鄧梓鋒,吳旭樹,王兆禮,2,李 軍,陳曉宏
基于GRACE重力衛(wèi)星數(shù)據(jù)的珠江流域干旱監(jiān)測
鄧梓鋒1,吳旭樹1,王兆禮1,2※,李 軍1,陳曉宏3
(1. 華南理工大學(xué)土木與交通學(xué)院,廣州 510640;2. 華南理工大學(xué)亞熱帶建筑科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,廣州 510641;3. 中山大學(xué)水資源與環(huán)境研究中心,廣州 510275)
為探究重力恢復(fù)和氣候試驗(yàn)任務(wù)(Gravity Recovery and Climate Experiment mission,GRACE)衛(wèi)星數(shù)據(jù)在干旱研究中的應(yīng)用潛力,該研究采用基于GRACE重力衛(wèi)星數(shù)據(jù)的無量綱的標(biāo)準(zhǔn)化水儲量赤字干旱指數(shù)(Water Storage Deficit Index,WSDI)對珠江流域2002—2017年進(jìn)行干旱監(jiān)測,通過將其和常用干旱指數(shù)與實(shí)際干旱質(zhì)心軌跡進(jìn)行對比,評估其在珠江流域的干旱監(jiān)測效用。研究結(jié)果表明:1)2002—2017年期間,WSDI監(jiān)測到的旱情與實(shí)際發(fā)生的旱情基本一致,GRACE重力衛(wèi)星數(shù)據(jù)能捕捉到干旱事件的發(fā)生、發(fā)展和消亡以及其干旱特征;2)WSDI的時間變化及其對氣候異常的響應(yīng)與常用干旱指數(shù)吻合良好,具有有著較強(qiáng)的相關(guān)性,且能反映研究區(qū)長期的綜合水分變化。除了SPI-3與SPEI-3外,其他常用干旱指數(shù)與WSDI的相關(guān)系數(shù)都在0.665以上,其中scPDSI相關(guān)指數(shù)最高,為0.803;3)WSDI與常用干旱指數(shù)在空間上描述的干旱事件的干旱質(zhì)心軌跡基本一致,都能大致反映出了大范圍干旱事件的干旱質(zhì)心從東往西移動的現(xiàn)象。WSDI能從時間和空間上刻畫出研究區(qū)水文干旱的演變規(guī)律,適用于大尺度水文干旱的監(jiān)測與評估,具有明顯的優(yōu)勢和應(yīng)用潛力。
干旱;GRACE重力衛(wèi)星;標(biāo)準(zhǔn)化水儲量赤字干旱指數(shù);效用評估;珠江流域
隨著全球氣候變化,極端氣候事件發(fā)生的頻率和強(qiáng)度日益增加。干旱是世界上破壞性最大、代價最高的極端氣候事件之一,有著發(fā)展緩慢、持續(xù)時間長、受災(zāi)面積大、嚴(yán)重程度深的特點(diǎn)[1]。干旱監(jiān)測與評估的研究對減災(zāi)防災(zāi)有重大意義。干旱是區(qū)域性的,其明顯的表現(xiàn)是陸地水儲量低于歷史平均水平(陸地水儲量是地表水、生物水、土壤水、地下水和雪/冰的總和)。GRACE(Gravity Recovery and Climate Experiment mission)重力衛(wèi)星為監(jiān)測陸地儲水量的變化提供了一種長期有效的方法。其優(yōu)勢在于能不受地面條件的限制進(jìn)行連續(xù)、快速且重復(fù)地觀測,有效解決地面觀測范圍不深、空間分布不均勻、資料獲取不充分以及水文模型分布不均勻等問題,能得到全球分布均勻,且觀測尺度統(tǒng)一的數(shù)據(jù)[2-3]。研究表明,GRACE重力衛(wèi)星在干旱研究和應(yīng)用方面有著巨大的潛力[4]。因此,利用GRACE重力衛(wèi)星進(jìn)行干旱監(jiān)測成為了干旱研究領(lǐng)域的研究熱點(diǎn)之一。
GRACE重力衛(wèi)星在干旱方面的研究和應(yīng)用有著重大的意義,國內(nèi)外也已經(jīng)開展了相關(guān)的研究工作。在國外,GRACE重力衛(wèi)星干旱研究領(lǐng)域的研究和應(yīng)用較為充分。在中歐地區(qū)、美國得克薩斯州,Houborg等[2,5]將同化后的GRACE重力衛(wèi)星數(shù)據(jù)驅(qū)動水文模型,提高了水文模型表征干旱的準(zhǔn)確性,且將其研究應(yīng)用于實(shí)際的干旱監(jiān)測。Thomas等[6]建立了基于GRACE陸地水儲量赤字(Terrestrial Water Storage Deficit,TWSD)的評估框架來探究水文干旱特征,并在多流域驗(yàn)證了該方法的適用性。在美國大陸,Zhao等[7]提出了一個考慮GRACE測量和泄漏誤差的干旱嚴(yán)重指數(shù)(GRACE satellite-based drought severity index)。Cammalleri等[8]指出,氣象干旱指數(shù)顯示的降水不足可作為GRACE觀測到的水文干旱的局部代用指數(shù)。Sinha等[9]將降水偏差和陸地水儲量相結(jié)合作為干旱評價指數(shù)對印度主要流域進(jìn)行干旱特征表征。另外,一些學(xué)者還使用GRACE重力衛(wèi)星監(jiān)測幼發(fā)拉底河-底格里斯河[10]、亞馬遜河流域[11]、烏干達(dá)[12]等大尺度區(qū)域在干旱期間的陸地水儲量消耗程度。而在國內(nèi),GRACE重力衛(wèi)星干旱研究領(lǐng)域的研究和應(yīng)用則相對薄弱。在干旱特征最為明顯的中國西南地區(qū),Long等[13-16]利用GRACE陸地水儲量變化(Terrestrial Water Storage Change,TWSC)指數(shù)進(jìn)行干旱特征監(jiān)測,并發(fā)現(xiàn)高原地區(qū)干旱的頻率和嚴(yán)重程度都在加劇。Zhang等[17-18]利用GRACE陸地水儲量異常(Terrestrial Water Storage Anomaly,TWSA)指數(shù)分別監(jiān)測了長江流域、黃河源區(qū)的干旱事件,驗(yàn)證該指數(shù)的適用性。
