李 森,賈子衡,魏雪睿,馬 賽,盧天成,李婷婷,顧燕云
1. 上海交通大學(xué)醫(yī)學(xué)院附屬瑞金臨床醫(yī)學(xué)院,上海 200025;2.上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院內(nèi)分泌代謝病科,上海內(nèi)分泌代謝病臨床 醫(yī)學(xué)中心,上海市內(nèi)分泌代謝病研究所,上海 200025
膽汁酸是肝細(xì)胞中膽固醇代謝的主要產(chǎn)物。膽固醇降解為膽汁酸的過程涉及2 個(gè)主要途徑。2 種途徑都產(chǎn)生初級(jí)膽汁酸,即膽固醇的終產(chǎn)物。經(jīng)典途徑受膽固醇7α-羥化酶(cholesterol 7α-hydroxylase,Cyp7A1)的調(diào)節(jié),產(chǎn)生膽酸(cholic acid,CA)和鵝脫氧膽酸(chenodeoxycholic acid,CDCA)。替代途徑由固醇-27-羥化酶(sterol-27-hydroxlase,Cyp27A1)催化,主要產(chǎn)生CDCA。隨后,初級(jí)膽汁酸與氨基酸綴合成結(jié)合膽汁酸。在腸道中,初級(jí)膽汁酸在腸道菌群作用下形成次級(jí)膽汁酸,其中CA 轉(zhuǎn)化為脫氧膽酸(deoxycholic acid,DOC),CDCA 轉(zhuǎn)化成石膽酸(lithocholic acid,LCA)。初級(jí)、次級(jí)膽汁酸均通過不同類型膽汁酸受體發(fā)揮作用。
研究[1-3]表明,膽汁酸信號(hào)通路在脂質(zhì)和葡萄糖穩(wěn)態(tài)、能量消耗、腸道活動(dòng)性、炎癥的發(fā)生、腸道菌群的組成及生長(zhǎng)等多種病理生理過程中及血脂異常、脂肪肝、糖尿病、肥胖、動(dòng)脈粥樣硬化、膽汁淤積、膽結(jié)石和癌癥等多種疾病的發(fā)生和發(fā)展過程中均發(fā)揮著重要的調(diào)控作用。本文就膽汁酸的代謝穩(wěn)態(tài)調(diào)控作用的研究進(jìn)展進(jìn)行綜述。
膽汁酸在人體內(nèi)發(fā)揮代謝調(diào)控作用需要與其特異性受體結(jié)合,而人體中存在多種膽汁酸受體,其中2 種主要受體為核受體——法尼醇X 受體(farnesoid X receptor,F(xiàn)XR,由NR1H4 基因編碼)[4]和膜受體——G 蛋白偶聯(lián)受體(Takeda G protein receptor,TGR5)[5]。FXR 廣泛分布在各組織器官中,包括肝臟、腸、腎臟、白色脂肪組織和心臟,結(jié)合和非結(jié)合膽汁酸都可與FXR 結(jié)合,并在組織器官中發(fā)揮不同的生理功能。TGR5 主要在腸、膽囊、棕色和白色脂肪組織、骨骼肌、腦、胰腺中表達(dá),膽汁酸與之結(jié)合后產(chǎn)生環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)進(jìn)而激活不同組織中的蛋白激酶A 發(fā)揮作用[6]。
