王小波,蔡瑞婕,耿維娜,毛志月,趙 毅,蔣會(huì)東,徐曉燕
黑水虻生物轉(zhuǎn)化豬糞過(guò)程中重金屬的遷移變化
王小波,蔡瑞婕,耿維娜,毛志月,趙 毅,蔣會(huì)東,徐曉燕※
(天津農(nóng)學(xué)院農(nóng)學(xué)與資源環(huán)境學(xué)院,天津 300384)
利用黑水虻處理豬糞為一種高效的環(huán)境友好型的技術(shù),但豬糞中重金屬的含量對(duì)黑水虻的轉(zhuǎn)化產(chǎn)生影響。該研究在30 ℃環(huán)境下豬糞中接種7日齡的黑水虻幼蟲(chóng),研究黑水虻的生長(zhǎng)和對(duì)豬糞的轉(zhuǎn)化效率,以及豬糞中的重金屬(Cu、Zn、Cr、Cd、As)在黑水虻蟲(chóng)體和蟲(chóng)糞中的變化情況。結(jié)果表明:在8 d的生長(zhǎng)過(guò)程中,0~2 d時(shí),生長(zhǎng)速率最慢,4~6 d時(shí)生長(zhǎng)速率最快,在第8天時(shí)蟲(chóng)體干質(zhì)量最高。黑水虻對(duì)豬糞的轉(zhuǎn)化率隨著時(shí)間的延長(zhǎng)而增加,在第6天時(shí)達(dá)到了最大11.5%,而到第8天時(shí)下降。在轉(zhuǎn)化過(guò)程中蟲(chóng)體中Cu、Cr、As的濃度隨著黑水虻幼蟲(chóng)生長(zhǎng)降低,在第8天時(shí),蟲(chóng)體Cu、Cr、As濃度較第2天分別降低了24.5%、21.7%、33.1%。Cd含量隨著黑水虻幼蟲(chóng)生長(zhǎng)增加,在第8天時(shí),蟲(chóng)體Cd濃度較第2天增加了75.3%。Cu、Cr、As、Cd在蟲(chóng)糞中濃度的變化同蟲(chóng)體變化相反。Zn在蟲(chóng)體和蟲(chóng)糞中含量沒(méi)有發(fā)生顯著變化。在第8天時(shí)蟲(chóng)糞中的Cd含量顯著低于豬糞,而Cu、Cr、As、Zn含量與豬糞比沒(méi)有顯著差異。黑水虻幼蟲(chóng)對(duì)豬糞中Cd的富集系數(shù)最高,達(dá)到了3.8,其余都小于1,各重金屬的富集順序從大到小依次為Cd、Zn、Cu、Cr、As。轉(zhuǎn)化后Cu、Cr、As、Zn有83.6%~92.7%分布于蟲(chóng)糞,而Cd有49.8%~69.7%分布于蟲(chóng)糞,30.3%~50.2%分布于蟲(chóng)體。轉(zhuǎn)化后Cu、As的生物活性提高,Cr、Cd的生物活性降低,Zn的生物活性沒(méi)有明顯的變化。研究結(jié)果為畜禽糞便的黑水虻生物轉(zhuǎn)化提供參考。
糞;重金屬;黑水虻;蟲(chóng)糞;形態(tài)
近年來(lái)中國(guó)畜禽養(yǎng)殖業(yè)快速發(fā)展,已經(jīng)成為農(nóng)業(yè)和農(nóng)村經(jīng)濟(jì)發(fā)展的支柱產(chǎn)業(yè)之一[1]。但大量養(yǎng)殖廢棄物未得到及時(shí)有效的處理和應(yīng)用,成為環(huán)境治理的一大難題[2]。2016年中國(guó)畜禽廢棄物年產(chǎn)量約38億t,其中生豬糞污年產(chǎn)量約18億t,占到47%,而這些廢棄物的綜合利用率只有60%[3-4],大量的未利用的養(yǎng)殖廢棄物嚴(yán)重影響了周圍的大氣、土壤、水體和環(huán)境衛(wèi)生[5-6]。為保證畜牧業(yè)的健康發(fā)展,減少畜禽糞便帶來(lái)的環(huán)境污染等一系列問(wèn)題,糞便的無(wú)害化處理及利用成為了農(nóng)業(yè)環(huán)境研究的熱點(diǎn)之一[7]。其中能以動(dòng)物糞便為食的腐生性昆蟲(chóng)在畜禽廢棄物處理中得到初步的研究與應(yīng)用[8-9]。
黑水虻,又名亮斑扁角水虻,腐生性的水虻科昆蟲(chóng),幼蟲(chóng)主要以腐爛有機(jī)物、動(dòng)物糞便等為食,在取食動(dòng)物糞便時(shí)能夠?qū)S便中的營(yíng)養(yǎng)物質(zhì)進(jìn)行轉(zhuǎn)化并有效減少糞便臭味,降低糞便中的病菌、抗生素等有害物數(shù)量[10-11];黑水虻幼蟲(chóng)中含有豐富的蛋白質(zhì)、脂肪、鈣、磷等營(yíng)養(yǎng)物質(zhì),是良好的生物蛋白飼料[12-13]。利用黑水虻幼蟲(chóng)處理畜禽糞便,轉(zhuǎn)化后的產(chǎn)物高蛋白蟲(chóng)體和蟲(chóng)糞有機(jī)肥都具有較高的經(jīng)濟(jì)價(jià)值,既可消除禽畜糞便對(duì)環(huán)境的污染、實(shí)現(xiàn)糞污就近就地利用,同時(shí)還能增加養(yǎng)殖收入,為畜禽糞便的處理提供了一種經(jīng)濟(jì)、可行的途徑,受到了國(guó)內(nèi)外的廣泛關(guān)注[14-15]。