然而,由于陸地水儲量在不同水文氣候區(qū)的較弱空間相似性以及水文模型本身和驅(qū)動數(shù)據(jù)的不確定性,已有的大部分研究缺乏空間可比性。不同地區(qū)的陸地水儲量不盡相同,基于TWSC、TWSA、TWSD等有量綱指數(shù)的相互比較是非常困難的,而無量綱標(biāo)準(zhǔn)化指數(shù)具有空間可比性,能在不同地區(qū)間甚至相同地區(qū)不同網(wǎng)格間相互比較。當(dāng)前關(guān)于采用基于GRACE重力衛(wèi)星數(shù)據(jù)的無量綱標(biāo)準(zhǔn)化干旱指數(shù)進(jìn)行干旱監(jiān)測分析與干旱質(zhì)心軌跡方面的評估以及綜合評估其干旱監(jiān)測效用的研究在國內(nèi)仍較為少見。另外,珠江流域有著降水時空分布不均勻的特性,干旱災(zāi)害時常出現(xiàn),且GRACE重力衛(wèi)星數(shù)據(jù)在該流域的干旱研究與應(yīng)用相對較少。
綜上所述,本研究采用基于GRACE重力衛(wèi)星數(shù)據(jù)的無量綱的標(biāo)準(zhǔn)化水儲量赤字干旱指數(shù)WSDI(Water Storage Deficit Index)對珠江流域進(jìn)行干旱監(jiān)測,并將WSDI與常見的干旱指數(shù)作對比,評估其在珠江流域的干旱監(jiān)測效用,為大尺度水文干旱監(jiān)測與評估提供新的方法。
珠江流域(102°14′~115°53′E,21°31′~26°49′N)地處熱帶和亞熱帶季風(fēng)氣候區(qū),年平均氣溫在14~22 ℃之間,多年平均降水量約1 200~2 000 mm,地貌以山地丘陵為主。珠江流域雨量充沛,特點(diǎn)是歷時長、強(qiáng)度大,但時空分布不均勻?qū)е赂珊惮F(xiàn)象時常出現(xiàn)。雖然近年來珠江流域的總降水量呈現(xiàn)增加的趨勢[19],但是隨著氣溫的升高導(dǎo)致的蒸散發(fā)作用不斷增強(qiáng),極端氣候事件的發(fā)生頻率增加,珠江流域的干旱問題越來越嚴(yán)重[20]。在2004、2009—2011年等年份珠江流域都發(fā)生嚴(yán)重旱災(zāi),部分河溪斷流,農(nóng)業(yè)、畜牧業(yè)受損嚴(yán)重,下游大灣區(qū)咸潮上溯,威脅供水安全。而小干旱災(zāi)害幾乎每年都會發(fā)生。
1.2.1 GRACE重力衛(wèi)星數(shù)據(jù)
GRACE重力衛(wèi)星數(shù)據(jù)是由GRACE重力衛(wèi)星收集并經(jīng)數(shù)據(jù)中心進(jìn)行解算獲得,數(shù)據(jù)空間覆蓋范圍為全球,表面空間分辨率通常約為1°,時間分辨率為1個月[21]。GRACE重力衛(wèi)星適用于大尺度區(qū)域的研究,研究區(qū)域面積需要在2×105km2以上,其數(shù)據(jù)精度才能滿足質(zhì)量要求[22]。
本研究采用德克薩斯大學(xué)空間研究中心(Center for Space Research at University of Texas, Austin,CSR)和美國噴氣動力實(shí)驗(yàn)室(Jet Propulsion Laboratory,JPL)公布的GRACE的Level-2 RL06的GSM數(shù)據(jù),GRACE重力衛(wèi)星數(shù)據(jù)的時間范圍為2002年4月至2017年6月,共163個月。由于衛(wèi)星測量時電力不足或衛(wèi)星振動導(dǎo)致20個月的數(shù)據(jù)缺失。因此,本研究采用了線性插值的方法填補(bǔ)GRACE重力衛(wèi)星數(shù)據(jù)的缺失值[23-24],該方法簡單且被廣泛采用。但是,數(shù)據(jù)的季節(jié)性變化不可避免地會被線性插值的方法所忽略,從而導(dǎo)致所識別的干旱事件的特征有誤差。但這些誤差不會對干旱評估造成顯著的影響。對GRACE數(shù)據(jù)按照以下步驟進(jìn)行處理,并得到陸地水儲量數(shù)據(jù):
1)采用衛(wèi)星激光測距數(shù)據(jù)代替GRACE重力衛(wèi)星數(shù)據(jù)的20(2次0階球諧系數(shù),即地球動態(tài)扁率)時間序列,并采用海洋和大氣模型的1階重力系數(shù)的估算值補(bǔ)充GRACE重力衛(wèi)星數(shù)據(jù)的1階重力系數(shù)的缺失[25]。
2)采用Swenson等[25]提出的去相關(guān)濾波器和300 km高斯濾波器[26]降低信號噪聲。并將濾波后的GRACE重力衛(wèi)星數(shù)據(jù)的球諧系數(shù)截至60階次。
3)對經(jīng)過濾波處理和截取球諧系數(shù)的數(shù)據(jù)采用“尺度因子”進(jìn)行信號恢復(fù)[27]。
4)將算得的GRACE球諧系數(shù)數(shù)據(jù)轉(zhuǎn)換成空間分辨率為0.25°的TWSA柵格數(shù)據(jù)。由于GRACE重力衛(wèi)星數(shù)據(jù)中存在噪聲,因此在進(jìn)行干旱分析之前,對GRACE TWSA進(jìn)行3個月的滑動平均濾波處理。
本研究在Feng開發(fā)的GRACE_Matlab_Toolbox[28]的基礎(chǔ)上完善代碼,對GRACE重力衛(wèi)星數(shù)據(jù)進(jìn)行處理,陸地水儲量以等效水高表示。
1.2.2 其他數(shù)據(jù)
