董荷荷,駱永麗,李文倩,王元元,張秋霞,陳金,金敏,李勇,王振林
不同春季追氮模式對(duì)小麥莖稈抗倒性能及木質(zhì)素積累的影響
董荷荷,駱永麗,李文倩,王元元,張秋霞,陳金,金敏,李勇,王振林
(山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018)
【】探討春季不同追氮模式對(duì)小麥各節(jié)間莖稈抗倒伏能力、木質(zhì)素積累及籽粒產(chǎn)量的影響,明確高施氮量條件下適宜的春季追氮模式,為小麥高產(chǎn)穩(wěn)產(chǎn)抗逆應(yīng)變?cè)耘嗵峁┘夹g(shù)支撐。于2017—2018和2018—2019年2個(gè)小麥生長(zhǎng)季,以倒伏敏感型品種山農(nóng)16和抗倒伏品種濟(jì)麥22為供試材料,在高施氮量300 kg·hm-2基施1/3條件下設(shè)置4種春季追肥模式,分別為等量二次性追氮和剩余一次性追氮,即起身期﹕孕穗期1/3﹕1/3(T1),拔節(jié)期﹕開(kāi)花期1/3﹕1/3(T2),孕穗期一次性追施剩余2/3氮(T3)和拔節(jié)期一次性追施剩余2/3氮(CK)。深入研究春季不同追氮模式對(duì)冬小麥植株莖稈抗折力、木質(zhì)素積累、木質(zhì)素合成關(guān)鍵酶基因的表達(dá)豐度及籽粒產(chǎn)量的調(diào)控效應(yīng)。抗倒伏品種濟(jì)麥22的各節(jié)間莖稈抗折力、木質(zhì)素積累量以及單體含量均高于倒伏敏感型品種山農(nóng)16,2種類型品種開(kāi)花期T1、CK處理的抗折力高于T2和T3處理,木質(zhì)素積累量、單體的含量表現(xiàn)為T(mén)1>T3>CK>T2,灌漿期和成熟期各處理間抗折力、木質(zhì)素積累量以及單體的含量表現(xiàn)為T(mén)1>T3>T2>CK。灌漿期山農(nóng)16和濟(jì)麥22在T1處理下抗折力較CK、T2、T3處理分別增加24.69%、19.97%、13.15%和26.92%、15.36%、5.87%;山農(nóng)16和濟(jì)麥22在T1處理下的各生育階段木質(zhì)素積累量平均值分別較CK、T2、T3處理提高了21.71%、15.45%、8.85%和25.19%、21.75%、15.83%;成熟期2個(gè)品種T1處理的木質(zhì)素S型單體含量平均值分別較CK、T2、T3處理高18.82%、18.48%、8.39%。不同追氮模式處理的木質(zhì)素合成相關(guān)酶基因(苯丙氨酸解氨酶:PAL、咖啡酸3氧甲基轉(zhuǎn)移酶:COMT、香豆酸-3-羥基氧化酶:C3H、肉桂酰輔酶 A 還原酶:CCR、肉桂酸4羥化酶:C4H等)表達(dá)均隨生育進(jìn)程呈下降趨勢(shì),其表達(dá)量高低依次為T(mén)1>T3>T2>CK。孕穗期追氮處理模式的千粒重高于其他處理,因T1處理可提高穗粒數(shù)以及群體有效穗數(shù),其最終籽粒產(chǎn)量較高。同一時(shí)期相同處理各節(jié)間莖稈木質(zhì)素積累量、單體含量均呈現(xiàn)為I1>I2>I3>I4>I5的趨勢(shì)。高施氮量300 kg·hm-2基施1/3條件下起身與孕穗期等量二次性追氮模式較其他春季追氮模式處理顯著提高了小麥開(kāi)花后莖稈各節(jié)間抗折能力、木質(zhì)素積累量、木質(zhì)素合成途徑相關(guān)酶基因的表達(dá)以及籽粒產(chǎn)量。因此,起身與孕穗期等量二次性追氮模式可作為黃淮海麥區(qū)高施氮量300 kg·hm-2基施1/3條件下的春季適宜追氮模式。
追氮模式;抗倒性能;木質(zhì)素積累;籽粒產(chǎn)量;冬小麥