在畜禽養(yǎng)殖過(guò)程中,為了提高飼料利用率,促進(jìn)畜禽生長(zhǎng)發(fā)育,降低養(yǎng)殖成本,常在飼料中添加各種重金屬微量元素[16-17],但由于畜禽對(duì)微量元素的利用率很低,大部分通過(guò)糞便排出體外,造成了畜禽糞便中各種重金屬元素的含量超標(biāo)[18-19]。黑水虻處理畜禽糞便的過(guò)程中,重金屬會(huì)在黑水虻體內(nèi)積累[20],而且前人的研究也發(fā)現(xiàn)黑水虻對(duì)重金屬具有較強(qiáng)的耐受能力[21-22]。但在黑水虻轉(zhuǎn)化處理畜禽糞便過(guò)程中黑水虻體內(nèi)和蟲(chóng)糞中重金屬的變化情況還未見(jiàn)報(bào)道,本文研究了在黑水虻處理豬糞過(guò)程中各種重金屬在蟲(chóng)體和蟲(chóng)糞中含量的變化情況。以期為黑水虻轉(zhuǎn)化處理畜禽糞便,及轉(zhuǎn)化產(chǎn)物的資源化利用提供參考。
豬糞取自天津市靜海區(qū)某養(yǎng)殖場(chǎng),其基礎(chǔ)理化指標(biāo)為有機(jī)質(zhì)含量84.7%,全氮1.79%,P2O52.66%,K2O 1.87%,pH值6.19,電導(dǎo)率10.22 mS/cm,重金屬Cu、Zn、Cr、Cd、As含量分別為395.7、408.2、93.1、1.3、2.3 mg/kg。
黑水虻卵取自天津農(nóng)學(xué)院有機(jī)廢棄物資源化技術(shù)研發(fā)中心,蟲(chóng)卵在溫度(30±2)℃,濕度(80±5)%的環(huán)境中,孵化48 h后,轉(zhuǎn)入含水量80%的麥麩中,在溫度(30±2) ℃環(huán)境中保育7 d后,放入豬糞中進(jìn)行試驗(yàn)。蟲(chóng)體重金屬Cu、Zn、Cr、Cd、As含量分別為21.77、185.53、0.26、0.34、0.01 mg/kg。
在12個(gè)培養(yǎng)盒(21 cm ×15. 5 cm ×10 cm)中,分別放入7日齡黑水虻幼蟲(chóng)4 g,在溫度(30±2)℃,濕度60%~80%的環(huán)境中養(yǎng)殖,每天待豬糞轉(zhuǎn)化完后再加入適量濕度70%豬糞(圖1),在第2天、4天、6天、8天豬糞加入前,各取3盒,停止加入豬糞,放置24 h,待蟲(chóng)體完全排出體內(nèi)殘余豬糞后篩分。
圖1 黑水虻處理豬糞過(guò)程樣品的添加與采樣
篩分出蟲(chóng)體、蟲(chóng)糞后,蟲(chóng)體微波烘干(功率1 kW,時(shí)間5 min)后,稱總質(zhì)量。測(cè)蟲(chóng)體重金屬含量:稱0.500 0 g粉碎后的樣品加入8 mL HNO3和2 mL H2O2放入CEM-MARS 6S微波消解,180 ℃,保持15 min,消解后取出消解管,置于智能控溫電加熱器上140℃趕酸至近干,將管中溶液轉(zhuǎn)移至 50mL 容量瓶中,用去離子水定容,ICP-MS(Thermo)測(cè)定重金屬含量。
蟲(chóng)糞風(fēng)干后,稱質(zhì)量,烘干法測(cè)含水量。稱0.500 0 g風(fēng)干粉碎后的豬糞、蟲(chóng)糞加入6 mL HNO3、2 mL HCl和2 mL H2O2,微波消解,參數(shù)設(shè)置同上,趕酸后定容至50 mL,用ICP-MS(Thermo)測(cè)定重金屬含量。采用BCR修正形態(tài)分級(jí)法[23]提取豬糞、第8天轉(zhuǎn)化結(jié)束后蟲(chóng)糞中各重金屬F1弱酸溶解態(tài)、F2可還原態(tài)、F3可氧化態(tài)、F4殘?jiān)鼞B(tài),ICP-MS測(cè)定。
轉(zhuǎn)化率=蟲(chóng)體干質(zhì)量增加量/投喂的料干質(zhì)量(1)
生物富集系數(shù)=蟲(chóng)體重金屬含量/豬糞重金屬含量 (2)
試驗(yàn)數(shù)據(jù)計(jì)算、作圖采用Excel2010 軟件完成,顯著性差異分析采用SPSS 17. 0 Duncan’s 新復(fù)極差法(<0.05)完成。
黑水虻蟲(chóng)體干質(zhì)量隨著生長(zhǎng)時(shí)間的延長(zhǎng)而增加(圖 2),在第8天時(shí)干質(zhì)量最高,達(dá)10.38 g,在0天到2天時(shí),生長(zhǎng)速率最慢,在4 天到6 天時(shí)生長(zhǎng)速率最快。黑水虻對(duì)豬糞的轉(zhuǎn)化率隨著時(shí)間的增加而增加,在第6天時(shí)達(dá)到了最大11.5%,而到第8天時(shí)下降。
圖2 黑水虻蟲(chóng)體生物量和對(duì)豬糞轉(zhuǎn)化率的變化