本研究采用反映不同類型干旱的指數(shù)作為參考。采用珠江流域183個地面氣象觀測站點(diǎn)所觀測到的2001—2017年逐日的氣象資料計(jì)算標(biāo)準(zhǔn)化降水指數(shù)(Standardized Precipitation Index,SPI);采用Penman-Monteith方法計(jì)算潛在蒸散發(fā)量,采用潛在蒸散發(fā)量和降水量計(jì)算標(biāo)準(zhǔn)化降水蒸散指數(shù)(Standardized Precipitation Evapotranspiration Index,SPEI);采用Variable Infiltration Capacity(VIC)模型估算的徑流數(shù)據(jù)計(jì)算標(biāo)準(zhǔn)化徑流指數(shù)(Standardized Runoff Index,SRI)[29];采用VIC模型取代原始PDSI中的雙層土壤模型,計(jì)算自校正的帕默爾干旱強(qiáng)度指數(shù)(Self-Calibrating Palmer Drought Severity Index,scPDSI)[29]。所有指數(shù)都插值為空間分辨率0.25°的柵格數(shù)據(jù)。SPI與SPEI反映氣象干旱,SRI、scPDSI分別反映水文干旱和農(nóng)業(yè)干旱。以上常用干旱指數(shù)現(xiàn)已被廣泛用于氣候變化對珠江流域干旱影響的研究[30-33]。氣象數(shù)據(jù)可在中國氣象局氣象數(shù)據(jù)中心網(wǎng)站下載(http://data.cma.cn),水文數(shù)據(jù)來源于珠江水利委員會與廣東省水文局。
TWSD為Thomas等提出的一種基于GRACE陸地水儲量的水文干旱監(jiān)測指數(shù),具體計(jì)算方法參考文獻(xiàn)[6]。TWSD的時間序列消除了季節(jié)性因素對陸地水儲量的干擾,得以更好地表征干旱特征。每月的TWSD是一種直接的度量指數(shù),其表示水儲量偏離正常水文狀況的量。當(dāng)TWSD的值小于0時,可以用TWSD來表征干旱。然而TWSD在干旱監(jiān)測中有一定的局限性,有著空間可比性較弱、缺乏明確的干旱分類體系等缺點(diǎn)。不同水文氣候區(qū)域條件不能直接用TWSD進(jìn)行比較。因此,采用無量綱的標(biāo)準(zhǔn)化水儲量赤字指數(shù)WSDI對流域進(jìn)行干旱分析[34]
WSDI時間序列中的負(fù)值表示陸地水儲量低于研究期內(nèi)的歷史平均水平,可用于表征干旱。根據(jù)WSDI的標(biāo)準(zhǔn)偏差定義其干旱分類。標(biāo)準(zhǔn)化的WSDI在不同水文氣候區(qū)域之間具有空間可比性。
另外,由于采用的處理策略、調(diào)優(yōu)參數(shù)和誤差模式不同,不同解算機(jī)構(gòu)的GRACE重力衛(wèi)星數(shù)據(jù)有一定的差異。為了降低該差異導(dǎo)致的誤差從而提高數(shù)據(jù)的精確性,采用JPL與CSR的TWSA的平均值計(jì)算TWSD,進(jìn)而計(jì)算WSDI。
與TWSD相同,連續(xù)3個月或以上出現(xiàn)WSDI為負(fù)值則為干旱事件[14]。根據(jù)WSDI的值和干旱歷時,干旱事件的嚴(yán)重程度可定義為干旱事件內(nèi)WSDI小于0的時間積分。需要注意的是,只有當(dāng)干旱事件結(jié)束(WSDI不再小于0)時,干旱嚴(yán)重程度和干旱歷時才可確定,以對水文干旱事件進(jìn)行量化。而每月的WSDI可作為“瞬時觀測值”。
4種干旱類型(D0,D1,D2,D3,D4)表示不同的干旱等級。采用由Mckee等[35]提出的分類標(biāo)準(zhǔn)。SPI、SPEI、SRI、scPDSI的干旱分類見表1。不同時間尺度的SPI、SPEI與SRI(3個月,6個月,9個月,12個月,24個月),反映不同時間尺度的水分虧缺時間累積效應(yīng)。本研究采用了時間尺度為3個月、6個月、12個月的SPI、SPEI、SRI。
表1 各干旱指數(shù)的干旱等級劃分
注:SPI表示標(biāo)準(zhǔn)化降水指數(shù),SPEI表示標(biāo)準(zhǔn)化降水蒸散指數(shù),SRI表示標(biāo)準(zhǔn)化徑流指數(shù),WSDI表示水儲量赤字指數(shù),scPDSI表示自校正的帕默爾干旱強(qiáng)度指數(shù)。
Note: SPI is the standardized precipitation index. SPEI is the standardized precipitation evapotranspiration index. SRI is the standardized runoff index. WSDI is the water storage deficit index. scPDSI is the self-calibrating palmer drought severity index.
本研究采用以下干旱特征對各干旱事件進(jìn)行表征:干旱歷時,表示對應(yīng)干旱事件持續(xù)的月份數(shù);干旱強(qiáng)度,表示干旱事件的時間范圍內(nèi)的干旱指數(shù)的最低值,并以干旱強(qiáng)度判斷干旱事件的干旱類型;干旱嚴(yán)重程度,表示干旱事件內(nèi)干旱指數(shù)小于無旱閾值的時間積分;干旱排序,表示各指數(shù)干旱事件的干旱嚴(yán)重程度的絕對值從大到小的順序。
為了評估WSDI的干旱監(jiān)測在空間上的表現(xiàn),將對比各指數(shù)在研究期內(nèi)干旱事件的干旱質(zhì)心軌跡。參考王兆禮等[36]的方法計(jì)算各指數(shù)干旱質(zhì)心:先提取出研究區(qū)指數(shù)的每月“干旱斑塊”(即干旱區(qū)域)的空間柵格數(shù)據(jù),再計(jì)算干旱斑塊的質(zhì)心坐標(biāo)。研究區(qū)內(nèi)干旱事件的干旱質(zhì)心計(jì)算方法如下
式中,LON與LAT分別表示干旱事件的干旱質(zhì)心經(jīng)度與緯度。表示研究時段的第個月。表示研究區(qū)發(fā)生干旱的柵格數(shù),()表示柵格中干旱指數(shù)的絕對值,lon與lat分別表()所對應(yīng)的柵格的經(jīng)度與緯度。
2.1.1 基于WSDI的干旱監(jiān)測
