1 will increase, which will be detrimental to childrens growth and development.
[Key words] Obese children; Metabolic characteristics; Vitamin D; Insulin like growth factor-1
隨著經(jīng)濟(jì)的發(fā)展和生活方式的轉(zhuǎn)變,兒童肥胖率在世界范圍內(nèi)快速增長,我國青少年的身體健康狀況不容樂觀。一項(xiàng)調(diào)查研究發(fā)現(xiàn),我國青少年總體肥胖率高達(dá)7.1%[1]。眾所周知,肥胖是一種慢性健康殺手,是心腦血管疾病、2型糖尿病、高血壓、代謝紊亂等的危險因素[2]。目前關(guān)于肥胖兒童代謝特征的研究較多,對維生素D、IGF-1水平的研究較少,且肥胖兒童中IGF-1水平至今說法不一,升高和降低均有。本研究主要探討單純性肥胖兒童的糖脂代謝、維生素D、IGF-1等水平及與肥胖的關(guān)系,以加深人們對兒童時期肥胖的不良影響的認(rèn)識,現(xiàn)報道如下。
1 對象與方法
1.1 研究對象
選擇2018年1月至2021年3月就診于我院兒科的單純性肥胖兒童125例,其中男60例,女65例,平均年齡(10.29±0.33)歲;納入標(biāo)準(zhǔn):根據(jù)《中國學(xué)齡兒童青少年超重、肥胖篩查體重指數(shù)值分類標(biāo)準(zhǔn)》[3]將BMI大于等于同年齡同性別正常健康兒童的第95百分位數(shù)判定為肥胖。排除標(biāo)準(zhǔn):由神經(jīng)垂體、內(nèi)分泌、遺傳代謝、自身性免疫系統(tǒng)等疾病以及化學(xué)藥物等因素所致繼發(fā)性肥胖或肥胖綜合征。將BMI超過同身高同性別標(biāo)準(zhǔn)體重的20%~29%分為輕度肥胖組(n=25),超過30%~49%為中度肥胖組(n=55),超過50%為重度肥胖組(n=45),并選取來我院行青春期發(fā)育相關(guān)檢查的健康非肥胖兒童55例作為對照組,男13例,女42例,平均年齡(9.76±0.48)歲。
1.2 方法
研究對象清晨空腹,測量其身高體重,精確到0.1 cm、0.1 kg,計算體質(zhì)量指數(shù)(BMI),BMI=體重(kg)/身高2(m2)。并抽取空腹靜脈血標(biāo)本,應(yīng)用我院檢驗(yàn)科全自動生化分析儀及生化試劑盒檢測FBG、FINS、TG、TC、UA、維生素D、IGF-1等。計算穩(wěn)態(tài)模型胰島素抵抗指數(shù)(HOMA-IR)=[(空腹胰島素(mIU/L)×空腹血糖(mmol/L)]/22.5。計算校正年齡、性別后的IGF-1=(實(shí)測值-均值)/均值[4],均值為同年齡同性別的IGF-1水平[5]。
1.3 統(tǒng)計學(xué)方法
采用SPSS 20.0統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)分析,所有數(shù)據(jù)進(jìn)行正態(tài)和方差齊性檢驗(yàn),符合正態(tài)分布的計量資料以(x±s)表示,非正態(tài)分布的資料用四分位間距描述[M(P25,P75)],符合正態(tài)分布且方差齊的資料組間比較采用方差分析,對于非正態(tài)分布的資料組間比較采用Kruskal-Wallis H檢驗(yàn),再行Mann-Whitney U檢驗(yàn)進(jìn)行組間兩兩比較,P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 不同程度肥胖組與對照組的血糖、血脂、維生素D及aIGF-1的比較
肥胖組與對照組比較,BMI、HOMA-IR、TG、UA均升高,維生素D水平較對照組降低,aIGF-1水平則是輕度肥胖組高于其他三組,對照組與中重度肥胖組比較,差異有統(tǒng)計學(xué)意義(P<0.05),肥胖組進(jìn)行兩兩比較結(jié)果顯示,BMI、HOMA-IR、TG、UA水平是重度肥胖組>中度肥胖組>輕度肥胖組,維生素D、aIGF-1水平是輕度肥胖組>中度肥胖組>重度肥胖組,差異有統(tǒng)計學(xué)意義(P<0.05)。見表1。