【研究意義】倒伏是小麥高產(chǎn)的限制因子,黃淮海麥區(qū)每年約有10%的面積發(fā)生倒伏,嚴(yán)重的年份高達(dá)20%以上,甚至出現(xiàn)絕收[1-2]。合理的氮肥調(diào)控可以有效緩解個(gè)體與群體的矛盾,改善群體結(jié)構(gòu),不合理追肥易造成莖稈質(zhì)量降低,群體結(jié)構(gòu)變差[3-5]。氮肥合理后移能夠增加基部節(jié)間壁厚、充實(shí)度及木質(zhì)素積累量,從而提升莖稈的抗倒性能[4,6]。目前在生產(chǎn)上仍存在高產(chǎn)農(nóng)田過(guò)量施用氮肥的問(wèn)題[7-8]。因此,試驗(yàn)在高施氮量300 kg·hm-2基施1/3條件下設(shè)置不同的追肥時(shí)期,探究高施氮量條件下不同春季追氮模式對(duì)莖稈各節(jié)間生育后期抗倒伏能力的影響,以期為小麥高產(chǎn)穩(wěn)產(chǎn)抗逆應(yīng)變?cè)耘嗵峁├碚撘罁?jù)?!厩叭搜芯窟M(jìn)展】氮肥調(diào)控主要包括合理的氮肥施用量和合適的基追比兩方面,是作物增產(chǎn)的重要途徑[9]。前人研究表明,在小麥和玉米上,施足底肥,分次施肥有助于提高作物籽粒產(chǎn)量及莖稈強(qiáng)度,孕穗期追肥可以提高小麥莖稈中木質(zhì)素的積累量,提高莖稈的抗折力,進(jìn)而提高莖稈的抗倒伏能力[10-12]。莖稈的抗倒伏性能與植株高度、莖粗、壁厚、抗折力等生理指標(biāo)密切相關(guān),還與莖稈的解剖結(jié)構(gòu)以及木質(zhì)素代謝有關(guān)[13-21]。合理的氮肥運(yùn)籌可以提高莖稈基部第二節(jié)間木質(zhì)素積累量以及木質(zhì)素合成途徑關(guān)鍵酶的活性,且合理的氮肥施用量可以提高莖稈各節(jié)間中木質(zhì)素單體的含量[4,15]。過(guò)量施氮會(huì)導(dǎo)致水稻莖稈基部節(jié)間中木質(zhì)素、纖維素、半纖維素的含量降低,使莖稈抗折力下降,莖稈質(zhì)量劣化。水稻中穗肥過(guò)量降低了木質(zhì)素合成基因PAL、COMT、4CL3、CCR、CAD2、CAD7在莖稈發(fā)育早期的表達(dá)量[22-23]。木質(zhì)素是植物體中重要的苯酚類代謝產(chǎn)物,和纖維素、半纖維素約占植物體干重的15%—40%,存在于細(xì)胞壁的多聚糖框架中以增強(qiáng)植物的機(jī)械強(qiáng)度[24-26]。木質(zhì)素是由松柏醇、芥子醇和對(duì)香豆醇聚合形成的物質(zhì),在相關(guān)酶的催化作用下對(duì)應(yīng)生成愈創(chuàng)木基木質(zhì)素(G型木質(zhì)素)、紫丁香基木質(zhì)素(S型木質(zhì)素)和對(duì)羥基苯基木質(zhì)素(H型木質(zhì)素)[27-29],木質(zhì)素單體的含量及比例與莖稈的機(jī)械強(qiáng)度有密切關(guān)系,其中起主要機(jī)械支撐作用的是S型木質(zhì)素[13,21,30-32]。關(guān)于木質(zhì)素合成途徑的分子調(diào)控前人已經(jīng)進(jìn)行了較多的研究,木質(zhì)素合成途徑呈網(wǎng)絡(luò)狀,表現(xiàn)在中間產(chǎn)物及木質(zhì)素的側(cè)基修飾類型豐富,許多產(chǎn)物的生成不止一條合成途徑,且這些木質(zhì)素合成途徑相關(guān)基因均表現(xiàn)為多基因家族[32]。木質(zhì)素中3種單體含量和比例受物種、品種、生育時(shí)期、環(huán)境因素、木質(zhì)素合成相關(guān)酶基因上調(diào)、下調(diào)以及相互作用的影響[33-38]。PAL是木質(zhì)素合成途徑的關(guān)鍵起始酶,其表達(dá)豐度影響著整個(gè)木質(zhì)素代謝過(guò)程,PAL基因下調(diào)時(shí),植物體內(nèi)木質(zhì)素含量降低[39]。F5H或COMT基因調(diào)控均可嚴(yán)重影響S型木質(zhì)素的生物合成[40-41],水稻中過(guò)量表達(dá)F5H增加了S型單體的含量,減少了G型單體的含量,影響水稻的抗倒伏能力[34]。【本研究切入點(diǎn)】關(guān)于氮肥對(duì)小麥莖稈抗倒伏能力的研究多集中于氮肥施用量,對(duì)不同抗倒伏品種小麥莖稈性能影響的研究也多集中于基部節(jié)間。生育后期受外界天氣及莖稈自身變化的影響,上部節(jié)間也容易發(fā)生倒伏[42-43],不同春季追氮模式對(duì)莖稈基部第二節(jié)間莖稈抗倒伏能力的調(diào)控已有報(bào)道,但對(duì)莖稈各節(jié)間抗折力、木質(zhì)素單體積累以及木質(zhì)素合成相關(guān)酶基因的表達(dá)量尚無(wú)深入研究?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)以抗倒伏性能不同的2個(gè)小麥品種為材料,在總施氮量300 kg·hm-2的條件下,研究不同春季追氮模式對(duì)莖稈各節(jié)間木質(zhì)素積累規(guī)律的影響及抗折力的影響,為提高小麥各節(jié)間抗倒伏能力及小麥高產(chǎn)穩(wěn)產(chǎn)抗逆應(yīng)變?cè)耘嗵峁├碚撘罁?jù)。