GRACE重力衛(wèi)星數(shù)據(jù)在珠江流域的適用性決定其干旱監(jiān)測的適用性。Luo等[37-38]已經(jīng)采用多種全球陸面水文模型驗(yàn)證了不同版本的GRACE重力衛(wèi)星數(shù)據(jù)在珠江流域的適用性,研究結(jié)果都表明珠江流域的TWSA呈增長的趨勢。因此,本研究不再對GRACE重力衛(wèi)星數(shù)據(jù)在珠江流域的適用性驗(yàn)證進(jìn)行贅述。圖1為WSDI時間序列及其變化趨勢圖。研究期內(nèi),WSDI的變化率為0.13/a,與Luo等[37-38]的研究結(jié)果相符。
圖1 2002—2017年珠江流域的WSDI變化
表2總結(jié)了2002年4月至2017年6月WSDI所監(jiān)測到的珠江流域的干旱事件。在研究期內(nèi),WSDI監(jiān)測到7場干旱事件。由于GRACE重力衛(wèi)星從2002年4月開始記錄地球重力場資料,因此,2002年4月以前的WSDI是未知的。由圖1可見,由于數(shù)據(jù)缺失,WSDI沒有捕捉到1號干旱事件的完整過程,僅記錄了該干旱事件的趨向消亡過程。在此,不對1號干旱事件進(jìn)行干旱分析。如表2所示,2號干旱事件歷時最長、旱情最重,除了1號干旱事件外,7號干旱事件的旱情最輕。另外,還可以通過探究每月受不同類型干旱影響的地區(qū)的面積比例評估干旱嚴(yán)重程度(圖2),干旱類型反映了水量虧缺的程度。從圖2可以發(fā)現(xiàn),在所有干旱事件期間,WSDI仍可以監(jiān)測到研究區(qū)部分地區(qū)無干旱發(fā)生。這是TWSC、TWSA、TWSD在監(jiān)測干旱時所無法表征的。
表2 WSDI監(jiān)測到的珠江流域的干旱事件
注:表2和表4中干旱事件的序號表示W(wǎng)SDI所監(jiān)測的干旱事件發(fā)生的先后順序。1~6號干旱事件為被珠江水利委員記錄的干旱事件。2014年后的《水資源公報(bào)》并未繼續(xù)記錄災(zāi)情,因此,7號干旱事件沒有被記錄。括號內(nèi)為干旱強(qiáng)度值所對應(yīng)的時間。干旱排序表示干旱事件的干旱嚴(yán)重程度絕對值從大到小的順序。
Note: The sequence number of drought events is the order of drought events monitored by WSDI. Drought events No.1-6 are recorded by the Pearl River Water Resources Commission of the Ministry of Water Resources. The No.7 drought event is not recorded because post-2014 Bulletin of Water Resources does not continue to record the disasters. The time in brackets is the time corresponding to the drought intensity value. The drought order is the order of absolute values of the drought severity of drought events in descending order in table 2 and table 4.
圖2 2002—2017年珠江流域受不同類型干旱影響地區(qū)的面積比例
將WSDI監(jiān)測到的旱情與2002—2017年的珠江水利委員會所記錄的旱情[39]進(jìn)行比較,兩者對珠江流域旱情的描述基本一致,WSDI幾乎能監(jiān)測到所記錄的所有干旱。根據(jù)珠江水利委員會記錄,2009—2013年每年都發(fā)生干旱,其中2010年上半年云南、貴州和廣西發(fā)生特大干旱,2011年汛期珠江流域內(nèi)部分地區(qū)干旱嚴(yán)重,該年8月下旬旱情最為嚴(yán)重,2012年旱澇災(zāi)害交替出現(xiàn),2013年局部地區(qū)伏旱(7月中旬至8月中旬)嚴(yán)重。圖1、圖 2、表2的結(jié)果表明,2009年初干旱發(fā)生且持續(xù)多月,隨后2010年上半年局部地區(qū)遭受嚴(yán)重干旱影響,該時期對應(yīng)的4號干旱事件的干旱嚴(yán)重程度僅次于2號干旱事件。2011年8月遭受嚴(yán)重干旱影響的地區(qū)面積占比最高(21.4%)且干旱持續(xù)至2012年初,2012年汛期多地出現(xiàn)水量增加現(xiàn)象且伴隨洪澇風(fēng)險,2013年的6號干旱事件與該年伏旱發(fā)生時間和歷時大致吻合。
2.1.2 WSDI與常用干旱指數(shù)在時間上的對比分析
將WSDI與SPI、SPEI、SRI、scPDSI進(jìn)行對比分析,進(jìn)一步探究WSDI在珠江流域的干旱監(jiān)測效用,并分析WSDI與它們的差異。由于GRACE重力衛(wèi)星運(yùn)行末期的穩(wěn)定性下降,有較多月份的數(shù)據(jù)缺失,且測量誤差較大[22]。因此,本文截取2002年4月至2015年12月的WSDI與常用干旱指數(shù)作對比分析。
計(jì)算了WSDI與SPI、SPEI、SRI、scPDSI的皮爾森相關(guān)系數(shù)(置信區(qū)間為95%,表3)。結(jié)果表明,WSDI與SPI-6、SPI-12、SPEI-6、SPEI-12、SRI-3、SRI-6、SRI-12、scPDSI吻合良好。除了SPI-3、SPEI-3外,其他干旱指數(shù)都和WSDI的相關(guān)性較強(qiáng),其中scPDSI與WSDI的相關(guān)系數(shù)最高,兩者的時間變化具有相似的波峰和波谷(圖 3)。這與Sinha等[40-41]的研究結(jié)果相符。
表3 珠江流域WSDI與常用干旱指數(shù)的相關(guān)系數(shù)
注:指數(shù)中的數(shù)字代表該指數(shù)3、6、12個月的時間尺度。
Note: The number in the index represents the time scale of 3, 6, and 12 month, respectively.