除這2 種主要受體外,還有其他膽汁酸受體,包括維生素D 受體(vitamin D receptor,VDR)、孕烷X 受體(pregnane X receptor,PXR)、鞘氨醇-1-磷酸受體2 (sphingosine-1-phosphate receptor 2,S1PR2)、 毒 瘴 堿M2 受體、組成型雄固烷受體(constitutive androstane receptor,CAR)[7-11]。這些受體被激活后也發(fā)揮著重要的生理作用。VDR 是次級(jí)膽汁酸LCA 的受體。實(shí)驗(yàn)證明,LCA 或維生素D 可激活VDR,在體內(nèi)誘導(dǎo)細(xì)胞色素P450(cytochrome P450,CYP)3A 的表達(dá),CYP3A 在肝臟和腸中解毒LCA,降低結(jié)腸癌的發(fā)病風(fēng)險(xiǎn)[7]。PXR 受體可介導(dǎo)孕烯醇酮16α-甲腈(pregnenolone 16α-carbonitrile,PCN)的保肝作用,降低LCA 對(duì)肝臟的毒副作用;PXR還可以被LCA 及其3-酮代謝產(chǎn)物激活,參與LCA 轉(zhuǎn)運(yùn)和代謝等相關(guān)基因的表達(dá)[8]。在肝膽系統(tǒng)中,S1PR2 在肝臟脂質(zhì)代謝和肝膽疾病中起重要作用[9],而CAR 的激活可以防止膽固醇結(jié)石形成[11]。
受膽汁酸刺激后,F(xiàn)XR 與視黃酸X 受體(retinoic acid X receptor,RXR)形成異二聚體,激活下游基因表達(dá),其中包括膽汁酸對(duì)自身合成的負(fù)反饋調(diào)節(jié)機(jī)制。這個(gè)過程有2 種途徑:①膽汁酸激活肝臟FXR,上調(diào)其下游的靶基因表達(dá)小異二聚體伴侶(small heterodimer partner,SHP)從而抑制膽汁酸生物合成中限速酶Cyp7A1 的表達(dá),導(dǎo)致膽固醇向膽汁酸的轉(zhuǎn)化減弱。②腸膽汁酸-FXR信號(hào)刺激成纖維細(xì)胞生長(zhǎng)因子19(fibroblast growth factor 19,F(xiàn)GF19) 表達(dá),釋放入血與肝臟FGF4/βKlotho 受體(FGF4/βKlotho receptor)結(jié)合,抑制肝臟Cyp7A1 和Cyp8B1 的表達(dá)[12-13]。
此外,F(xiàn)XR 尚受膽汁酸以外信號(hào)通路調(diào)控。FXR可以通過翻譯后修飾調(diào)節(jié)其自身活性,從而影響進(jìn)食和禁食狀態(tài)下的脂質(zhì)和葡萄糖感應(yīng),例如FXR 葡萄糖刺激的O-GlcNAcy 化可以增強(qiáng)FXR 的基因表達(dá)和蛋白質(zhì)穩(wěn)定性[14]。FXR 的轉(zhuǎn)錄活性由蛋白激酶C(protein kinase C,PKC)或單磷酸腺苷激活蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)介導(dǎo)的磷酸化調(diào)節(jié),而膽汁酸-FXR 的激活導(dǎo)致FXR 磷酸化增強(qiáng)和FXR 的蛋白酶體降解[15]。FXR 甲基化以及受p300 和Sirtuin-1(SIRT1)調(diào)節(jié)的乙?;烧{(diào)控其轉(zhuǎn)錄活性[16-18]。 在肥胖和2 型糖尿?。╰ype 2 diabetes mellitus,T2DM)小鼠模型中,F(xiàn)XR 乙?;鰪?qiáng)且FXR 乙?;瘯?huì)加劇肝臟炎癥和葡萄糖耐受不良[17,19]。