豬糞經(jīng)黑水虻轉(zhuǎn)化過(guò)程中,豬糞中的重金屬部分轉(zhuǎn)移到黑水虻蟲(chóng)體,使蟲(chóng)體各種金屬含量顯著提高(表 1)。隨著黑水虻幼蟲(chóng)生長(zhǎng),蟲(chóng)體中的重金屬濃度也發(fā)生變化,且不同重金屬的變化規(guī)律不同。蟲(chóng)體中Cu、Cr、As的濃度隨著黑水虻幼蟲(chóng)的生長(zhǎng)而降低,在第8 天時(shí),蟲(chóng)體Cu、Cr、As濃度較第2 天分別降低了24.5%、21.7%、33.1%。蟲(chóng)體Cd的濃度隨著黑水虻幼蟲(chóng)的生長(zhǎng)而增加,在第8天時(shí),蟲(chóng)體Cd濃度為5.05 mg/kg,較第2天增加了75.3%。而蟲(chóng)體Zn的濃度在黑水虻幼蟲(chóng)第2天到第8天的生長(zhǎng)過(guò)程中沒(méi)有顯著變化。
表1 蟲(chóng)體與蟲(chóng)糞中重金屬的含量
注:同列不同小寫字母表示在0.05 水平上差異顯著,下同。
Note: Different lower case letters in the same column indicate significant differences at the 0.05 level, same as below.
豬糞經(jīng)黑水虻轉(zhuǎn)化過(guò)程中,豬糞中的重金屬部分轉(zhuǎn)移到黑水虻蟲(chóng)糞。隨著黑水虻幼蟲(chóng)生長(zhǎng),蟲(chóng)糞中的重金屬濃度也發(fā)生變化,且不同重金屬的變化規(guī)律不同(表 1)。蟲(chóng)糞中Cu、Cr、As含量在轉(zhuǎn)化初期第2天,第4天時(shí)含量低于原豬糞含量,而隨著黑水虻生長(zhǎng)蟲(chóng)糞中的Cu、Cr含量增加,到第8天時(shí),同原豬糞含量沒(méi)有差異。蟲(chóng)糞中Zn含量在黑水虻生長(zhǎng)過(guò)程中同原豬糞相比沒(méi)有顯著變化。蟲(chóng)糞中Cd含量隨著黑水虻的生長(zhǎng)而降低,在第8天時(shí),含量最低(0.97 mg/kg),較原豬糞降低了27.1%。
豬糞經(jīng)黑水虻轉(zhuǎn)化后,黑水虻對(duì)不同重金屬有不同的生物富集系數(shù)(圖3),Cd的富集系數(shù)最高,達(dá)到了3.8,其次為Zn、富集系數(shù)為0.99,Cu、Cr、As的富集系數(shù)分別為0.55、0.44、0.43。
豬糞中的重金屬經(jīng)黑水虻轉(zhuǎn)化后,分布于黑水虻蟲(chóng)體和蟲(chóng)糞(表2),其中Cu、Cr、As、Zn主要分布于蟲(chóng)糞,占83.6%~92.7%,而Cd在蟲(chóng)體的分配比例為30.3%~50.2%,在蟲(chóng)糞的分配比例為49.8%~69.7%。在轉(zhuǎn)化過(guò)程中隨著黑水虻的生長(zhǎng),Cu、Cr、As在蟲(chóng)體的分配比例隨著天數(shù)的增加而降低,Cu由11.8%降低到9.1%,Cr由11.2%降低到7.4%,As由11.8%降低到7.3%。Cd在蟲(chóng)體的分配比例隨著天數(shù)的增加而提高,由30.3%增加到50.2%,Zn在蟲(chóng)體(15.2 %~16.4 % )和蟲(chóng)糞(83.6 %~84.8 %)中的分配比例沒(méi)有隨著黑水虻的生長(zhǎng)而發(fā)生顯著變化。
圖3 不同重金屬的生物富集系數(shù)
表2 不同重金屬在蟲(chóng)體蟲(chóng)糞的分配比例
豬糞將黑水虻轉(zhuǎn)化后,在蟲(chóng)糞中各重金屬的形態(tài)發(fā)生了變化(表3)。蟲(chóng)糞中Cu的F1含量較原豬糞增加了201.7%,F(xiàn)2、F3含量分別下降了14.5%和22.2%,F(xiàn)4含量沒(méi)有顯著變化。Zn的各形態(tài)含量都沒(méi)有顯著變化。Cr的F1、 F2含量分別降低了13.4%和29.8%,F(xiàn)3、 F4含量分別增加了84.2%和117.4%。Cd的F1、 F2、F3含量分別降低了26.5%、33.3%和60.0%,F(xiàn)4含量增加了20.0%。As的F1、 F3、F4含量分別增加了9.0%、29.7%和45.5%,F(xiàn)2含量降低了43.8%。
表3 豬糞、蟲(chóng)糞中重金屬各形態(tài)含量
注:同一金屬同行數(shù)字后不同小寫字母表示在0.05水平上差異顯著。
Note: For the same metal, different lower case letters after peer numbers indicate significant differences at the 0.05 level.