圖3 2002—2015年珠江流域的WSDI與scPDSI變化
為了進(jìn)一步評估WSDI的干旱監(jiān)測在時間上的表現(xiàn),將對比各指數(shù)在研究期內(nèi)所監(jiān)測到的干旱事件的特征。連續(xù)3個月或以上出現(xiàn)干旱指數(shù)小于無旱閾值則視為一次干旱事件。長時間尺度的干旱指數(shù)可以反應(yīng)長期的氣候變化情況,一定程度上考慮到徑流、地下水、深層土壤水的變化情況。在4類常用干旱指數(shù)中,SPI-12、SPEI-12、SRI-12、scPDSI在研究期內(nèi)所監(jiān)測到的干旱事件與WSDI所監(jiān)測到的干旱事件的場次、時間范圍、干旱強(qiáng)度的對應(yīng)時間最為相近。因此,總結(jié)了WSDI、SPI-12、SPEI-12、SRI-12、scPDSI所監(jiān)測到的珠江流域的干旱事件(表2、表4)。以WSDI所監(jiān)測到的干旱事件的序號作為干旱事件的標(biāo)簽。結(jié)果表明,SPI-12、SPEI-12、SRI-12在干旱監(jiān)測中有較高的一致性。研究期內(nèi),WSDI和scPDSI監(jiān)測到7個干旱事件,而SPI-12、SPEI-12、SRI-12監(jiān)測到4個干旱事件,且這4個干旱事件都能被WSDI監(jiān)測到。各干旱指數(shù)所監(jiān)測到的大部分干旱事件都被珠江水利委員會所記錄。
表4 不同指數(shù)監(jiān)測到的珠江流域的干旱事件
注:當(dāng)該表中的指數(shù)監(jiān)測到的干旱事件同樣被WSDI監(jiān)測到時,其序號以WSDI的干旱事件序號表示;當(dāng)該表中的指數(shù)監(jiān)測到的干旱事件未被WSDI監(jiān)測到時,其序號以“-”表示。部分指數(shù)在WSDI干旱事件的時間范圍內(nèi)監(jiān)測到多場干旱事件,則干旱事件序號中的第2個數(shù)字表示這些干旱事件在該時間范圍內(nèi)發(fā)生的先后順序。
Note: When a drought event monitored by the index in this table is also monitored by WSDI, its sequence number is represented by the drought event sequence number of WSDI; when a drought event monitored by the index in this table is not monitored by WSDI, its sequence number is represented by "-". Part of the indexes identified multiple drought events within the time span of the WSDI drought event, and the second number in the sequence number of drought event indicates the order of these drought events within that time span.
2.1.3 WSDI與常用干旱指數(shù)在空間上的對比分析
為了進(jìn)一步評估WSDI的干旱監(jiān)測在空間上的表現(xiàn),將對比各指數(shù)在研究期內(nèi)所監(jiān)測到的干旱事件的干旱質(zhì)心軌跡。本節(jié)以WSDI的干旱事件和干旱時間范圍作為對照,進(jìn)一步對比了2、3、4、5號干旱事件中WSDI、SPI-12、SPEI-12、SRI-12、scPDSI的干旱質(zhì)心的移動軌跡。由于在整個流域的干旱事件開始前和結(jié)束后會有局部地區(qū)發(fā)生干旱,而這些局部地區(qū)的干旱無法從整個流域的干旱指數(shù)時間序列中得到體現(xiàn)。因此,其他干旱指數(shù)在干旱事件開始前和結(jié)束后仍會有干旱質(zhì)心。干旱事件歷時較長,為避免結(jié)果的表示出現(xiàn)混淆,在表示干旱質(zhì)心軌跡時,每3個月標(biāo)記一次干旱質(zhì)心。結(jié)果表明,WSDI與常用干旱指數(shù)的干旱質(zhì)心軌跡基本一致,各指數(shù)的3、4、5號干旱事件的干旱質(zhì)心呈現(xiàn)從東往西移動的現(xiàn)象。以scPDSI為例,圖4和圖5展示了的WSDI和scPDSI在干旱事件中的干旱質(zhì)心軌跡,除了2號干旱事件的干旱質(zhì)心呈現(xiàn)東西向的周期性移動的現(xiàn)象外,其他干旱事件的干旱質(zhì)心呈現(xiàn)從東往西移動的現(xiàn)象,與黃強(qiáng)等人[42]研究的2009年5月至2010年8月的干旱事件發(fā)展過程相符。而2號干旱事件的干旱質(zhì)心軌跡與其他干旱事件之間的差異可能是因?yàn)樵撌录母珊禋v時相對較長。
各干旱指數(shù)在監(jiān)測干旱中的差異,最主要是由各干旱指數(shù)計(jì)算所用的數(shù)據(jù)和方法不同導(dǎo)致的。scPDSI是個相對綜合的干旱指數(shù),因此和WSDI的相關(guān)性最強(qiáng)。相同時間尺度下,WSDI與SPI的相關(guān)性比WSDI與SPEI的略強(qiáng)。這說明在珠江流域降水對WSDI的影響大于降水與蒸散發(fā)的差值對WSDI的影響[34]。WSDI與不同時間尺度SRI的相關(guān)性都相對較強(qiáng),這說明徑流和土壤水分特征對珠江流域的陸地水儲量影響較大[43]。這可能是因?yàn)橹榻饔蛑猩嫌蔚目λ固氐孛蔡卣?,使得降水進(jìn)入地下并迅速滲透進(jìn)入河流,導(dǎo)致地表徑流率高[13,44]。
不同時間尺度的相同干旱指數(shù)與WSDI的相關(guān)性不同。相對于其他流域,珠江流域的地表水資源更為豐富。SPI-6對地表水資源的響應(yīng)相對強(qiáng)烈,因此,在珠江流域,WSDI與SPI-6的相關(guān)性比WSDI與SPI-12的更強(qiáng),與Nie等[41]的研究結(jié)果相符。而對于時間尺度較短的SPI-3和SPEI-3,它們對土壤水分條件響應(yīng)較為快速、強(qiáng)烈,反映的是中短期的水分狀況,并有著明顯的季節(jié)性。因此,已經(jīng)去除了季節(jié)性因素且用于反映長期水儲量變化的WSDI與SPI-3、SPEI-3相關(guān)性較弱。另外,相對于SRI-6,SRI-12對WSDI有著明顯的時滯性,則在不消除時滯性的情況下,WSDI與SPI-6的相關(guān)性相對較強(qiáng)。
WSDI的顯著優(yōu)勢在于,它能從陸地各層(包括地下水)存儲的水量全面地考慮干旱情況且考慮了人類活動對水文通量的影響,而常用干旱指數(shù)通常僅考慮部分水文通量。在珠江流域中上游的喀斯特地貌地區(qū),地表水與地下水之間復(fù)雜的相互聯(lián)系使得大部分水文模型和觀測方法難以捕捉到這些地區(qū)準(zhǔn)確的水分變化[4],因此常用干旱指數(shù)難以對這些地區(qū)的干旱進(jìn)行準(zhǔn)確的監(jiān)測。而WSDI基于GRACE重力衛(wèi)星觀測資料,有著觀測范圍深,空間分布均勻,資料獲取容易的優(yōu)點(diǎn)??傮w而言,WSDI具有較大的應(yīng)用潛力,能從時間和空間上刻畫出研究區(qū)干旱的時空演變規(guī)律,特別是對于面積大且水文氣象站點(diǎn)稀少的區(qū)域。
圖4 珠江流域不同干旱事件WSDI干旱質(zhì)心軌跡
圖5 珠江流域不同干旱事件scPDSI干旱質(zhì)心軌跡