肝臟膽汁酸-FXR 信號(hào)轉(zhuǎn)導(dǎo)通過減少肝臟糖異生調(diào)節(jié)餐后葡萄糖水平,同時(shí)誘導(dǎo)肝糖原合成來降血糖。對(duì)小鼠的研究[20-21]表明,進(jìn)食刺激誘導(dǎo)膽汁酸分泌可導(dǎo)致肝臟中膽汁酸-FXR 信號(hào)轉(zhuǎn)導(dǎo),從而使糖原貯存、肝糖酵解以及脂肪生成基因表達(dá)受到抑制,如影響碳水化合物反應(yīng)元件結(jié)合蛋白(carbohydrate responsive element-binding protein,ChREBP)和固醇響應(yīng)元件結(jié)合蛋白1(sterol responsive element-binding protein 1,SREBP1c)的表達(dá)。對(duì)小鼠的進(jìn)一步研究[22]表明,肝臟中的FXR 信號(hào)轉(zhuǎn)導(dǎo)可導(dǎo)致肝臟糖異生相關(guān)酶的抑制,包括磷酸烯醇丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)和葡萄糖6-磷酸酶(glucose 6-phosphatase,G6Pase)。一項(xiàng)較早研究[23]表明外源性膽汁酸類似物激活肝臟FXR,可顯著改善瘦素受體敲除糖尿病小鼠模型db/db 的代謝表型。Kim等[24]研究報(bào)道,F(xiàn)xr 和Shp 的肝臟雙敲除可以改善老年小鼠的葡萄糖耐量和脂肪酸代謝,逆轉(zhuǎn)了肥胖增加和葡萄糖感知受損的衰老表型。當(dāng)然,脂肪和骨骼肌等組織中FXR信號(hào)轉(zhuǎn)導(dǎo)可能也參與外周胰島素敏感性調(diào)節(jié)[25]。肝臟FXR作為代謝靶標(biāo)的研究還需要進(jìn)一步探索,尤其是針對(duì)年齡、性別、飲食相關(guān)的FXR 活性與代謝穩(wěn)態(tài)均呈現(xiàn)比較復(fù)雜的調(diào)控關(guān)系。
作為FXR 下游信號(hào)之一,F(xiàn)GF19 主要在腸道中表達(dá),膽汁酸刺激后誘導(dǎo)其分泌,使循環(huán)濃度增加,通過作用于肝FGFR4/βKlotho 信號(hào)途徑,促進(jìn)肝糖原合成及降低血糖。肥胖和糖尿病小鼠靜脈注射FGF19 可以誘導(dǎo)抗糖尿病作用[26]。Fgf15 缺陷小鼠表現(xiàn)為高血糖和肝糖原合成受損,通過皮下注射外源性FGF19,癥狀可得到改善,進(jìn)一步證實(shí)FGF15/19 對(duì)能量和葡萄糖代謝的有益作用[27]。血FGF19 水平與胰島素敏感性改善呈正相關(guān),T2DM 患者通過Roux-en-Y 胃旁路手術(shù)(Roux-en-Y gastric bypass,RYGB)可使FGF19 水平升高,血糖恢復(fù)正常[28]。目前,一些研究提出FGF15/19 可能通過參與調(diào)節(jié)G6Pase和PEPCK 抑制肝臟糖異生從而改善代謝。Morton 等[29]對(duì)FGF19 的相關(guān)作用機(jī)制也進(jìn)行了研究,向瘦蛋白基因缺陷的ob/ob 小鼠和對(duì)照組小鼠的腦室中注射FGF19。結(jié)果顯示,與對(duì)照組相比,ob/ob 小鼠的血漿乳酸水平升高,而胰島素水平?jīng)]有明顯變化;這提示FGF19 可以通過刺激中樞以胰島非依賴性糖酵解的方式來改善葡萄糖代謝,也進(jìn)一步證明中樞FGF19 的降糖作用至少部分通過黑皮質(zhì)素非依賴性機(jī)制介導(dǎo)。Ryan 等[30]證實(shí)了腦中FGF19 的功能,即向小鼠腦室內(nèi)注射FGF19,可以抑制小鼠食欲,減輕體質(zhì)量和改善葡萄糖代謝,這些作用可被FGF19 拮抗劑抵消,表明FXR-FGF19(FGF15)信號(hào)軸在中樞食欲調(diào)節(jié)中的作用。