環(huán)境條件對(duì)黑水虻轉(zhuǎn)化處理畜禽糞便具有較大的影響[24],在已有研究的基礎(chǔ)上,選擇最佳環(huán)境條件溫度30 ℃、濕度80%、豬糞濕度70%進(jìn)行試驗(yàn)。在此環(huán)境條件下,7日齡的黑水虻幼蟲(chóng)經(jīng)過(guò)8 d的生長(zhǎng)即將進(jìn)入預(yù)蛹期,為最佳的商品蟲(chóng)收獲期。在黑水虻生長(zhǎng)過(guò)程中,前期因?yàn)橛紫x(chóng)的個(gè)體小、食量小,蟲(chóng)體質(zhì)量增加較慢,在中期隨著黑水虻幼蟲(chóng)個(gè)體的變大,食量增加,蟲(chóng)體質(zhì)量也增加較快,在試驗(yàn)中第4天到第6天是黑水虻干質(zhì)量增加最快的時(shí)期,同袁橙等[24]的研究結(jié)果一致,后期因幼蟲(chóng)即將進(jìn)入預(yù)蛹期,食量下降,蟲(chóng)體質(zhì)量增加變慢。同時(shí)中期也是轉(zhuǎn)化效率最高的時(shí)期,在第6天時(shí),黑水虻對(duì)豬糞的轉(zhuǎn)化效率最高。
黑水虻對(duì)不同金屬元素的吸收機(jī)制不同,因而對(duì)不同的金屬元素的富集和耐受規(guī)律也不同[21-22],在本試驗(yàn)中黑水虻對(duì)豬糞中各種金屬的富集順序?yàn)镃d> Zn>Cu>Cr>As。黑水虻幼蟲(chóng)與其他昆蟲(chóng)種類相比具有極高的Ca含量[25],而鎘與鈣擁有相似的離子半徑,可以被熱休克蛋白通過(guò)鈣離子通道進(jìn)行運(yùn)輸,而不依賴于細(xì)胞胞吞作用或需要ATP的離子泵[26-27],造成黑水虻幼蟲(chóng)對(duì)鎘的高富集(BAF 3.8)。其他的研究也表明昆蟲(chóng)對(duì)重金屬元素的攝入會(huì)提高體內(nèi)金屬硫蛋白的水平,重金屬元素與金屬硫蛋白結(jié)合或螯合在囊泡中,從而有效地使這些金屬失活,積累在昆蟲(chóng)體內(nèi),在某些情況下,這些物質(zhì)通過(guò)胞吐到消化道內(nèi)腔排出[28-29],殘留于蟲(chóng)糞中,使蟲(chóng)體免收危害,這可能就是黑水虻體內(nèi)能累積大量鎘的原因。
Zn是生物體維持機(jī)體正常生理功能和生長(zhǎng)發(fā)育所必須的微量元素[30],Zn在黑水虻體內(nèi)分布于中腸、脂肪體、表皮,分布的規(guī)律為中腸>脂肪體>表皮[31],對(duì)昆蟲(chóng)來(lái)說(shuō)鋅是一種重要,但同時(shí)具有潛在毒性的元素,昆蟲(chóng)體內(nèi)的存在的金屬結(jié)合相應(yīng)轉(zhuǎn)錄因子-1(MTF-1)[32],能夠主動(dòng)調(diào)節(jié)昆蟲(chóng)對(duì)鋅的吸收,使鋅的BAF隨食物中鋅濃度變化而變化[20],在家蠅幼蟲(chóng)生物體具有類似的調(diào)節(jié)機(jī)制[33]。本試驗(yàn)中黑水虻對(duì)鋅的富集系數(shù)高于除Cd外的其他元素。Cu主要存在于雙翅目昆蟲(chóng)幼蟲(chóng)中腸上皮細(xì)胞的細(xì)胞漿內(nèi)[34],As也主要存在于黑水虻于腸道內(nèi)[21],都會(huì)隨著黑水虻的生長(zhǎng)代謝而排出體外,所以黑水虻對(duì)Cu,As的生物富集也較低。在黑水虻幼蟲(chóng)的生長(zhǎng)過(guò)程中,前期黑水虻幼蟲(chóng)個(gè)體小,生長(zhǎng)發(fā)育慢,對(duì)豬糞的轉(zhuǎn)化率也低,造成了重金屬Cu、Cr、As在蟲(chóng)體累積的濃度高,后期隨著黑水虻幼蟲(chóng)生長(zhǎng)代謝加快,對(duì)豬糞的轉(zhuǎn)化率也提高,重金屬Cu、Cr、As在蟲(chóng)體累積的濃度降低。由于黑水虻對(duì)Cd的特殊吸收機(jī)制,而且本試驗(yàn)豬糞中Cd的濃度遠(yuǎn)低于黑水虻對(duì)Cd的耐受值[35],所以在黑水虻幼蟲(chóng)生長(zhǎng)過(guò)程中體內(nèi)Cd的含量一直在提高。由于黑水虻對(duì)Zn的調(diào)節(jié)吸收,使黑水虻體內(nèi)Zn的濃度沒(méi)有發(fā)生顯著變化。豬糞中的重金屬一部分被蟲(chóng)體吸收后,剩余的隨蟲(chóng)糞排出體外,所以蟲(chóng)糞中各種重金屬濃度的含量變化同蟲(chóng)體相反,蟲(chóng)糞中Cu、Cr、As的濃度隨著黑水虻生長(zhǎng)增加,第8天時(shí),同原豬糞濃度相比沒(méi)有顯著變化,而蟲(chóng)糞中Cd的含量隨著黑水虻的生長(zhǎng)而降低,Zn在蟲(chóng)糞中的濃度不隨著黑水虻的生長(zhǎng)而變化。
