陳 樂,章 中,郭家俊,申 瑾,陳 翔,尚彬玲
熱結(jié)合Nisin處理對枯草桿菌芽孢的殺滅效果
陳 樂,章 中※,郭家俊,申 瑾,陳 翔,尚彬玲
(寧夏大學(xué)食品與葡萄酒學(xué)院,銀川 750021)
芽孢是最難被殺滅的微生物,會造成食品腐敗和食物中毒。食品工業(yè)上常采用100 ℃以上的高溫來殺滅食品中的芽孢,但高溫?zé)崽幚頃蟠笥绊懯称返臓I養(yǎng)和感官品質(zhì)。為找到在較低溫度下殺滅芽孢的方法,該研究采用5個不同處理的芽孢懸浮液(單獨80 ℃熱處理、100 mg/L Nisin處理、500 mg/L Nisin處理、80 ℃結(jié)合100 mg/L Nisin處理、80 ℃結(jié)合500 mg/L Nisin處理)對芽孢的殺滅效果,研究并探討了殺菌機理。采用平板計數(shù)法、熒光偏振法、分光光度法和流式細胞術(shù)對Nisin協(xié)同較低溫度的熱處理后枯草芽孢桿菌芽孢的存活率、內(nèi)膜流動性、吸光度值及內(nèi)膜通透性進行了研究。研究發(fā)現(xiàn):單獨80 ℃熱處理和單獨使用Nisin均無法殺滅芽孢,但是80 ℃熱處理與Nisin結(jié)合時能夠?qū)ρ挎弋a(chǎn)生殺滅作用。80 ℃結(jié)合500 mg/L Nisin處理20 min后,芽孢存活濃度下降約1.4 lg(CFU/mL)。80 ℃結(jié)合500 mg/L Nisin處理20 min后,芽孢懸浮液熒光偏振度顯著降低(< 0.05),表明芽孢內(nèi)膜流動性大幅增加;在此處理條件下芽孢的內(nèi)容物釋放程度最大,直觀表現(xiàn)為吸光度值顯著降低(< 0.05)。80 ℃結(jié)合Nisin處理后,芽孢內(nèi)膜通透性顯著增加(< 0.05),并且Nisin濃度越高,芽孢內(nèi)膜通透性越強。試驗結(jié)果表明:80 ℃結(jié)合不同濃度Nisin處理能提高芽孢內(nèi)膜流動性和通透性,能有效殺滅細菌芽孢。Nisin能降低細菌芽孢耐熱性,有利于減少熱殺菌處理對食品的負(fù)面影響。
耐熱性;殺菌;內(nèi)膜;膜流動性;膜通透性;乳酸鏈球菌素;芽孢
芽孢是一些細菌在極端惡劣的環(huán)境下形成的休眠體,具有極強的抗逆性,可以存活數(shù)年甚至數(shù)百萬年[1-4]。食品殺菌過程難以徹底將芽孢殺滅,導(dǎo)致食品腐敗及食物中毒的事件時常發(fā)生[5-7]。芽孢含水率極低,高度脫水及芽孢內(nèi)膜的極端不通透性使其具有極強抗逆性[8-11]。研究表明,水分子透過芽孢內(nèi)膜,與芽孢內(nèi)核水合是殺滅芽孢的重要途徑之一[12-15]。水分子的跨膜運輸方式主要是自由擴散,芽孢內(nèi)膜的流動性及通透性直接影響水分子通過內(nèi)膜的難易程度,因此研究其內(nèi)膜流動性及通透性十分重要[16]。
磷脂是構(gòu)成芽孢內(nèi)膜的主要成分,不同條件下磷脂存在不同的狀態(tài)。研究表明[17-18]溫度升高能夠加強磷脂分子的側(cè)向熱運動,改變磷脂間氫鍵的作用,同時使磷脂的相態(tài)發(fā)生轉(zhuǎn)變,宏觀表現(xiàn)為膜流動性及通透性的增強,因此溫度是影響芽孢內(nèi)膜流動性及通透性的重要原因之一。