此外,Picard 等[31]的研究揭示FGF15 在下丘腦中的表達(dá)負(fù)向調(diào)節(jié)背側(cè)迷走神經(jīng)復(fù)合體神經(jīng)元活動(dòng),最終導(dǎo)致胰腺α 細(xì)胞的胰高血糖素分泌降低;相反,背內(nèi)側(cè)下丘腦中沉默F(xiàn)GF15 的表達(dá)增加了中樞低血糖反應(yīng)誘導(dǎo)的胰高血糖素分泌,保證了在低血糖情況下通過胰高血糖素增加血糖水平來確保中樞的能量供應(yīng)。雖然有研究[32]發(fā)現(xiàn)在胰島β 細(xì)胞中也有FXR 的表達(dá),并可能參與調(diào)解葡萄糖誘導(dǎo)的胰島素的轉(zhuǎn)錄和分泌,但FXR 下游信號(hào)分子,如SHP 或FGF15/19 的表達(dá)如何參與這一過程并不清楚。
總之,以上研究結(jié)果表明FXR 介導(dǎo)的膽汁酸信號(hào)參與了腸道、胰腺、肝臟、中樞神經(jīng)元信號(hào)網(wǎng)絡(luò)調(diào)控,以維持正常血糖水平或控制T2DM 患者血糖反應(yīng)。
相比FXR,亦有不少研究支持膽汁酸/TGR5 信號(hào)轉(zhuǎn)導(dǎo)通路可在腸道、胰腺、骨骼或全身發(fā)揮對(duì)血糖的調(diào)控 作用。
首先,膽汁酸激活腸道TGR5 后,可以促進(jìn)腸L 細(xì)胞分泌胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1), 作用于胰腺β 細(xì)胞刺激胰島素分泌[5]。在腸道L 細(xì)胞中,TGR5-cAMP 信號(hào)通路增強(qiáng)線粒體氧化磷酸化,使ATP/ADP 比例上升,隨后ATP 依賴性鉀通道(KATP)關(guān)閉,導(dǎo)致質(zhì)膜去極化,鈣電壓門控通道(CaV)打開,細(xì)胞內(nèi)鈣動(dòng)員增強(qiáng),從而分泌GLP-1 調(diào)節(jié)血糖[33]。而FXR 激活后抑制腸L 細(xì)胞產(chǎn)生GLP-1。FXR 是通過抑制胰高血糖素原基因表達(dá)和GLP-1 分泌,對(duì)腸道L 細(xì)胞的GLP-1 分泌產(chǎn)生負(fù)調(diào)節(jié)作用。可以說,在腸L 細(xì)胞中,膽汁酸激活TGR5和FXR 對(duì)GLP-1 的分泌產(chǎn)生相反作用。但是,腸L 細(xì)胞中的TGR5 激活可在食物攝入后迅速發(fā)生,而FXR 需要在轉(zhuǎn)錄后得到激活[34]。猜測(cè)這種差異導(dǎo)致餐后膽汁酸-TGR5信號(hào)對(duì)GLP-1 分泌的促進(jìn)作用與膽汁酸-FXR 對(duì)GLP-1 的抑制作用之間產(chǎn)生一定的時(shí)間差。目前已有研究表明,肥胖和胰島素抵抗小鼠使用腸道特異性TGR5 激動(dòng)劑后,小鼠GLP-1 的水平顯著升高,葡萄糖耐量也明顯改善[35]。
膽汁酸還可以激活胰腺β 細(xì)胞TGR5,通過增加細(xì)胞內(nèi)鈣濃度來促進(jìn)胰島素分泌[36]。研究[37]還發(fā)現(xiàn),胰腺α細(xì)胞也表達(dá)TGR5。膽汁酸對(duì)TGR5 的激活將α 細(xì)胞分泌的胰高血糖素轉(zhuǎn)換為GLP-1,以旁分泌形成促進(jìn)β 細(xì)胞胰島素分泌。
此外,TGR5 可以增加cAMP 依賴性甲狀腺激素激活2 型碘甲狀腺原氨酸脫碘酶(iode thyronine deiodinase Ⅱ,D2)的活性和消耗量,使棕色脂肪細(xì)胞和骨骼肌細(xì)胞對(duì)膽固醇、葡萄糖等攝取代謝活動(dòng)增強(qiáng),能量消耗增加。D2可以將活性小的四碘甲狀腺原氨酸轉(zhuǎn)化為活性大的三碘甲狀腺原氨酸來增強(qiáng)代謝[38]。