2017—2018和2018—2019年在山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)實(shí)驗(yàn)站進(jìn)行大田試驗(yàn),試驗(yàn)選用倒伏敏感型品種山農(nóng)16和抗倒伏品種濟(jì)麥22。試驗(yàn)田土壤為棕壤土,前茬作物為玉米,秸稈全部還田。小麥全生育期施用純N 300 kg·hm-2(尿素),P2O590 kg·hm-2(過(guò)磷酸鈣),K2O 100 kg·hm-2(氯化鉀),種植密度300萬(wàn)株/hm2。鉀肥、磷肥和1/3的氮肥作為基肥均勻施入田中,翻耕入土。剩余氮肥后期開(kāi)溝追施,設(shè)置4個(gè)追肥時(shí)期,分別為等量二次性追氮和剩余一次性追氮,即起身期﹕孕穗期1/3﹕1/3(T1)、拔節(jié)期﹕開(kāi)花期1/3﹕1/3(T2)、孕穗期一次性追施2/3(T3)、拔節(jié)期一次性追施2/3(CK)。小區(qū)面積9 m2(3 m×3 m),每個(gè)處理設(shè)置3次重復(fù),共24個(gè)小區(qū),人工開(kāi)溝播種,行距25 cm,其他管理同一般大田。
1.2.1 莖稈抗折力的測(cè)定 于小麥開(kāi)花期、灌漿期、成熟期取15株生長(zhǎng)均勻一致的植株,分別測(cè)量各節(jié)間的抗折力,使用的儀器為浙江托普儀器有限公司生產(chǎn)的莖稈強(qiáng)度測(cè)定儀(YYD-1),測(cè)量參照Peng等[18]和Zheng等[13]的方法。將小麥從頂部向下依次分為I5、I4、I3、I2、I1,把每一節(jié)間中間部分置于莖稈強(qiáng)度測(cè)定儀的凹槽中,支撐長(zhǎng)度5 cm,此時(shí)莖稈與壓力器探頭垂直,手持壓力傳感器手柄勻速下壓,莖稈被折斷時(shí)屏幕顯示的數(shù)值(單位為N)表示為該節(jié)間的抗折力。
1.2.2 木質(zhì)素含量的測(cè)定 木質(zhì)素含量的測(cè)定參照Syros等[27]的方法略有改動(dòng)。取鮮樣置于研缽中,加液氮研磨成粉狀。稱取0.1 g于10 ml離心管中,加入8 ml 95%乙醇過(guò)夜浸提后離心去上清。沉淀中加入8 ml正己烷﹕乙醇=2﹕1的混合溶液浸提,離心棄上清,重復(fù)2次,50℃烘干至恒重。干燥物用2.5 ml 25%乙溴酰冰醋酸(體積比)溶解,70℃水浴保溫30 min,加熱期間搖晃2次混勻,冷水中快速冷卻至室溫,然后加入0.9 mL 2 mol·l-1NaOH溶液終止反應(yīng),加0.1 ml 7.5 mol·l-1鹽酸羥胺和4 ml冰乙酸,混勻后離心5 min,吸取0.1 ml上清液,加7.9 ml冰乙酸(前2次取樣含量較少,可取上清液0.2 ml,加3.8 ml冰乙酸稀釋20倍)稀釋后測(cè)定A280nm。以單位質(zhì)量鮮樣在A280nm處的吸光值表示木質(zhì)素含量。
1.2.3 木質(zhì)素單體含量的測(cè)定 參照Z(yǔ)heng等[17]的方法,莖稈樣品研磨過(guò)篩,經(jīng)NaCl溶液、無(wú)水乙醇、95%乙醇、丙酮、色譜氯仿﹕色譜甲醇1﹕1萃取后50℃烘干備用。準(zhǔn)確稱取0.02 g上述烘干備用的樣品,置于50 ml白色消解管中(微波消解儀配套白色50 ml消解管),加入3 ml 2 mol·l-1的NaOH和0.5 ml的硝基苯,混勻后放入微波消解儀中(MULTIWAVE 3000),150℃保溫1 h,然后將樣品轉(zhuǎn)移到10 ml離心管中并加入0.5 ml 2 mol·l-1NaOH沖洗白管,沖洗后的液體轉(zhuǎn)移到10 ml離心管中,5 000×離心5 min。吸取2.7 ml上清液轉(zhuǎn)移到新的10 ml離心管中,加入4 ml乙酸乙酯(CNW),用振蕩器漩渦混勻5 000×離心后,吸取3 ml上清轉(zhuǎn)移到新的離心管中。