2.2 將肥胖組BMI與其他變量進(jìn)行雙變量Pearson相關(guān)性分析
HOMA-IR、TG、UA、維生素D、aIGF-1與BMI相關(guān)(P<0.01),然后以BMI為因變量,以HOMA-IR、TG、UA、維生素D、aIGF-1為自變量進(jìn)行多元線性回歸分析,結(jié)果顯示,UA(SB=0.494,P<0.01)、HOMA-IR(SB=0.324,P<0.01)與BMI呈正相關(guān),維生素D(SB=-0.128,P=0.048)、aIGF-1(SB=-0.237,P<0.01)與BMI呈負(fù)相關(guān)(P<0.05)。見表2。
3 討論
3.1 不同程度肥胖兒童的代謝特征
本研究通過對125例不同程度肥胖兒童的相關(guān)指標(biāo)進(jìn)行分析結(jié)果顯示,肥胖組中的HOMA-IR、TG、UA水平是重度肥胖組>中度肥胖組>輕度肥胖組,線性回歸分析結(jié)果顯示,HOMA-IR、UA與BMI呈正相關(guān),是BMI升高即肥胖的危險因素。本研究與許多對肥胖兒童代謝特征的研究結(jié)果基本一致[6-7]。本研究亦證明,HOMA-IR與BMI呈正相關(guān),但較少文獻(xiàn)提到這點(diǎn)。胰島素主要反映組織是肝臟、骨骼肌及脂肪組織,體內(nèi)過多的脂肪酸濃度會使肝細(xì)胞和心肌細(xì)胞的氧化和儲存能力下降,導(dǎo)致細(xì)胞內(nèi)脂肪酸代謝的中間物(如二酰甘油、?;o酶A衍生物和神經(jīng)酰胺)積聚[8]。這些物質(zhì)通過激活絲氨酸激酶途徑抑制胰島素信號,從而引起高胰島素血癥。近年來炎癥機(jī)制與胰島素抵抗的關(guān)系逐漸被證實(shí)。有研究表明,IRS-1/PI3K/AKT通路在控制葡萄糖穩(wěn)態(tài)中起著重要作用?;罨腎RS-1/PI3K/AKT的途徑促使GLUT4表達(dá)從而使脂肪組織、骨骼肌、肝臟攝取葡萄糖、合成糖原和脂質(zhì)[9]。在高脂環(huán)境中,慢性炎癥可以通過JNK途徑和NF-κB途徑抑制IRS-1的胰島素通路[10],從而引起高胰島素血癥,因此肥胖可以通過產(chǎn)生影響胰島素作用的代謝物、炎癥等途徑導(dǎo)致高胰島素血癥。
本研究結(jié)果亦證明,尿酸與BMI呈正相關(guān)。有研究表明[11],脂肪組織可以通過黃嘌呤氧化還原酶(XOR)產(chǎn)生和分泌尿酸,而肥胖的脂肪組織會缺氧,導(dǎo)致脂肪組織細(xì)胞功能障礙,如脂肪細(xì)胞因子的調(diào)節(jié)失調(diào)和慢性低級別炎癥,誘導(dǎo)的XOR活性增加,從而使尿酸產(chǎn)生增加。肥胖引起高尿酸血癥的另一種機(jī)制為[11-13]:在脂肪酸合成過程中需要大量的還原氫,磷酸戊糖途徑被激活,嘌呤核苷酸合成增多,嘌呤分解代謝隨之增強(qiáng),從而伴隨著尿酸大量生成。反之,尿酸還可以通過激活NLRP3炎癥復(fù)合體[14]直接誘導(dǎo)肝細(xì)胞生成脂肪、胰島素抵抗和胰島素信號傳導(dǎo)受損。也有研究證實(shí)[15],尿酸暴露的肝細(xì)胞線粒體氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激之間存在交互作用,導(dǎo)致脂原基因的表達(dá)增強(qiáng)[如乙酰輔酶羧化酶1(ACC1)、脂肪酸合成酶(FAS)和硬脂酰輔酶去飽和酶1(SCD1)]和三酰甘油的產(chǎn)生。因此,肥胖可以導(dǎo)致高尿酸血癥,高尿酸也是肥胖的危險因素,這些可以解釋本研究結(jié)果。
3.2 不同程度肥胖兒童維生素D水平及與BMI的關(guān)系