而WSDI的局限性在于,WSDI完全基于GRACE TWSA,TWSA的準(zhǔn)確性決定WSDI的準(zhǔn)確性。TWSA時間序列相對較短,導(dǎo)致其多年平均值不足以具有代表性。WSDI時間序列并不平穩(wěn),基于WSDI的干旱嚴(yán)重程度在前期可能會被高估,在后期可能會被低估[34,45]。有學(xué)者認(rèn)為至少30 a的TWSA時間序列才是比較可取的[6,37]。另外,GRACE在運(yùn)行末期的穩(wěn)定性下降,一定程度上影響該時期WSDI的準(zhǔn)確性。這些因素都使得利用WSDI進(jìn)行干旱監(jiān)測分析仍具有不確定性,但GRACE重力衛(wèi)星仍是監(jiān)測全球陸地水儲量最為有效的手段[3]。
本研究采用基于GRACE重力衛(wèi)星數(shù)據(jù)的無量綱的標(biāo)準(zhǔn)化水儲量赤字干旱指數(shù)WSDI對珠江流域2002—2017年進(jìn)行了干旱監(jiān)測,并將WSDI與常用的干旱指數(shù)SPI、SPEI、SRI、scPDSI等作對比分析,評估其在珠江流域的干旱監(jiān)測效用。主要結(jié)論如下:
1)2002—2017年期間,WSDI指數(shù)監(jiān)測到了7場干旱事件,與實(shí)際發(fā)生的旱情基本一致,GRACE重力衛(wèi)星數(shù)據(jù)捕捉干旱事件的發(fā)生、發(fā)展和消亡以及其干旱特征。
2)除了反映中短期水分狀況、有著明顯季節(jié)性的SPI-3、SPEI-3外,WSDI與SPI-6、SPI-12、SPEI-6、SPEI-12、SRI-3、SRI-6、SRI-12、scPDSI吻合良好,與它們有著較強(qiáng)的相關(guān)性,其中與能綜合表征干旱的scPDSI的相關(guān)性最強(qiáng)。WSDI更能反映研究區(qū)中長期的綜合水分變化,能監(jiān)測到由陸地各層水分虧缺引起的干旱事件。
3)WSDI、SPI-12、SPEI-12、SRI-12、scPDSI在空間上描述的干旱事件干旱質(zhì)心軌跡基本一致,都能大致反映出大范圍干旱事件的干旱質(zhì)心從東往西移動的現(xiàn)象。WSDI具有空間可比性、較強(qiáng)的獨(dú)立性和明確的干旱分類體系,能從時間和空間上刻畫出研究區(qū)域干旱的演變規(guī)律,適用于大尺度水文干旱的監(jiān)測與評估,具有較大的應(yīng)用潛力。
[1] Lu Hao, Zhang Xiaoyu, Liu Shoudong. Risk assessment to China’s agricultural drought disaster in county unit[J]. Natural Hazards, 2012, 61: 785–801.
[2] Houborg R, Rodell M, Li Bailing, et al. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations[J]. Water Resources Research, 2012, 48(7): W07525. 1-W07525. 17.
[3] 鄭秋月,陳石. 應(yīng)用GRACE衛(wèi)星重力數(shù)據(jù)計(jì)算陸地水變化的相關(guān)進(jìn)展評述[J]. 地球物理學(xué)進(jìn)展,2015,134(6):177-189. Zheng Qiuyue, Chen Shi. Review on the recent developments of terrestrial water storage variations using GRACE satellite-based datum[J]. Progress in Geophysics, 2015, 134(6): 177-189. (in Chinese with English abstract)
[4] Famiglietti J S, Rodell M. Water in the Balance[J]. Science, 2013, 340(6138): 1300-1301.
[5] Li Bailing, Matthew Rodell, Benjamin Frederick Zaitchik, et al. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe[J]. Journal of Hydrology, 2012, 446: 103-115.
[6] Thomas A C, Reager J T, Famiglietti J S, et al. A GRACE-based water storage deficit approach for hydrological drought characterization[J]. Geophysical Research Letters, 2014, 41(5): 1537-1545.
[7] Zhao M, Geruo A, Velicogna I, et al. Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes[J]. Journal of Climate, 2017, 30(16): 6297-6308.
[8] Cammalleri C, Barbosa P, Vogt J V. Analysing the relationship between multiple-timescale SPI and GRACE terrestrial water storage in the framework of drought monitoring[J]. Water, 2019, 11(8): 1672.
[9] Sinha D, Syed T H, Reager J T. Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins[J]. Journal of Hydrology, 2019, 572: 294-307.
[10] Chao Nengfang, Luo Zhicai, Wang Zhengtao, et al. Retrieving groundwater depletion and drought in the Tigris-Euphrates basin between 2003 and 2015[J]. Ground Water, 2018, 56(5): 770-782.
[11] Chen J L, Wilson C R, Tapley B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models[J]. Journal of Geophysical Research Solid Earth, 2009, 114(5): B05404.
[12] Christelle Kyatengerwa, Daeha Kim, Minha Choi. A national-scale drought assessment in Uganda based on evapotranspiration deficits from the bouchet hypothesis[J]. Journal of Hydrology, 2020, 580: 124348.
[13] Long Di, Shen Yanjun, Sun Alexander, et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data[J]. Remote Sensing of Environment, 2014, 155: 145-160.