乳酸鏈球菌素(Nisin)是一種有效的天然生物防腐劑,是一種天然生物活性抗菌肽,也被稱為尼生素或乳鏈菌肽,具有較強的熱穩(wěn)定性和耐酸性。中國已允許Nisin作為食品防腐劑在多種食品中使用,根據(jù)GB2760《食品添加劑使用衛(wèi)生標(biāo)準(zhǔn)》對食品添加劑的要求,Nisin在食品中的最大添加量為500 mg/L。Nisin主要作用于細胞膜的表面,造成細菌膜的損傷[19-21]。Marta等[22]研究表明Nisin能夠抑制牛奶中梭狀芽胞桿菌營養(yǎng)細胞和芽孢的生長。通常溫度70~80 ℃就能夠殺滅食品中的細菌營養(yǎng)體,但是細菌芽孢能夠耐受更高的溫度[23]。本文將熱處理與Nisin結(jié)合,采用平板計數(shù)法、熒光偏振法、分光光度法和流式細胞術(shù)測定了芽孢的存活率、熒光偏振度、吸光度值及內(nèi)膜通透性,研究了Nisin協(xié)同較低溫度的熱處理對枯草桿菌芽孢的殺滅效果并探討了殺菌機理。本文通過研究芽孢的內(nèi)膜變化,以期降低殺滅芽孢所需的溫度,增強殺滅芽孢的效果,為食品殺菌提供一定的理論依據(jù)并有一定應(yīng)用價值。
枯草芽孢桿菌(),中國普通微生物菌種保藏管理中心(CGMCC),編號As 1.433;營養(yǎng)瓊脂,天津市大茂化學(xué)試劑廠;硫酸錳(分析純),天津市大茂化學(xué)試劑廠;1,6-二苯基-1,3,5-己三烯(1,6-Diphenyl-1,3,5-hexatriene,DPH),上海阿拉丁生化科技股份有限公司;Nisin(分析純),上海阿拉丁生化科技股份有限公司;碘化丙啶(Propidium Iodide,PI),北京索萊寶科技有限公司;TSA-YE培養(yǎng)基,北京索萊寶科技有限公司。
DSX-280B型高壓滅菌鍋,上海申安醫(yī)療器械廠;LRH系列生化培養(yǎng)箱,上海一恒科學(xué)儀器有限公司;722型可見分光光度計,上海馳唐電子有限公司;TGL-10B型離心機,上海安亭科學(xué)儀器廠;電子恒溫不銹鋼水浴鍋,上海宜昌儀器紗篩廠;F-7000熒光分光光度計,日本日立有限公司;CyFlow Cube 8流式細胞儀,日本SYSMEX(希森美康)株式會社。
1.3.1 培養(yǎng)基的配制
促芽孢生長錳鹽營養(yǎng)瓊脂培養(yǎng)基:取普通營養(yǎng)瓊脂培養(yǎng)基33 g加入硫酸錳0.153 8 g,蒸餾水1 000 mL,pH值為7.0,加熱煮沸3次,分裝試管內(nèi),121 ℃滅菌15 min,待用。
1.3.2 枯草芽孢桿菌芽孢的培養(yǎng)及菌懸液制備
枯草芽孢桿菌(As 1.433)菌種在營養(yǎng)瓊脂培養(yǎng)基活化后劃線接種到試管斜面促芽孢生長培養(yǎng)基上,在37 ℃培養(yǎng)7 d,洗滌離心3次(9 000 r/min,15 min),菌懸液濃度大約調(diào)整在1.5×109CFU/mL左右,在4 ℃保存[24]。
1.3.3 DPH(1,6-Diphenyl-1,3,5-hexatriene)配制
以四氫呋喃作溶劑,配制濃度為2×10-3mol/L的DPH儲備液,4 ℃密閉保存在棕色瓶中,使用前用0.02 mol/L 磷酸鹽緩沖液(pH值為6.8)將儲備液稀釋至所需要的濃度[25]。
1.3.4 DPH標(biāo)記芽孢內(nèi)膜
DPH標(biāo)記芽孢內(nèi)膜參考錢靜亞等[25]的方法并進行了優(yōu)化。取8 mL芽孢懸浮液,離心(4℃,9 000 r/min,15 min),用PBS洗滌1次后離心(4 ℃,9 000 r/min,15 min)棄上清,加入8 mL濃度為3×10-6mol/L的DPH溶液,在50 ℃下孵育30 min;再用PBS洗滌2次,離心后菌體懸浮在適量的PBS緩沖液中,使菌體濃度在1×106~1×107CFU/mL。