豬糞中的重金屬轉(zhuǎn)移到黑水虻蟲(chóng)體和蟲(chóng)糞,對(duì)黑水虻蟲(chóng)體和蟲(chóng)糞的進(jìn)一步應(yīng)用帶來(lái)的環(huán)境風(fēng)險(xiǎn),對(duì)照中國(guó)《飼料衛(wèi)生標(biāo)準(zhǔn)》GB 10378—2017對(duì)飼料原料中Cd、Cr、As的限值標(biāo)準(zhǔn),蟲(chóng)體中的Cd、Cr含量超出限值,在應(yīng)用時(shí)應(yīng)注意配比,使在飼料標(biāo)準(zhǔn)的安全范圍內(nèi)。對(duì)照中國(guó)有機(jī)肥標(biāo)準(zhǔn)NY/T 3442—2019,豬糞和蟲(chóng)糞中的重金屬含量都在安全限值之內(nèi),對(duì)照歐盟堆肥生態(tài)標(biāo)準(zhǔn)[36]原豬糞中Cu、Zn、Cd超出了限值,經(jīng)黑水虻轉(zhuǎn)化后蟲(chóng)糞中Cd含量降低到安全限值以下。
有機(jī)肥中的重金屬對(duì)作物生長(zhǎng)的影響除與重金屬的總量有關(guān)外,還與重金屬的存在形態(tài)有關(guān),重金屬的形態(tài)直接影響重金屬的毒性、遷移及其在自然界中的循環(huán)[37]。本研究采用BCR法將豬糞、蟲(chóng)糞中的各種重金屬分為弱酸溶解態(tài)、可還原態(tài)、可氧化態(tài)、殘?jiān)鼞B(tài)。其中弱酸溶解態(tài)最容易被吸收,生物活性最大,從試驗(yàn)結(jié)果可見(jiàn)豬糞經(jīng)黑水虻轉(zhuǎn)化后,在蟲(chóng)糞中Cu、As的生物活性提高,Cr、Cd的生物活性降低,Zn沒(méi)有發(fā)現(xiàn)明顯的變化。張文娟[38]對(duì)蠅蛆轉(zhuǎn)化豬糞的研究結(jié)論表明Cu、Zn的生物活性提高,Cr、Cd的生物活性降低,與本研究結(jié)果較一致,但Zn的變化存在差異,可能與黑水虻和蠅蛆的生理代謝不同有關(guān)。
利用黑水虻幼蟲(chóng)處理豬糞,可以實(shí)現(xiàn)對(duì)豬糞的高值高效資源化利用,解決豬糞的環(huán)境污染問(wèn)題。在轉(zhuǎn)化過(guò)程中蟲(chóng)體中Cu、Cr、As的濃度隨著黑水虻幼蟲(chóng)生長(zhǎng)降低,Cd含量隨著黑水虻幼蟲(chóng)生長(zhǎng)增加,在蟲(chóng)糞中正好相反。Zn在蟲(chóng)體和蟲(chóng)糞中含量沒(méi)有隨黑水虻幼蟲(chóng)的生長(zhǎng)發(fā)生顯著變化。轉(zhuǎn)化結(jié)束后豬糞中的重金屬大部分累積于黑水虻蟲(chóng)糞中(49.8%~92.7%)。黑水虻蟲(chóng)體對(duì)豬糞中各重金屬的富集從大到小依次為Cd、Zn、Cu、Cr、As。經(jīng)轉(zhuǎn)化后豬糞中Cu、As的生物活性提高,Cr、Cd的生物活性降低,Zn沒(méi)有發(fā)生明顯的變化。
[1] 王明利. 改革開(kāi)放四十年我國(guó)畜牧業(yè)發(fā)展:成就、經(jīng)驗(yàn)及未來(lái)趨勢(shì)[J]. 農(nóng)業(yè)經(jīng)濟(jì)問(wèn)題,2018(8):60-70. Wang Mingli. China's livestock industry development: Achievements, experiences and future trends[J]. Issues in Agricultural Economy, 2018(8): 60-70. (in Chinese with English abstract)
[2] 田慎重,郭洪海,姚利,等. 中國(guó)種養(yǎng)業(yè)廢棄物肥料化利用發(fā)展分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):123-131. Tian Shenzhong, Guo Honghai, Yao Li, et al. Development analysis for fertilizer utilization of agricultural planting and animal wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 123-131. (in Chinese with English abstract)
[3] 中國(guó)畜牧獸醫(yī)年鑒編輯委員會(huì). 中國(guó)畜牧獸醫(yī)年鑒2017[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2017.
[4] 農(nóng)業(yè)部. 全國(guó)每年 38 億噸畜禽廢棄物綜合利用率只有6成[J]. 家禽科學(xué),2018(3):5.