膽汁酸亦能通過炎癥影響血糖穩(wěn)態(tài)。目前認(rèn)為,全身慢性低度炎癥與血糖調(diào)節(jié)之間有一定的關(guān)系[39]。炎癥小體(inflammasomes)是由病原體和內(nèi)源性組織損傷相關(guān)信號(hào)激活的細(xì)胞質(zhì)先天免疫蛋白復(fù)合物[40],并且在調(diào)節(jié)肥胖和血糖反應(yīng)中起關(guān)鍵作用。TGR5 可抑制NLRP3 炎癥小體的形成,從而改善胰島素敏感性和葡萄糖耐量[41]。這表明先天免疫細(xì)胞中膽汁酸-TGR5 信號(hào)通路可能通過慢性炎癥參與膽汁酸對(duì)血糖穩(wěn)態(tài)的調(diào)節(jié)。
通過移植Tgr5-/-小鼠骨髓實(shí)驗(yàn)證明,骨髓起源的巨噬細(xì)胞的Tgr5 可通過抑制IκBα 磷酸化、p65 易位、NF-κB 的結(jié)合轉(zhuǎn)錄活性等,減少全身炎癥反應(yīng)和脂肪組織巨噬細(xì)胞的浸潤(rùn),進(jìn)而改善肥胖個(gè)體的糖耐量和胰島素敏感性[42-43]。其他研究[44]也證明,TGR5 激活抑制LPS 誘導(dǎo)的促炎細(xì)胞因子和NF-κB 磷酸化及信號(hào)轉(zhuǎn)導(dǎo),而這一現(xiàn)象在Tgr5-/-小鼠中未出現(xiàn)。因此,TGR5 可通過抑制全身炎癥和脂肪組織中巨噬細(xì)胞浸潤(rùn),減輕慢性炎癥,改善胰島素抵抗。FXR 的翻譯后修飾也有助于FXR 激活抑制肝臟炎癥因子的表達(dá),改善非酒精性脂肪肝[17-19]。
腸道微生物組在膽汁酸的合成、修飾和信號(hào)轉(zhuǎn)導(dǎo)中起關(guān)鍵作用,它們可以通過其膽汁酸鹽水解酶將結(jié)合膽汁酸水解成游離膽汁酸(例如去除甘氨酸或牛磺酸),并將宿主肝臟產(chǎn)生的初級(jí)膽汁酸轉(zhuǎn)化為次級(jí)膽汁酸。其中,大部分次級(jí)膽汁酸隨糞便排出,僅有很少一部分被吸收入循環(huán)。同時(shí),膽汁酸也會(huì)對(duì)腸道微生物的組成產(chǎn)生影響。
實(shí)驗(yàn)[45]證明,腸道微生物群對(duì)膽汁酸多樣性的影響是通過FXR 依賴的方式介導(dǎo)的,并且通過調(diào)節(jié)FGF15 和CYP7A1 的表達(dá)以及膽汁酸的結(jié)合和吸收來影響初級(jí)膽汁酸的合成。
正常情況下,腸腔內(nèi)容物的次級(jí)膽汁酸濃度較高,因而是調(diào)控腸道膽汁酸信號(hào)的主要因子;而高濃度的次級(jí)膽汁酸又被視作為肝癌和腸道腫瘤的誘發(fā)因素。次級(jí)膽汁酸主要刺激TGR5,而對(duì)FXR 刺激作用較弱。本課題組研究發(fā)現(xiàn),降糖藥物阿卡波糖可能通過抑制2 個(gè)腸道共生菌的膽汁酸代謝的主要步驟對(duì)宿主的膽汁酸池組分造成顯著影響,改變了宿主的膽汁酸信號(hào),從而減輕胰島素抵抗及改善血脂譜等[46]。而Fxr 敲除的無菌小鼠證明,腸道共生菌很有可能借由膽汁酸信號(hào)途徑對(duì)宿主代謝進(jìn)行調(diào)控,從而導(dǎo)致宿主的肥胖和代謝異常[47]。