1.3.5 芽孢懸浮液的熱結(jié)合Nisin處理
取標(biāo)記后的芽孢懸浮液,離心去上清液后,分別加入100和500 mg/L Nisin溶液,在80 ℃下處理20 min。即處理組:80 ℃、100 mg/L Nisin、500 mg/L Nisin、80 ℃結(jié)合100 mg/L Nisin、80 ℃結(jié)合500 mg/L Nisin溫度均為25 ℃;對照組:不加Nisin,25 ℃。
500 mg/L是國家食品添加劑標(biāo)準(zhǔn)中Nisin的最大添加量,100 mg/L是與最大添加量相比,較低的添加量。通常70~80 ℃溫度就能夠殺滅食品中的細菌營養(yǎng)體,但是對細菌芽孢產(chǎn)生殺滅作用就需要更高的溫度,將溫度與Nisin結(jié)合處理,預(yù)期在80℃條件下能夠?qū)毦挎弋a(chǎn)生殺滅作用。
1.3.6 芽孢懸浮液熒光偏振度的測定
熒光偏振度的測定,參照Voss等[26]的方法,在360 nm激發(fā)波長和430 nm發(fā)射波長下,采用激發(fā)與發(fā)射縫寬10 nm,測定水平熒光強度和垂直熒光強度并計算熒光偏振度,計算公式為
式中I為起偏器和檢偏器光軸同為垂直方向時測得的熒光強度,I為起偏器和檢偏器光軸分別為垂直和水平方向時測得的熒光強度,為光柵校正因子,I為起偏器和檢偏器光軸分別為水平和垂直方向時測得的熒光強度,I為起偏器和檢偏器光軸同為水平方向時測得的熒光強度。熒光偏振度值越小,流動性越大,反之則相反。
1.3.7 枯草芽孢桿菌的平板計數(shù)
將處理后的芽孢懸浮液進行梯度稀釋,吸取1 mL稀釋液,用TSA-YE培養(yǎng)基傾注平板計數(shù),每個平板中倒入1 mL稀釋菌液和15~20 mL TSA-YE培養(yǎng)基,在37 ℃下培養(yǎng)24~48 h,進行計數(shù)并計算存活芽孢濃度,計算公式為
式中為不同處理后的菌落數(shù)。
1.3.8 芽孢懸浮液吸光度值的測定
取處理后的枯草芽孢桿菌芽孢懸浮液,在600 nm下測定吸光度值,該吸光度值常用來估計芽孢內(nèi)容物的釋放情況[27]。測定前將芽孢懸浮液搖晃均勻。
1.3.9 流式細胞儀檢測枯草芽孢桿菌芽孢內(nèi)膜通透性
取處理前后的枯草芽孢桿菌芽孢懸浮液,稀釋到菌液濃度為106~107CFU/mL。使用PI染色后,用流式細胞儀檢測前向散射光(Forward Scatter,F(xiàn)S)、側(cè)向散射光(Side Scatter,SS)、熒光通道FL2和FL3[28]。數(shù)據(jù)采集后用FCS Express Version 3.0軟件(De Novo software,Canada)分析。
1.3.10 統(tǒng)計分析
所有的試驗至少重復(fù)3次,數(shù)據(jù)通過SPSS 17.0進行分析,以<0.05表示差異性顯著,采用Origin 2018軟件作圖。
如圖1所示,與未經(jīng)任何處理的對照相比,單獨使用80 ℃熱處理或Nisin處理都無法對芽孢產(chǎn)生殺滅作用。熱結(jié)合Nisin能夠殺滅芽孢,80 ℃結(jié)合100 mg/L Nisin處理20 min后,芽孢存活濃度下降了0.5 lg(CFU/mL),80 ℃結(jié)合500 mg/L Nisin處理20 min后,芽孢存活濃度下降程度最大,下降了約1.4 lg(CFU/mL),并且Nisin濃度越高,對芽孢造成的殺滅作用越強。溫度能夠?qū)?nèi)膜磷脂產(chǎn)生一定影響,同時Nisin能夠作用于芽孢內(nèi)膜,熱結(jié)合Nisin對芽孢內(nèi)膜的影響可能存在協(xié)同作用,導(dǎo)致芽孢內(nèi)膜通透性增加,水分子進入芽孢內(nèi)部,導(dǎo)致其耐熱性下降,從而被殺滅。因此,以下試驗以芽孢內(nèi)膜為研究對象,采用熒光偏振法、分光光度法及流式細胞術(shù)對芽孢懸浮液熒光偏振度、吸光度值和芽孢內(nèi)膜通透性進行研究,探究芽孢內(nèi)膜流動性及通透性的變化是否是導(dǎo)致其被殺滅的重要原因之一。