[5] Martinez J, Dabert P, Barrington S, et al. Livestock waste treatment systems for environmental quality, food safety, and sustainability[J]. Bioresource Technology, 2009, 100(22): 5527- 5536.
[6] Juma M, Sardar K, Jian Q, et al. Antibiotics in poultry manure and their associated health issues: A systematic review[J]. Journal of Soils and Sediments, 2020, 20: 486-497.
[7] 孫敬都,羅印林,王可心,等. 畜禽糞便無(wú)害化處理技術(shù)研究進(jìn)展[J]. 今日畜牧獸醫(yī),2019,35(1):63-65.
[8] Kashifur R, Minmin C, Xiao Xiaopeng, et al. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock ()[J]. Journal of Environmental Management, 2017, 196: 458-465.
[9] Zhu Fengxiang, Yao Yanlai, Wang Sujuan, et al. Housefly maggot-treated composting as sustainable option for pig manure management[J]. Waste Management, 2015, 35: 62-67.
[10] Minmin C, Ma Shiteng, Hu Ruiqi, et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetiaillucens bioconversion with intestinal microflora[J]. Environmental Microbiology, 2018, 20(11): 4051-4062.
[11] 梅瀚杰,胡文鋒. 黑水虻對(duì)有害物質(zhì)的降解作用研究進(jìn)展[J]. 飼料工業(yè),2019,40(20):59-64. Mei Hanjie, Hu Wenfeng. A review of degradation of harmful substance by black soldier fly[J]. Feed Industry, 2019, 40(20): 59-64. (in Chinese with English abstract)
[12] 喻國(guó)輝,陳燕紅,喻子牛,等. 黑水虻幼蟲(chóng)和預(yù)蛹的飼料價(jià)值研究進(jìn)展[J]. 昆蟲(chóng)知識(shí),2009,46(1):41-45. Yu Guohui, Chen Yanhong, Yu Ziniu, et al. Research progression on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff[J]. Chinese Bulletin of Entomology, 2009, 46(1): 41-45. (in Chinese with English abstract)
[13] Wang Shengyin, Wu Lingli, Li Baoling, et al. Reproductive potential and nutritional composition of Hermetia illucens (Diptera: Stratiomyidae) prepupae reared on different organic wastes[J]. Journal of Economic Entomology, 2020, 113(1): 527-537.
[14] Stefan Diener, Nandayure M. Studt Solano, Floria Roa Gutiérrez, et al. Biological treatment of municipal organic waste using black soldier fly Larvae[J]. Waste Biomass Valor, 2011, 2: 357-363.
[15] Kashifur Rehman, Cai Minmin, Xiao Xiaopeng, et al. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock()[J]. Journal of Environmental Management, 2017, 196:458-465.