另一方面,膽汁酸可能直接影響細(xì)菌組成。細(xì)菌的耐膽屬性以及膽汁酸代謝能力決定了它們?cè)谀c腔內(nèi)的分布,可使膽汁酸和腸道微生物組成和功能之間維持動(dòng)態(tài)平衡[48-49]。 研究[47,50]表明,減肥手術(shù)后的患者體質(zhì)量減輕和血糖改善依賴FXR,同時(shí)因腸道共生菌導(dǎo)致的肥胖也被認(rèn)為與膽汁酸信號(hào)有關(guān)。
通過以上機(jī)制研究結(jié)果可以看出,膽汁酸受體FXR和TGR5 在代謝相關(guān)以及免疫相關(guān)器官和細(xì)胞中發(fā)揮重要調(diào)控作用,提示膽汁酸信號(hào)無論在T1DM(自身免疫功能紊亂)還是T2DM(代謝功能紊亂)的發(fā)生和發(fā)展中均可成為糖尿病治療的候選靶點(diǎn)。
在T1DM 的小鼠模型中,其血清、腸道和膽囊中的總膽汁酸水平較正常小鼠顯著上升,但次級(jí)膽汁酸在膽囊、糞便中水平下降[39]。臨床研究發(fā)現(xiàn),與健康兒童相比,T1DM 患兒的尿液和血清中的膽汁酸水平也有所變化[51];而與健康成年人相比,T1DM 成年患者(無論血糖控制情況如何)的循環(huán)膽汁酸也有所改變[52]。因此,膽汁酸譜改變可能與T1DM 的進(jìn)展存在關(guān)聯(lián),這種關(guān)聯(lián)是否是因果關(guān)系及其潛在具體機(jī)制尚需進(jìn)一步研究。
另一方面,已有多組臨床研究證明,使用膽汁酸結(jié)合劑、減肥手術(shù)的患者顯示出良好代謝獲益。FXR 激動(dòng)劑治療非酒精性脂肪肝的臨床研究結(jié)果提示,治療后肝臟病理學(xué)指標(biāo)得以明顯恢復(fù)[53-54]。另一種治療高血糖和T2DM 的治療方法涉及抑制頂端鈉依賴性膽汁酸轉(zhuǎn)運(yùn)蛋白(apical sodium-dependent bile acid transporter,ASBT)。ASBT 在遠(yuǎn)端回腸中表達(dá),調(diào)控小腸腔中的膽汁酸重吸收。與膽汁酸結(jié)合劑原理類似,ASBT 抑制劑可能通過減少回腸膽汁酸吸收并增加糞便中膽汁酸的排泄,從而提高胰島素敏感性,降低糖尿病嚙齒動(dòng)物模型中的血糖水平[55]。本課題組已發(fā)表的臨床研究[56]發(fā)現(xiàn),空腹UDCA/LCA 比值與T2DM 患者的胰島β 細(xì)胞1 相快速分泌能力呈正相關(guān),可用于T2DM 患者β 細(xì)胞功能儲(chǔ)備及用藥后β 細(xì)胞功能恢復(fù)的預(yù)測(cè)。
綜上所述,在嚙齒動(dòng)物和人類中,F(xiàn)XR 和TGR5 信號(hào)在不同組織器官細(xì)胞中調(diào)節(jié)不同的下游信號(hào),對(duì)葡萄糖代謝的調(diào)節(jié)起重要作用。在多數(shù)研究中,腸道細(xì)胞的TGR5激活有利于血糖降低、代謝改善;但腸道FXR 激活是否有利于代謝,目前仍有爭(zhēng)議。因此,F(xiàn)XR、TGR5 的時(shí)空特異的精細(xì)調(diào)節(jié)、腸道微生物次級(jí)膽汁酸的調(diào)節(jié)、膽汁酸信號(hào)和免疫細(xì)胞之間的相互作用等,都可以作為研發(fā)糖尿病治療新靶點(diǎn)的方向。
參·考·文·獻(xiàn)
[1] Kuipers F, Stroeve JH, Caron S, et al. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control[J]. Curr Opin Lipidol, 2007, 18(3): 289-297.