注:標(biāo)有不同字母的處理之間具有顯著性差異(P<0.05),下同。
作為一種較為敏感的熒光探針,DPH常用于研究生物膜的流動性,通常標(biāo)記于磷脂雙分子層內(nèi),外界環(huán)境改變時,磷脂特性的改變會使熒光偏振度發(fā)生變化,宏觀表現(xiàn)為膜流動性的改變,熒光偏振度越低,膜流動性越強[26,29-30]。熱結(jié)合Nisin處理后,芽孢懸浮液熒光偏振度如圖2。從圖中可以看出,80 ℃熱處理或Nisin處理都能夠增加芽孢內(nèi)膜的流動性,但80 ℃、100 mg/L Nisin和80 ℃結(jié)合100 mg/L Nisin處理間,熒光偏振度沒有顯著差異(>0.05)。500 mg/L Nisin處理和80 ℃結(jié)合500 mg/L Nisin處理后,熒光偏振度下降程度最大,但兩者間沒有顯著差異(>0.05)。Nisin可直接作用芽孢內(nèi)膜,影響其熒光偏振度,并且Nisin濃度越高,對芽孢懸浮液熒光偏振度影響越大,芽孢內(nèi)膜流動性越強。而80 ℃的熱處理對芽孢內(nèi)膜的影響較小,500 mg/L濃度的Nisin對芽孢懸浮液熒光偏振度的影響遠大于80 ℃熱處理對芽孢懸浮液熒光偏振度的影響。
圖2 熱結(jié)合Nisin處理對枯草芽孢桿菌芽孢懸浮液熒光偏振度的影響
芽孢內(nèi)容物的釋放與芽孢內(nèi)膜通透性密切相關(guān),芽孢懸浮液的吸光度值常用來估計芽孢內(nèi)容物的釋放情況,芽孢內(nèi)容物釋放程度越大,吸光度越低[27,31-32]。熱結(jié)合Nisin處理后,芽孢懸浮液吸光度值變化如圖3。不同處理后,芽孢懸浮液吸光度值顯著降低(<0.05)。Nisin單獨處理后,芽孢懸浮液吸光度值顯著低于單獨的80 ℃熱處理(<0.05),并且Nisin濃度越高,吸光度值下降程度越大。80 ℃結(jié)合500 mg/L Nisin處理后,吸光度值下降程度最大。Nisin能夠作用于芽孢內(nèi)膜,在膜的表面形成通透的孔道,導(dǎo)致芽孢內(nèi)容物的釋放。
圖3 熱結(jié)合Nisin處理對枯草芽孢桿菌芽孢懸浮液吸光度值的影響
進一步采用流式細胞術(shù)研究芽孢內(nèi)膜損傷情況。當(dāng)膜受到損傷時,PI能夠透過受損的細胞膜進入到細胞內(nèi)部,結(jié)合DNA后發(fā)出強烈的熒光。將熱結(jié)合Nisin處理后的芽孢用PI染色,流式細胞術(shù)檢測結(jié)果如圖4,以對照芽孢為標(biāo)準(zhǔn)將流式細胞術(shù)直方圖分為M1陰性和M2陽性區(qū)域,對照芽孢未經(jīng)任何處理,芽孢內(nèi)膜完整,無損傷情況,其DNA無法被PI染色,其熒光分布基本在M1陰性區(qū)域。經(jīng)過殺菌處理后,芽孢內(nèi)膜遭到破壞,PI透過受損的芽孢內(nèi)膜進入芽孢內(nèi)部,與芽孢DNA結(jié)合,發(fā)出強烈熒光,流式細胞術(shù)直方圖表現(xiàn)為熒光區(qū)域分布均從M1陰性區(qū)域向M2陽性區(qū)域移動。