[14] 李瓊,羅志才,鐘波,等. 利用GRACE時變重力場探測2010年中國西南干旱陸地水儲量變化[J]. 地球物理學(xué)報(bào),2013(6):65-71. Li Qiong, Luo Zhicai, Zhong Bo, et al. Terrestrial water storage changes of the 2010 southwest China drought detected by GRACE temporal gravity field[J]. Chinese Journal of Geophysics, 2013(6): 65-71. (in Chinese with English abstract)
[15] 李杰,范東明,游為. 利用GRACE監(jiān)測中國區(qū)域干旱及其影響因素分析[J]. 大地測量與地球動力學(xué),2019,39(6):587-595. Li Jie, Fan Dongming, You Wei. Using GRACE to monitor regional drought in China and its influencing factors[J]. Journal of Geodesy and Geodynamics, 2019, 39(6): 587-595. (in Chinese with English abstract)
[16] 賀敏,宋立生,王展鵬,等. 基于多源數(shù)據(jù)的干旱監(jiān)測指數(shù)對比研究:以西南地區(qū)為例[J]. 自然資源學(xué)報(bào),2018,33(7):157-169. He Min, Song Lisheng, Wang Zhanpeng, et al. Evaluation of drought monitoring indices based on multi-source data in Southwest China[J]. Journal of Natural Resources, 2018, 33(7): 157-169. (in Chinese with English abstract)
[17] Zhang Zizhan, Chao Beniamin Fong, Chen Jianli, et al. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO[J]. Global and Planetary Change, 2015, 126: 35-45.
[18] 王作亮,文軍,李振朝,等. 典型干旱指數(shù)在黃河源區(qū)的適宜性評估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(21):186-195. Wang Zuoliang, Wen Jun, Li Zhenchao, et al. Evaluation of suitability using typical drought index in source region of the Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 186-195. (in Chinese with English abstract)
[19] 王兆禮,陳曉宏,張靈,等. 近40年來珠江流域降水量的時空演變特征[J]. 水文,2006,26(6):71-75. Wang Zhaoli, Chen Xiaohong, Zhang Ling, et al. Spatio-Temporal change characteristics of precipitation in the Pearl River Basin in recent 40 years[J]. Journal of China Hydrology, 2006, 26(6): 71-75. (in Chinese with English abstract)
[20] 王兆禮,陳曉宏,黃國如,等. 近40年來珠江流域平均氣溫時空演變特征[J]. 熱帶地理,2007,27(4):289-293,322. Wang Zhaoli, Chen Xiaohong, Hunag Guoru, et al. Spatio-temporal change characteristics of mean temperature in the Pearl River Basin during 1961-2000[J]. Tropical Geography, 2007, 27(4): 289-293, 322. (in Chinese with English abstract)
[21] Vishwakarma B, Devaraju B, Sneeuw N. What is the spatial resolution of GRACE satellite products for hydrology?[J]. Remote Sensing, 2018, 10(6): 852.
[22] Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358-369.
[23] Long Di, Yang Yuting, Wada Yoshihide, et al. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168: 177-193.
[24] Yang Peng, Xia Jun, Zhan Chesheng, et al. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015[J]. Science of the Total Environment, 2017, 595: 218-228.
[25] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophys Research Letters, 2006, 33(8): 402.
[26] Zhang Zizhan, Chao Beniamin Fong, Lu Yang, et al. An effective filtering for GRACE time-variable gravity: Fan filter[J]. Geophysical Research Letters, 2009, 36(17): L17311.
[27] Rodell M, Famiglietti J S, Chen J L, et al. Basin scale estimate of evapotranspiration using GRACE and other observations[J]. Geophysical Research Letters, 2004, 31(20): 504.
[28] Feng Wei. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE data[J]. Earth Science Informatics, 2019, 12(3): 389-404.
[29] Li Jun, Wang Zhaoli, Wu Xushu, et al. Flash droughts in the Pearl River Basin, China: Observed characteristics and future changes[J]. Science of The Total Environment, 2020, 707: 136074.
[30] 黃翀,張強(qiáng),陳曉宏, 等. 珠江流域降水干濕時空特征及氣候因子影響研究[J]. 水文,2017,37(5):12-20,59. Huang Qiang, Zhang Qiang, Chen Xiaohong, et al. Spatio-temporal variations of dryness/wetness and influence from climate factors in Pearl River Basin[J]. Journal of China Hydrology, 2017, 37(5): 12-20, 59. (in Chinese with English abstract)
[31] 黃強(qiáng),陳子遷,劉占明, 等. 珠江流域區(qū)域干旱風(fēng)險評估[J]. 中山大學(xué)學(xué)報(bào):自然科學(xué)版,2013,52(5):140-147,152. Huang Qiang, Chen Zishen, Liu Zhanming, et al. Regional drought risk assessment across the Pearl River Basin[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(5): 140-147, 152. (in Chinese with English abstract)
[32] Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012, 491(7424): 435–438.
[33] Shukla S, Wood A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35(2): L02405.
[34] Sun Zhangli, Zhu Xiufang, Pan Yaozhong, et al. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China[J]. Science of the Total Environment, 2018, 634: 727-738.
[35] McKee T, Doesken N, Kleist J. Drought monitoring with multiple time scales[C]//Boston: Proceedings of the ninth conference on applied climatology, 1995. 233-236.
[36] 王兆禮,鐘睿達(dá),陳家超,等. TMPA衛(wèi)星遙感降水?dāng)?shù)據(jù)產(chǎn)品在中國大陸的干旱效用評估[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):163-170. Wang Zhaoli, Zhong Ruida, Chen Jiachao, et al. Valuation of drought utility assessment of TMPA satellite-remote-sensing- based precipitation product in mainland China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 163-170. (in Chinese with English abstract)
[37] Luo Zhicai, Yao Changlong, Li Qiong, et al. Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability[J]. Geodesy and Geodynamics, 2016, 3: 171-179.
[38] 陳智偉,張興福,冉將軍,等. 利用新版GRACE時變模型反演珠江流域陸地水儲量變化[J]. 大地測量與地球動力學(xué),2020,40(3):305-310. Chen Zhiwei, Zhang Xingfu, Ran Jiangjun, et al. Terrestrial water storage changes in Pearl River Region derived from the latest release temporal gravity field models[J]. Journal of Geodesy and Geodynamics, 2020, 40(3): 305-310. (in Chinese with English abstract)
[39] 水利部珠江水利委員會. 水資源公報(bào)[R/OL]. [2004-11-07]. http: //www. pearlwater. gov. cn/zwgkcs/lygb/szygb/.
[40] Sinha D, Syed T H, Famiglietti J S, et al. Characterizing drought in India using GRACE observations of terrestrial water storage deficit[J]. Journal of Hydrometeorology, 2017, 18(2): 381-396.