[2] Bernstein H, Bernstein C, Payne CM, et al. Bile acids as endogenous etiologic agents in gastrointestinal cancer[J]. World J Gastroenterol, 2009, 15(27): 3329-3340.
[3] Li TG, Chiang JY. Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66(4): 948-983.
[4] Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR[J]. Mol Cell, 1999, 3(5): 543-553.
[5] Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J]. Biochem Biophys Res Commun, 2005, 329(1): 386-390.
[6] Shapiro H, Kolodziejczyk AA, Halstuch D, et al. Bile acids in glucose metabolism in health and disease[J]. J Exp Med, 2018, 215(2): 383-396.
[7] Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316.
[8] Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity[J]. Proc Natl Acad Sci USA, 2001, 98(6): 3369-3374.
[9] Nagahashi M, Yuza K, Hirose Y, et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases[J]. J Lipid Res, 2016, 57(9): 1636-1643.
[10] Sheikh Abdul Kadir SH, Miragoli M, Abu-Hayyeh S, et al. Bile acidinduced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes[J]. PLoS One, 2010, 5(3): e9689.
[11] Cheng SH, Zou M, Liu QH, et al. Activation of constitutive androstane receptor prevents cholesterol gallstone formation[J]. Am J Pathol, 2017, 187(4): 808-818.
[12] Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526.
[13] Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4): 217-225.
[14] Berrabah W, Aumercier P, Gheeraert C, et al. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR)[J]. Hepatology, 2014, 59(5): 2022-2033.
[15] Hashiguchi T, Arakawa S, Takahashi S, et al. Phosphorylation of farnesoid X receptor at serine 154 links ligand activation with degradation[J]. Mol Endocrinol, 2016, 30(10): 1070-1080.
[16] Balasubramaniyan N, Ananthanarayanan M, Suchy FJ. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(9): G937-G947.
[17] Kemper JK, Xiao Z, Ponugoti B, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states[J]. Cell Metab, 2009, 10(5): 392-404.
[18] Kemper JK. Regulation of FXR transcriptional activity in health and disease: emerging roles of FXR cofactors and post-translational modifications[J]. Biochim Biophys Acta, 2011, 1812(8): 842-850.
[19] Kim DH, Xiao Z, Kwon S, et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity[J]. EMBO J, 2015, 34(2): 184- 199.
[20] Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. J Clin Invest, 2004, 113(10): 1408-1418.
[21] Duran-Sandoval D, Cariou B, Percevault F, et al. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition[J]. J Biol Chem, 2005, 280(33): 29971-29979.
[22] Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway[J]. Cell Metab, 2011, 13(6): 729-738.
[23] Zhang YQ, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[J]. Proc Natl Acad Sci USA, 2006, 103(4): 1006-1011.
[24] Kim KH, Choi S, Zhou Y, et al. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice[J]. Hepatology, 2017, 66(2): 498-509.
[25] Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis[J]. J Clin Invest, 2006, 116(4): 1102-1109.
[26] Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes[J]. Endocrinology, 2004, 145(6): 2594-2603.