80 ℃處理后,陽性區(qū)域占比34.78%。100 mg/L Nisin處理后,陽性區(qū)域占比35.45%,500 mg/L Nisin處理后,陽性區(qū)域占比62.74%。80 ℃結(jié)合100 mg/L Nisin處理后,陽性區(qū)域占比64.51%,80 ℃結(jié)合500 mg/L Nisin處理后,陽性區(qū)域占比81.18%。結(jié)果表明,熱結(jié)合Nisin處理,會使芽孢內(nèi)膜破損,增加芽孢內(nèi)膜的通透性。相比熱處理或Nisin單獨作用,熱結(jié)合Nisin處理后,芽孢內(nèi)膜通透性顯著增加(<0.05),Nisin濃度越高,芽孢內(nèi)膜通透性越強。溫度對芽孢內(nèi)膜的影響及Nisin對芽孢內(nèi)膜的作用可能是導(dǎo)致芽孢內(nèi)膜通透性變化的主要原因。
注:M1表示熒光強度較低的陰性區(qū)域,M2表示熒光強度較高的陽性區(qū)域。
熱結(jié)合Nisin處理后,芽孢內(nèi)膜流動性、芽孢懸浮液吸光度值及芽孢流式細胞儀檢測結(jié)果是一致的,均表明熱結(jié)合Nisin處理下芽孢死亡與芽孢內(nèi)膜通透性的變化相關(guān)。
1)采用不同的處理方法(單獨80 ℃、100 mg/L Nisin、500 mg/L Nisin、80℃結(jié)合100 mg/L Nisin、80℃結(jié)合500 mg/L Nisin)對芽孢懸浮液進行處理,平板計數(shù)結(jié)果表明,單獨使用80 ℃熱處理或Nisin處理都無法對芽孢產(chǎn)生殺滅作用。80 ℃結(jié)合500 mg/L Nisin處理20 min后,芽孢存活濃度下降程度最大。
2)對不同處理的芽孢懸浮液的熒光偏振度分析發(fā)現(xiàn),與對照組比較,單獨80℃、不同濃度的Nisin、溫度結(jié)合不同濃度Nisin處理后,熒光偏振度均顯著下降(<0.05),但500 mg/L濃度的Nisin對芽孢懸浮液熒光偏振度最大,并遠大于80 ℃熱處理對芽孢內(nèi)膜的影響。
3)對芽孢懸浮液的吸光度值及內(nèi)膜通透性分析發(fā)現(xiàn),不同處理后吸光度值顯著降低(<0.05),并且Nisin濃度越高,吸光度值下降程度越大。80 ℃結(jié)合500 mg/L Nisin處理后,吸光度值下降程度最大。相比熱處理或Nisin單獨作用,熱結(jié)合Nisin處理后,芽孢內(nèi)膜通透性顯著增加(<0.05),Nisin濃度越高,芽孢內(nèi)膜通透性越強。
綜上所述,芽孢內(nèi)膜是有關(guān)芽孢高殺菌抗性的關(guān)鍵結(jié)構(gòu),本試驗針對芽孢內(nèi)膜展開研究,發(fā)現(xiàn)Nisin和80 ℃熱處理兩者結(jié)合處理可有效破壞芽孢內(nèi)膜的水分子通透屏障,推測水分子更易通過芽孢內(nèi)膜進入到芽孢核心。隨著芽孢核心水分含量的增加,芽孢耐熱性大大降低,80 ℃熱結(jié)合Nisin處理就能有效殺滅芽孢,為保證食品安全提供了理論依據(jù)和新的技術(shù)手段。
[1] Trunet C, Ngo H, Coroller L. Quantifying permeabilization and activity recovery ofspores in adverse conditions for growth[J]. Food Microbiology, 2019, 81: 115-120.