[41] Nie Ning, Zhang Wanchang, Chen Hao, et al. A global hydrological drought index dataset based on gravity recovery and climate experiment (GRACE) data[J]. Water Resources Management, 2018, 32(4): 1275-1290.
[42] 黃強(qiáng),陳子燊,唐常源,等. 珠江流域重大干旱事件時空發(fā)展過程反演研究[J]. 地球科學(xué)進(jìn)展,2019,34(10):1050-1059. Huang Qiang, Chen Zishen, Tang Changyuan, et al. Monitoring the spatio-temporal process of severe droughts in the Pearl River Basin[J]. Advance in Earth Science, 2019, 34(10): 1050-1059. (in Chinese with English abstract)
[43] Liu L, Hong Y, Bednarczyk C N, et al. Hydro-climatological drought analyses and projections using meteorological and hydrological drought indices: A case study in Blue River Basin, Oklahoma[J]. Water Resources Management, 2012, 26(10): 2761-2779.
[44] Guo F, Jiang G H, Yuan D X, et al. Evolution of major environmental geological problems in karst areas of Southwestern China[J]. Environmental Earth Sciences, 2013, 69(7), 2427-2435.
[45] Zhang Dan, Zhang Qi, Werner A D, et al. GRACE-based hydrological drought evaluation of the Yangtze River Basin, China[J]. Journal of Hydrometeorology, 2016, 17(3): 811-828.
Drought monitoring based on GRACE data in the Pearl River Basin, China
Deng Zifeng1, Wu Xushu1, Wang Zhaoli1,2※, Li Jun1, Chen Xiaohong3
(1.,,510640,;,,510641,; 3.,,510275,)
Intensity and frequency of extreme climate events are ever-increasing, as the global climate is changing all the time. Drought has caused the tremendous impact and destruction on water resources, natural ecological environment, agricultural production, as well as the social and economic development. Therefore, the drought monitoring and evaluation are necessary to make emergency measures, thereby to reduce the loss triggered by the drought. However, the drought behaves an obviously temporal and spatial characteristics, one of which the terrestrial water storage has been lower than the historical average. Note that the terrestrial water storage is the sum of surface water, biowater, soil moisture, groundwater, and snow/ice. Fortunately, the Gravity Recovery and Climate Experiment mission (GRACE) satellite can provide a long-term and effective method to in-situ monitor the changes in terrestrial water storage. A continuous, rapid, and repetitive observation can be conducted in the GRACE gravity satellite, without being restricted by ground conditions. The global data with uniform distribution and observation scale can be obtained, to effectively solve the problems related to the depth of ground observation, insufficient data acquisition, uneven distribution of spatial and hydrological models. In this study, a dimensionless standardized Water Storage Deficit Index (WSDI) based on GRACE data was proposed to monitor drought in the Pearl River Basin from April 2002 to June 2017. A systematic evaluation was made to explore the capability of WSDI for the spatiotemporal variation of drought, and thereby to identify the drought events, compared with the common drought indexes, including the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Runoff Index (SRI), and Self-Calibrating Palmer Drought Severity Index (scPDSI). The WSDI was calculated by the GSM data from the GRACE Level-2 RL06 published by CSR (Center for Space Research) and JPL (Jet Propulsion Laboratory). The SPEI and SPI were calculated by the meteorological data collected from 183 meteorological stations in the Pearl River Basin, and then interpolated with the Kriging method. The SRI and scPDSI were calculated by the output data from the Variable Infiltration Capacity (VIC) land surface hydrological model. The drought events were analyzed during 2002 to 2015 which monitored by the WSDI and common drought indexes, compared with the drought centroid trajectories of drought events. The results showed that: 1) In the 7 drought events monitored by the WSDI during 2002 to 2017, the drought events from 2003 to 2006 were the worst with the longest drought duration, the highest drought intensity, and the greatest drought severity. Evaluation of drought in the Pearl River Basin showed that the drought situation monitored by the WSDI was basically consistent with the actual drought situation recorded by the Pearl River Water Resource Commission of the Ministry of Water Resources. It verified that the GRACE data can be used to capture the occurrence, development, and disappearance of drought events, together with the drought characteristics; 2) The time variation of WSDI and its response to climate anomalies were in good agreement with the SPI-6, SPI-12, SPEI-6, SPEI-12, SRI-3, SRI-6, SRI-12, and scPDSI, indicating the similar peaks and troughs. It infers that there was a strong correlation with the WSDI. Specifically, the WSDI had the highest Pearson correlation coefficient with the scPDSI (0.803,<0.05), which can comprehensively describe drought, whereas, a low Pearson correlation coefficients with the SPI-3 and SPEI-3, which have obviously seasonal characteristics to reflect the condition of short- and medium-term moisture. The WSDI can better reveal comprehensive water changes in the mid-and-long term for the study area, and thereby it can be used to monitor drought events caused by the water deficit in all layers of land; 3) The centroid trajectories of drought events recorded by the WSDI was basically consistent with those recorded by the SPI-12, SPEI-12, SRI-12, scPDSI, where the drought centroid of large-scale drought events appeared a movement from eastern to western regions. This result demonstrated that the WSDI can be used to reasonably represent the spatiotemporal changes of drought. Therefore, the WSDI has obvious advantages and application potentials suitable for monitoring and evaluation of large-scale hydrological drought. The finding can provide valuable information and a new data source in the large-scale monitoring and assessment for hydrological drought.
drought; GRACE satellite; water storage deficit index; capability evaluation; Pearl River Basin
鄧梓鋒,吳旭樹,王兆禮,等. 基于GRACE重力衛(wèi)星數(shù)據(jù)的珠江流域干旱監(jiān)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):179-187.doi:10.11975/j.issn.1002-6819.2020.20.021 http://www.tcsae.org
Deng Zifeng, Wu Xushu, Wang Zhaoli, et al. Drought monitoring based on GRACE data in the Pearl River Basin, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 179-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.021 http://www.tcsae.org
2020-05-15
2020-09-10
國家自然科學(xué)基金項(xiàng)目(51879107);廣東省水利科技創(chuàng)新項(xiàng)目(2020-19)
鄧梓鋒,博士生,主要從事水文水資源研究。Email:zifengdeng_scut@163.com
王兆禮,博士,教授,主要從事水文水資源研究。Email:wangzhl@scut.edu.cn
10.11975/j.issn.1002-6819.2020.20.021
S127
A
1002-6819(2020)-20-0179-09