[16] 黃玉溢,陳桂芬,劉斌,等. 廣西集約化養(yǎng)殖豬飼料Cu和Zn含量及糞便Cu和Zn殘留特性研究[J]. 安徽農(nóng)業(yè)科學(xué),2012,40(17):9280-9281,9284. Huang Yuyi, Chen Guifen, Liu Bin, et al. Content of Cu and Zn in pig feeds and their residual character in pig manures from intensive piggery in Guangxi[J]. Journal of Anhui Agricultural Sciences, 2012, 40(17): 9280-9281, 9284. (in Chinese with English abstract)
[17] 吳大偉,李亞學(xué),吳萍,等. 規(guī)?;i場(chǎng)育肥豬飼料、豬肉及糞便中重金屬含量調(diào)查[J]. 畜牧與獸醫(yī),2012,44(4):38-40. Wu Dawei, Li Yaxue, Wu Ping, et al. Investigation on heavy metals in feed, pork and feces of fattening pigs in large scale pig farm[J]. Animal Husbandry & Veterinary Medicine, 2012, 44(4): 38-40. (in Chinese with English abstract)
[18] Hashe M I, Maj I D. Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contentsin consumed feed[J]. Ecotoxicology and Environmental Safety, 2018, 154(10): 263-267.
[19] 潘尋,韓哲,賁偉偉. 山東省規(guī)?;i場(chǎng)豬糞及配合飼料中重金屬含量研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(1):160-165. Pan Xun, Han Zhe, Ben Weiwei. Heavy metal contents in pig manure and pig feeds from Intensive pig farms in Shandong Province, China[J]. Journal of Agro-Environment Science, 2013, 32(1): 160-165。(in Chinese with English abstract)
[20] Diener S, Zurbruegg C, Tockner K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle[J]. Journal of Insects as Food and Feed, 2015, 1(4): 261-270.
[21] Vander Fels-Klerx H J, Camenzuli L, van der Lee M K, et al. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates[J]. Plos One, 2016, 11(11): 166-186.
[22] Biancarosa I, Liland N S, Biemans D, et al. Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media[J]. Journal of the Science of Food and Agriculture, 2018, 98(6): 2176-2183.
[23] Cai Minmin, Hu Ruiqi, Zhang Ke, et al. Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment[J]. Environmental Science and Pollution Research international, 2018, 25(2): 1559-1567.
[24] 袁橙,魏冬霞,解慧梅,等. 黑水虻幼蟲(chóng)處理規(guī)模化豬場(chǎng)糞污的試驗(yàn)研究[J]. 畜牧與獸醫(yī),2019,51(11):49-53. Yuan Cheng, Wei Dongxia, Xie Huimei, et al. Research on treatment of fecal pollution on large scale pig farms with black soldier fly larva[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(11): 49-53. (in Chinese with English abstract)
[25] Finke M D, Oonincx D G A B. Insects as Food for Insectivores[M]//Mass Production of Beneficial Organisms, Academic Press,2014: 583-616.
[26] Braeckman B, Smagghe G, Brutsaert N, et al. Cadmium uptake and defense mechanism in insect cells[J]. Environmental Research, 1999, 80: 231-243.
[27] Craig A, Hare L, Tessier A. Experimental evidence for cadmiumuptake via calcium channels in the aquatic insect Chironomusstaegeri[J]. Aquatic Toxicology, 1999, 44(4): 255-262.
[28] Postma J F, Vannugteren P, Marion B. Buckert‐ De Jong. Increased cadmium excretion in metal‐adapted populations of the midge Chironomus riparius (diptera)[J]. Environmental Toxicology and Chemistry, 2010, 15(3): 332-339.
[29] Mireji P O, Keating J, Hassanali A, et al. Expression of metallothionein and alpha- tubulin in heavy metal- tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae)[J]. Ecotoxicology and Environmental Safety, 2010, 73(1): 46-50.
[30] 劉西萍,隋美霞,徐中相,等. 微量元素鋅及不同鋅源在畜禽營(yíng)養(yǎng)上的研究進(jìn)展[J]. 中國(guó)畜牧獸醫(yī),2014,41(6):94-98. Liu Xiping, Sui Meixia, Xu Zhongxiang, et al. Research progress on zinc and different sources of zinc in animal nutrition[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(6): 94-98. (in Chinese with English abstract)
[31] 夏嬙,廖業(yè),朱偉,等. Zn2+在不同世代黑水虻體內(nèi)累積及分布規(guī)律[J]. 湖南科技大學(xué)學(xué)報(bào):自然科學(xué)版,2013,28(2):110-114. Xia Qiang, Liao Ye, Zhu Wei, et al. Accumulation and distribution of heavy metal Zn2+in two successive generations black soldier fly Hermetia illucens L. (Dipetra: Stratiomyidae)[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2013, 28(2): 110-114. (in Chinese with English abstract)
[32] Laity J H, Andrews G K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1)[J]. Archives of Biochemistry and Biophysics, 2007, 463: 201-210.
[33] Maryanski M, Kramarz P, Laskowski R, et al, Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L. ) exposed to zinc- or cadmium-contaminated food[J]. Ecotoxicology, 2002, 11: 127-139.
[34] Adam S, Asley F, Melanie N, et al. Malvolio is copper transporter in Drosophila melanogaster[J]. The Journal of Experimental Biology, 2008, 211(5): 709-716.
[35] Gao Qiao, Wang Xiaoyun, Wang Wanqiang, et al. Influences of chromium and cadmium on the development of black soldier fly larvae[J]. Environmental Science & Pollution Research, 2017, 24(9): 8637-8644.