[2] Fan Lihua, Ismail Balarabe Bilyaminu, Hou Furong, et al. Thermosonication damages the inner membrane ofspores and impels their inactivation[J]. Food Research International, 2019, 125: 108514. 1-108514. 8.
[3] 朱瑤迪,張佳燁,李苗云,等. 肽聚糖對肉制品中產(chǎn)氣莢膜梭菌芽孢萌發(fā)率影響及預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(4):287-293. Zhu Yaodi, Zhang Jiaye, Li Miaoyun, et al. Effect of different Peptidoglycan onspore germination and quantitative prediction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 287-293. (in Chinese with English abstract)
[4] Paul Christophe, Filippidou Sevasti, Jamil Isha, et al. Bacterial spores, from ecology to biotechnology[J]. Advances in Applied Microbiology, 2018, 106: 79-111.
[5] Voundi Steve Olugu, Nyegue M, Bougnom Blaise Pascal, et al. The Problem of Spore-forming Bacteria in Food Preservation and Tentative Solutions[M]. New Jersey: John Wiley & Sons, Inc, 2017: 139-151.
[6] 梁棟,陳芳,胡小松. 芽孢萌發(fā)研究進展[J]. 中國食品學(xué)報,2018,18(6):221-228. Liang Dong, Chen Fang, Hu Xiaosong. Research progress on the spore germination[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(6): 221-228. (in Chinese with English abstract)
[7] 何樹祥. 運用光學(xué)新技術(shù)探究理化因子對蘇云金芽孢桿菌芽孢萌發(fā)的影響[D]. 桂林:廣西師范大學(xué),2017. He Shuxiang. Exploring the Effects of Physical and Chemical Factors on Spore ofby Using New Optical Technology[D]. Guilin: Guangxi Normal University, 2017. (in Chinese with English abstract)
[8] Leggett M J, McDonnell G, Denyer S P, et al. Bacterial spore structures and their protective role in biocideresistance[J]. Journal of Applied Microbiology, 2012, 113(3): 485-498.
[9] Cowan Ann E, Olivastro Elizabeth M, Koppel Dennis E, et al. Lipids in the inner membrane of dormant spores ofspecies are largely immobile[J]. Proceedings of the National Academy of ences of the United States of America, 2004, 101(20): 7733-7738.
[10] Genest P C, Barbara S, Elizabeth M, et al. Killing of spores ofby peroxynitrite appears to be caused by membrane damage[J]. Microbiology, 2002, 148: 307-314.
[11] Setlow P. Spores of: Their resistance to and killing by radiation, heat and chemicals[J]. Journal of Applied Microbiology, 2006, 101(3): 514-25.
[12] Dong W, Green J, Korza G, et al. Killing of spores ofspecies by cetyltrimethylammonium bromide[J]. Journal of Applied Microbiology, 2019, 126: 1391-1401.
[13] Lee S Y, Chung H J, Kang D H. Combined treatment of high pressure and heat on killing spores ofacidoterrestris in apple juice concentrate[J]. Journal of Food Protection, 2006, 69(5): 1056-1060.
[14] Aldrete-Tapia J A, Torres J. Antonio. Enhancing the inactivation ofspores during pressure-assisted thermal processing[J]. Food Engineering Reviews, 2020.
[15] Zhang Zhong, Jiang Bin, Liao Xiaojun, et al. Inactivation ofspores by combining high-pressure thermal sterilization and ethanol[J]. International Journal of Food Microbiology, 2012, 160(2): 99-104.
[16] Takuya Inokuchi, Noriyoshi Arai. Relationship between water permeation and flip-flop motion in a bilayer membrane[J]. Physical Chemistry Chemical Physics Pccp, 2018, 20(44): 28155-28161.
[17] 張良. 高靜壓與溫度協(xié)同殺滅芽孢的效果與機制研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2015. Zhang Liang. Research on Effectiveness and Mechanism of Spore Inactivation by High Hydrostatic Pressure Combined with Heat[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[18] E. 西姆. 膜生物化學(xué)[M]. 北京:科學(xué)出版社,1985.