[27] Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulinindependent activator of hepatic protein and glycogen synthesis[J]. Science, 2011, 331(6024): 1621-1624.
[28] Sachdev S, Wang Q, Billington C, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes[J]. Obes Surg, 2016, 26(5): 957-965.
[29] Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering[J]. J Clin Invest, 2013, 123(11): 4799-4808.
[30] Ryan KK, Kohli R, Gutierrez-Aguilar R, et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats[J]. Endocrinology, 2013, 154(1): 9-15.
[31] Picard A, Soyer J, Berney X, et al. A genetic screen identifies hypothalamic fgf15 as a regulator of glucagon secretion[J]. Cell Rep, 2016, 17(7): 1795- 1806.
[32] Renga B, Mencarelli A, Vavassori P, et al. The bile acid sensor FXR regulates insulin transcription and secretion[J]. Biochim Biophys Acta, 2010, 1802(3): 363-372.
[33] Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3): 167-177.
[34] Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagonlike peptide-1 production by enteroendocrine L cells[J]. Nat Commun, 2015, 6: 7629.
[35] Lasalle M, Hoguet V, Hennuyer N, et al. Topical intestinal aminoimidazole agonists of G-protein-coupled bile acid receptor 1 promote glucagon like peptide-1 secretion and improve glucose tolerance[J]. J Med Chem, 2017, 60(10): 4185-4211.
[36] Kumar DP, Rajagopal S, Mahavadi S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells[J]. Biochem Biophys Res Commun, 2012, 427(3): 600-605.
[37] Kumar DP, Asgharpour A, Mirshahi F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis[J]. J Biol Chem, 2016, 291(13): 6626-6640.
[38] Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[J]. Nature, 2006, 439(7075): 484-489.
[39] Li TG, Francl JM, Boehme S, et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity[J]. J Biol Chem, 2012, 287(3): 1861-1873.
[40] Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions[J]. Cell, 2016, 165(4): 792-800.
[41] Guo CS, Xie SJ, Chi ZX, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J]. Immunity, 2016, 45(4): 944.
[42] Liu HL, Pathak P, Boehme S, et al. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis[J]. J Lipid Res, 2016, 57(10): 1831-1844.
[43] Perino A, Pols TW, Nomura M, et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation[J]. J Clin Invest, 2014, 124(12): 5424-5436.
[44] Su J, Zhang QQ, Qi H, et al. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-κB and STAT3 signaling pathways[J]. Oncotarget, 2017, 8(33): 54378-54387.
[45] Sayin Sama I, Wahlstr?m A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2): 225-235.
[46] Gu YY, Wang XK, Li JH, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment[J]. Nat Commun, 2017, 8(1): 1785.
[47] Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor[J]. Gut, 2017, 66(3): 429-437.
[48] Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5): 1773-1781.
[49] Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
[50] Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy[J]. Nature, 2014, 509(7499): 183-188.
[51] Balderas C, Rupérez FJ, Iba?ez E, et al. Plasma and urine metabolic fingerprinting of type 1 diabetic children[J]. Electrophoresis, 2013, 34(19): 2882-2890.
[52] Dutta T, Kudva YC, Persson XM, et al. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people[J]. J Clin Endocrinol Metab, 2016, 101(3): 1023-1033.
[53] Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial[J]. Lancet, 2015, 385(9972): 956-965.
[54] Neuschwander-Tetri BA, Van Natta ML, Tonascia J, et al. Trials of obeticholic acid for non-alcoholic steatohepatitis: authors' reply[J]. Lancet, 2015, 386(9988): 28-29.
[55] Chen LH, Yao XZ, Young A, et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes[J]. Am J Physiol Endocrinol Metab, 2012, 302(1): E68-E76.
[56] Wang SJ, Deng YY, Xie XY, et al. Plasma bile acid changes in type 2 diabetes correlated with insulin secretion in two-step hyperglycemic clamp[J]. J Diabetes, 2018, 10(11): 874-885.
上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2020年8期