[36] Saveyn H, Eder P. End-of-waste Criteria for Biodegradable Waste Subjected to Biological Treatment(Compost & Digest): Technical Proposals[M]. Luxemboury: Publications Office of the European Union, 2014,
[37] 林汲, 程琛, 韓明強(qiáng), 等.硅藻土有機(jī)肥對(duì)Cd-Zn復(fù)合污染土壤重金屬形態(tài)和有效性的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2014, 31(4):366-371. Lin Ji, Cheng Chen, Han Mingqiang, et al. Effects of diatomite or ganic fertilizer on Cd and Zn forms and availability of Cd-Zn polluted soil[J]. Journal of Agricultural Resources and Environment, 2014, 31(4):366-371. (in Chinese with English abstract)
[38] 張文娟. 重金屬在豬糞—蠅蛆—肉雞食物鏈上的轉(zhuǎn)移和積累[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016. Zhang Wenjuan. Mobility and Bioaccumulation of Heavy Metal along Manure-Maggot-Broiler Food Chain[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
Migration and changes of heavy metals during biotransformation of pig manure by black soldier fly
Wang Xiaobo, Cai Ruijie, Geng Weina, Mao Zhiyue, Zhao Yi, Jiang Huidong, Xu Xiaoyan※
(,,300384,)
A large amount of livestock manure has caused seriously ecological pollution, as the rapid development of livestock and poultry industry. The black soldier fly larvae (BSFL) are a good candidate for poultry and livestock manure treatment. The harvested insect bodies and feces can also be used as animal feed and organic fertilizer. The usage of BSFL can be efficient and environment-friendly to treat pig manure, but the heavy metals in pig manure have posed a great impact on the BSFL transformation process. In this study, the 7-day-old BSFL were used to transform pig manure at 30℃, in order to explore the BSFL growth and the transformation efficiency of manure, as well as the changes of heavy metals (Cu, Zn, Cr, Cd, As) in the BSFL bodies and feces. After 8 days of transformation, the larvae were about to enter the prepupal stage, where the transformation process terminated. The results showed that the dry weight of BSFL bodies increased with the prolongation of growth time during 8 days, and reached the highest value on the 8th day. The growth rate was the lowest from 0 to 2 d, whereas, the highest from 4 to 6 days. The conversion rate of pig manure increased with time, where the maximum value of 11.5% on the 6th day, and then decreased on the 8th day. The concentrations of Cu, Cr and As in BSFL bodies on the 8th day decreased by 24.5%, 21.7% and 33.0%, respectively, compared with those on the 2th day, indicating an obvious decrease in the concentrations of heavy metals with the larval growth. The content of Cd in BSFL increased with the larval growth, and the Cd concentration on the 8th day increased by 75.4%, compared with that on the 2th day. The changes of Cu, Cr, As and Cd concentrations in the BSFL feces were opposite to those of the bodies. The contents of Zn in the BSFL bodies and feces did not change significantly with the larval growth time. After 8 days of transformation, the Cd content in BSFL feces was significantly lower than that in pig manure, while, the contents of Cu, Cr, As and Zn were not significantly different from those in pig manure. The bioaccumulation factor of Cd by BSFL was the highest (reaching 3.8), and the values of other metals were lower than 1. The bioaccumulation of heavy metals was ranked in order Cd > Zn > Cu > Cr > As. After transformation, the heavy metals Cu, Cr, As and Zn in pig manure were mainly distributed in BSFL feces, accounting for 83.6%-92.7%; whereas, the distribution of Cd was 30.3%-50.2% in BSFL bodies and 49.8%-69.7% in feces. Compared with pig manure, the biological activities of Cu and As in BSFL feces increased, while those of Cr and Cd decreased. The biological activity of Zn did not change significantly after the transformation process. This finding can provide a potential data basis for the resource utilization of livestock manure by BSFL and the safety of transformed products.
manure; heavy metal; black soldier fly; insect feces; speciation
王小波,蔡瑞婕,耿維娜,等. 黑水虻生物轉(zhuǎn)化豬糞過(guò)程中重金屬的遷移變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):263-268.doi:10.11975/j.issn.1002-6819.2020.20.031 http://www.tcsae.org
Wang Xiaobo, Cai Ruijie, Geng Weina, et al. Migration and changes of heavy metals during biotransformation of pig manure by black soldier fly[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 263-268. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.031 http://www.tcsae.org
2020-07-24
2020-10-07
國(guó)家重點(diǎn)研發(fā)項(xiàng)目(2018YFD0500205);天津市科技計(jì)劃項(xiàng)目(19ZYYFSN00010;18ZXYENC00130)
王小波,高級(jí)實(shí)驗(yàn)師。主要從事農(nóng)業(yè)廢棄物資源化利用與土壤環(huán)境研究。Email:wangxiaobo1111@163.com
徐曉燕,博士,教授,主要從事資源環(huán)境科學(xué)研究。Email:xuxy6699@163.com
10.11975/j.issn.1002-6819.2020.20.031
X713
A
1002-6819(2020)-20-0263-06