[19] 廖涵. 乳酸鏈球菌素(Nisin)與超高壓結(jié)合對的協(xié)同殺菌效應(yīng)[J]. 食品工業(yè)科技,2019,40(20): 82-87. Liao Han. Synergistic effects of Nisin and HPP on the inactivation of[J]. Science and Technology of Food Industry, 2019, 40(20): 82-87. (in Chinese with English abstract)
[20] 劉洪霞. ε-聚賴氨酸、Nisin和納他霉素的抑菌特性及協(xié)同抑菌機理研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2013. Liu Hongxia The Inhibition Activity and Synergistic Mechanism of ε - Polylysine、Nisin and Natamycin[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[21] Modugno Chloe, Kmiha Souhir, Simonin Helene, et al. High pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin[J]. Food Microbiology, 2019, 84: 103244.
[22] Marta ávila, Natalia Gómez-Torres, Marta Hernández, et al. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species[J]. International Journal of Food Microbiology, 2014, 172: 70-75.
[23] 胡長利,向新華,韓曉旭,等. 耐熱芽孢桿菌()的研究進展概述[J]. 食品安全質(zhì)量檢測學(xué)報,2015,6(7): 2795-2801. Hu Changli, Xiang Xinhua, Han Xiaoxu, et al. Research and development of[J]. Journal of Food Safety & Quality, 2015, 6(7): 2795-2801. (in Chinese with English abstract)
[24] 章中,孫靜,張津瑜,等. 高壓熱殺菌處理對枯草桿菌芽孢皮層裂解酶活力的影響[J]. 食品工業(yè)科技. 2018,39(15):90-95.
Zhang Zhong, Sun Jing, Zhang Jinyu, et al. Effects of high pressure thermal sterilization on the activity of cortex-lytic enzyme extracted fromspores[J]. Science and Technology of Food Industry. 2018,39(15):90-95. (in Chinese with English abstract)
[25] 錢靜亞,馬海樂,李樹君,等. 脈沖磁場對枯草芽孢桿菌細胞膜流動性的影響[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(11): 202-207. Qian Jingya, Ma Haile, Li Shujun, et al. Effects of the pulsed magnetic field on membrane fluidity of[J]. Transactions of the Chinese Society for Agricultural Machinery. 2013, 44(11): 202-207. (in Chinese with English abstract)
[26] Voss Dnielle, Montville Thomas J. 1, 6-Diphenyl-1, 3, 5-hexatrine as a reporter of inner spore membrane fluidity inand Alicyclobacillus acidoterrestris[J]. Journal of Microbiological Methods, 2014, 96: 101-103.
[27] Hue Nguyen Thi Minh, Dantigny Philippe, Gervais Patrick, et al. Germination and inactivation ofspores induced by moderate hydrostatic pressure[J]. Biotechnology and Bioengineering, 2010, 107: 876-83.
[28] Amor Kaouther Ben, Breeuwer Pieter, Verbaarschot Patrick, et al. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and deadcells during bile salt stress[J]. Applied and Environmental Microbiology, 2002, 68(11): 5209-5216.
[29] Trevors Jack. Fluorescent probes for bacterial cytoplasmic membrane research[J]. Journal of Biochemical and Biophysical Methods, 2003, 57(2): 87-103.
[30] Gharib Riham, Fourmentin Sophie, Charcosset Catherine, et al. Effect of hydroxypropyl-β–cyclodextrin on lipid membrane fluidity, stability and freeze-drying of liposomes[J]. Journal of Drug Delivery ence and Technology, 2018, 44: 101-107.
[31] Wuytack E Y, Soons J, Poschet F, et al. Comparative study of pressure and nutrient induced germination ofspores[J]. Applied and Environmental Microbiology, 2000, 66(1): 257-61.
[32] Farkas J, Andrassy E, Simon A, et al. Effecte of pasteurizing levels of high hydrostatic pressure onluxAB spores[J]. Acta Alimentaria, 2003, 32(4): 373-381.