本研究結(jié)果顯示,肥胖兒童中維生素D水平降低,且與BMI負(fù)相關(guān)。一項(xiàng)研究發(fā)現(xiàn)[16],維生素D缺乏在丹麥肥胖兒童中很常見,且肥胖程度與血清25羥維生素D濃度獨(dú)立相關(guān)。相關(guān)機(jī)制可能如下,脂肪生成是前脂肪細(xì)胞分化為成熟的脂肪細(xì)胞的過程,維生素D,1,25(OH)2D在脂肪細(xì)胞中參與基因表達(dá)和細(xì)胞信號的控制。1,25(OH)2D通過上調(diào)脂肪生成過程中的基因表達(dá)酶[如脂肪酸合成酶(FASN)、脂肪酸結(jié)合蛋白(FABP)、過氧化物酶體增殖物激活物受體(PPAR)-γ,PPAR-γ是參與脂肪細(xì)胞分化的重要轉(zhuǎn)錄因子]刺激脂肪細(xì)胞生成[17-19]。維生素D在脂肪細(xì)胞代謝和肥胖進(jìn)展中起著有益作用,維生素D缺乏對脂肪組織增多、免疫細(xì)胞浸潤和炎癥狀態(tài)產(chǎn)生不利影響,因?yàn)榫S生素D減少NF-κB P65的磷酸化和易位進(jìn)入細(xì)胞核的能力,從而降低炎癥和氧化應(yīng)激反應(yīng)[20]??傊逝峙c維生素D缺乏之間的相關(guān)機(jī)制可能是維生素D具有調(diào)節(jié)脂肪細(xì)胞的生成、炎癥反應(yīng)、氧化應(yīng)激等的能力。因此,低水平的維生素D是肥胖的危險因素。
3.3 不同程度肥胖兒童IGF-1 水平及與BMI的關(guān)系
關(guān)于肥胖兒童IGF-1 水平的研究是有爭議的,無關(guān)和降低均有報道。本研究結(jié)果表明,輕度肥胖組aIGF-1 水平高于對照組,且在肥胖兒童中與BMI呈負(fù)相關(guān)。有報道稱[21],與對照組相比,肥胖兒童IGF-1SDS水平較低。也有研究表明[22],IGF-1在受試者中沒有差異,且與代謝指標(biāo)、身體組成參數(shù)無關(guān)。本研究與上述結(jié)果存在差異,其原因可能是:①研究使用aIGF-1作為IGF-1的替代;②研究群體不同,種族、生活習(xí)慣、自然環(huán)境等的不同。胰島素樣生長因子是一種與胰島素結(jié)構(gòu)類似的多肽分子,以內(nèi)分泌方式調(diào)節(jié)生長激素的合成和分解代謝,以旁分泌和自分泌方式調(diào)節(jié)細(xì)胞的生長、增殖、遷移、分化及凋亡等。IGF-1由肝臟、骨骼肌和心臟等器官分泌,可調(diào)節(jié)機(jī)體的代謝平衡,對多種組織和器官發(fā)揮保護(hù)效應(yīng)[23]。IGF-1可促進(jìn)前脂肪細(xì)胞分化為成熟的脂肪細(xì)胞,生理性IGF-1濃度不能有效刺激脂質(zhì)合成或脂解,只有在高濃度下才能通過胰島素受體刺激葡萄糖轉(zhuǎn)運(yùn)。IGF-1可增強(qiáng)肌肉對游離脂肪酸的利用及對生長激素的抑制。IGF-1還可以維持細(xì)胞因子的穩(wěn)態(tài)抗炎作用,從而防止肥胖引起的輕度炎癥[24]。因此,IGF-1對機(jī)體的代謝穩(wěn)態(tài)起著重要作用,低水平的IGF-1是肥胖的危險因素。
綜上所述,隨著肥胖程度的增加,HOMA-IR、UA水平升高,維生素D、aIGF-1水平降低,因此對于中重度肥胖兒童,應(yīng)注意其胰島素抵抗、高尿酸血癥等代謝紊亂及維生素D缺乏、IGF-1低水平狀態(tài)的發(fā)生,因?yàn)檫@會對骨骼生長、內(nèi)分泌代謝系統(tǒng)等引起危害,另外,維生素D是一種應(yīng)用廣泛、安全性高的藥物,可以將補(bǔ)充維生素D作為治療兒童肥胖的一種輔助藥物。
[參考文獻(xiàn)]
[1] 陳貽珊,張一民,孔振興,等. 我國兒童青少年超重、肥胖流行現(xiàn)狀調(diào)查[J]. 中華疾病控制雜志,2017,21(9):866-869.
[2] Powell WTM,Poirier P,Burke LE,et al. Obesity and cardiovascular disease:A scientific statement from the American heart association[J]. Circulation,2021,143(21):e984-e1010.