Effects of heat combining with Nisin treatment on the sterilization ofspores
Chen Le, Zhang Zhong※, Guo Jiajun, Shen Jin, Chen Xiang, Shang Binling
(,750021,))
Bacterial spores are the most difficult microorganisms to be inactivated, which can cause food spoilage and poisoning in food production. High-temperature treatment above 100 ℃ is often used to inactivate bacterial spores in food, but the heat treatment at high temperature inevitably affects the nutrition and sensory quality of products. In this study, a lower-temperature heat treatment combined with Nisin on bacterial spores was proposed to explore the inactivation effects and mechanism, in order to find a feasible way to inactivate bacterial spores with lower-temperature. A plate-counting method, fluorescence polarization method, spectrophotometry and flow cytometry were used to determine the survival rate, fluorescence polarization degree, the absorbance value and inner membrane permeability of the spore samples. The results showed that: 1) The 80 ℃ treatment or Nisin alone cannot inactivate bacterial spores, but the 80℃ heat treatment combined with Nisin can effectively inactivate bacterial spores. After treated at 80 ℃ with 500 mg/L Nisin for 20 min, the survival concentration of bacterial spores decreased by about 1.4 lg (CFU/mL). 2) The fluorescent probe DPH was used to mark the inner membrane of bacterial spores, and further to analyze the fluidity of bacterial spores in the inner membrane. The results showed that the heat treatment combined with Nisin can significantly improve the fluidity of the inner membrane. Nisin can directly affect the degree of fluorescence polarization in the inner membrane. With higher Nisin concentration, the influence of Nisin on the degree of fluorescence polarization of inner membrane was stronger, whereas, the influence was smaller in the heat treatment at 80 ℃. The effects of 500 mg/L Nisin on the bacterial spores were much stronger than that of heat at 80 ℃. 3) The content release of spore was closely related to the inner membrane permeability of bacterial spores, and the absorbance value of spore suspension was often used to estimate the release of spore’s content. The higher release degree of spore’s content caused more significant decrease of the absorbance value of spore suspension. After 80℃ thermal treatment combined with Nisin, the absorbance value of spore suspension was significantly lower than that of thermal or Nisin treatment alone. After the treatment with 80 ℃ heat and 500 mg/L Nisin for 20 min, the absorbance value of spore suspension was the lowest. 4) The spores treated with heat combined with Nisin were stained with PI (Propidium Iodide), whereas, the changes of inner membrane permeability were studied by flow cytometry. The 80℃ thermal treatment combined with Nisin can significantly increase the permeability of inner membrane. Compared with heat or Nisin used alone, the permeability of inner membrane increased significantly after thermal treatment combined with Nisin. The higher Nisin concentration caused the higher permeability of inner membrane. It was found that Nisin had significant effects on the fluidity and permeability of inner membrane for the spore, where the 80 ℃ thermal treatment combined with different concentrations of Nisin had synergistic effect to improve the permeability of inner membrane. With the increase in the permeability of inner membrane, water was easier to enter the core of bacterial spores, which reduced the heat resistance of bacterial spores. The 80 ℃ thermal treatment combined with 500 mg/L Nisin can effectively inactivate bacterial spores, while the addition of Nisin greatly reduced the temperature required for inactivation of bacterial spore. The findings can contribute to reduce the damages of thermal sterilization on the nutritional and sensory quality in food production.
heat resistance; sterilization; inner membrane; membrane fluidity; membrane permeability; Nisin; spores
陳樂,章中,郭家俊,等. 熱結(jié)合Nisin處理對枯草桿菌芽孢的殺滅效果[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):320-325.doi:10.11975/j.issn.1002-6819.2020.20.037 http://www.tcsae.org
Chen Le, Zhang Zhong, Guo Jiajun, et al. Effects of heat combining with Nisin treatment on the sterilization ofspores[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 320-325. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.037 http://www.tcsae.org
2020-07-12
2020-10-10
國家自然科學(xué)基金項目(31760474);國家自然科學(xué)基金項目(31460410)
陳樂,主要研究方向為非熱加工技術(shù)。Email:chenlechengle@163.com
章中,博士,副教授,主要研究方向為非熱加工技術(shù)。Email:zhangzhong99@126.com
10.11975/j.issn.1002-6819.2020.20.037
TS201.3
A
1002-6819(2020)-20-0320-06