[3] 中國肥胖問題工作組季成葉. 中國學(xué)齡兒童青少年超重、肥胖篩查體重指數(shù)值分類標(biāo)準(zhǔn)[J]. 中華流行病學(xué)雜志,2004(2):10-15.
[4] Ricco RC,Ricco RG,Queluz MC,et al. IGF-1R mRNA expression is increased in obese children[J]. Growth Hormone & IGF Research,2018,39:1-5.
[5] Xu S,Gu X,Pan H,et al. Reference ranges for serum IGF-1 and IGFBP-3 levels in Chinese children during childhood and adolescence[J]. Endocrine Journal,2010, 57(3):221-228.
[6] 劉棟,宋宏慶,王曉琴. 肥胖兒童血尿酸水平及糖脂代謝特征[J]. 醫(yī)學(xué)綜述,2016,22(13):2621-2623.
[7] 吳瓊,嚴(yán)維. 學(xué)齡期單純性肥胖兒童血糖、血脂及內(nèi)分泌激素水平分析[J]. 中國衛(wèi)生工程學(xué),2020,19(5):779-780.
[8] Tagi VM,Chiarelli F. Obesity and insulin resistance in children[J]. Current Opinion in Pediatrics,2020,32(4):582-588.
[9] Chen Y,Qian Q,Yu J. Carbenoxolone ameliorates insulin sensitivity in obese mice induced by high fat diet via regulating the IκB-α/NF-κB pathway and NLRP3 inflammasome[J]. Biomedicine & Pharmacotherapy,2019,115:108 868.
[10] Liu Z,Patil IY,Jiang T,et al. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity[J]. PLos ONE,2015,10(5):e0128 274.
[11] Tsushima Y,Nishizawa H,Tochino Y,et al. Uric acid secretion from adipose tissue and its increase in obesity[J]. Journal of Biological Chemistry,2013,288(38):27 138-27 149.
[12] Ohtsubo T,Matsumura K,Sakagami K,et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules[J]. Hypertension,2009,54(4):868-876.
[13] Park J,Rho HK,Kim KH,et al. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity[J]. Mol Cell Biol,2005,25(12):5146-5157.
[14] Wan X,Xu C,Lin Y,et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism[J]. J Hepatol,2016, 64(4):925-932.
[15] Choi Y,Shin H,Choi HS,et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes[J]. Laboratory Investigation,2014,94(10):1114-1125.
[16] Plesner JL,Dahl M,F(xiàn)onvig CE,et al. Obesity is associated with vitamin D deficiency in Danish children and adolescents[J]. J Pediatr Endocrinol Metab,2018,31(1):53-61.
[17] Narvaez CJ,Simmons KM,Brunton J,et al. Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue[J]. J Cell Physiol,2013, 228(10):2024-2036.
[18] Ruiz-Ojeda FJ,Anguita-Ruiz A,Leis R,et al. Genetic factors and molecular mechanisms of vitamin D and obesity relationship[J]. Annals of Nutrition and Metabolism,2018,73(2):89-99.
[19] 楊谷良,潘敏雄,向福,等. PPARγ調(diào)控脂肪細(xì)胞增殖和分化機(jī)理研究進(jìn)展[J]. 食品科學(xué),2017,38(3):254-260.
[20] Farhangi MA,Mesgari-Abbasi M,Hajiluian G,et al. Adipose tissue inflammation and oxidative stress:The ameliorative effects of vitamin D[J]. Inflammation,2017,40(5):1688-1697.
[21] Liang S,Hu Y,Liu C,et al. Low insulin-like growth factor 1 is associated with low high-density lipoprotein cholesterol and metabolic syndrome in Chinese nondiabetic obese children and adolescents:A cross-sectional study[J]. Lipids in Health and Disease,2016,15:112.
[22] Inzaghi E,Baldini FB,F(xiàn)intini D,et al.Insulin-like growth factors and metabolic syndrome in obese children[J]. Horm Res Paediatr,2017,87(6):400-404.
[23] 李博文,馮麗麗,田振軍. 胰島素樣生長因子-1與代謝性疾病及運(yùn)動干預(yù)的研究進(jìn)展[J]. 生理學(xué)報,2021,73(2):342-352.
[24] Aguirre GA,De Ita JR,de la Garza RG,et al. Insulin-like growth factor-1 deficiency and metabolic syndrome[J]. J Transl Med,2016,14:3.
(收稿日期:2021-07-01)