重復(fù)加入4 ml乙酸乙酯,漩渦混勻吸取4 ml上清液,與上一步驟得到的3 ml乙酸乙酯合并。將7 ml有機(jī)相利用真空離心濃縮儀(Thermo Fisher)蒸干,蒸干后加6 ml 50%的乙腈水復(fù)溶樣品,用振蕩器渦旋并于超聲儀中進(jìn)行超聲,使樣品充分溶解混勻。將樣品用50%的乙腈水稀釋后過(guò)0.22 μm有機(jī)濾器,利用超高效液相-三重四級(jí)桿質(zhì)譜儀(Xevo TQ-S,Waters,Milford,MA,USA)進(jìn)行樣品定性及定量的測(cè)定。
1.2.4 小麥莖稈木質(zhì)素合成關(guān)鍵酶基因表達(dá)豐度的測(cè)定 將按照節(jié)間分好的鮮樣用液氮研磨至粉末狀,然后迅速轉(zhuǎn)移到無(wú)RNA酶、無(wú)DNA酶、無(wú)菌的2 ml離心管中,利用全式金試劑盒提取RNA,然后用全式金反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄為cDNA。配制96孔板所需體系,每孔配制20 μl,引物序列如表1所示。將20 μl體系分別加入96孔板相應(yīng)孔內(nèi)(操作要緩慢,避免產(chǎn)生氣泡),將96孔板放入ABI 7500型實(shí)時(shí)熒光定量PCR儀(賽默飛)中反應(yīng),進(jìn)行目的基因的表達(dá)分析。
表1 木質(zhì)素合成途徑中關(guān)鍵基因引物及探針的序列
ACTIN:內(nèi)參基因;PAL:苯丙氨酸解氨酶;C4H:肉桂酸4羥化酶;HCT:羥基肉桂酰輔酶A轉(zhuǎn)移酶;C3H:香豆酸-3-羥基氧化酶;CCR:肉桂酰輔酶 A 還原酶;CAD:肉桂醇脫氫酶;4CL:香豆酸輔酶A連接酶;F5H:阿魏酸 5 羥化酶;COMT:咖啡酸3氧甲基轉(zhuǎn)移酶;CSE:咖啡酰莽草酸酯酶
ACTIN: Reference gene; PAL: phenylalanine ammonia-lyase; C4H: cinnamate 4-hydroxylase; HCT: p-hydroxycinnamoyl-CoA-shikimate/quinate p-hydroxycinnamoyl transferase; C3H: Coumarate -3- hydroxyl oxidase; CCR: Cinnamoyl CoA reductase; CAD: cinnamyl alcohol dehydrogenase; 4CL: 4-coumarate CoA ligase; F5H: Ferulic acid 5-hydroxylase; COMT: caffeic acid3-o-methytransferase; CSE: Caffeoyl shikimate esterase
用DPS(Data Processing System)軟件分析數(shù)據(jù),采用最小顯著極差法(LSD 0.05)進(jìn)行平均數(shù)顯著性檢驗(yàn),用Microsoft Excel軟件對(duì)數(shù)據(jù)進(jìn)行繪圖。2年試驗(yàn)結(jié)果趨勢(shì)一致,本文采用2018—2019基因表達(dá)豐度的數(shù)據(jù),其他指標(biāo)均為2年數(shù)據(jù)。
從開(kāi)花期到成熟期,抗倒伏品種濟(jì)麥22的抗折力高于倒伏敏感型品種山農(nóng)16,2個(gè)品種的抗折力呈現(xiàn)出先增加后降低的趨勢(shì),在灌漿期達(dá)到最大值(表2)。在高施氮量300 kg·hm-2基施1/3條件下,2種類型品種均表現(xiàn)出T1處理(起身期和孕穗期1﹕1等量二次性追氮模式追施氮肥)顯著提高了小麥莖稈各節(jié)間的抗折力。開(kāi)花期2種類型品種T1、CK處理抗折力高于T2、T3處理,在灌漿期和成熟期呈現(xiàn)T1>T3>T2>CK的規(guī)律,不同春季追氮模式對(duì)小麥莖稈抗折力的影響在2個(gè)生長(zhǎng)季表現(xiàn)一致。以2017—2018年為例,灌漿期山農(nóng)16和濟(jì)麥22第二節(jié)間T1處理分別較CK、T2、T3增加了24.69%、19.97%、13.15%和26.92%、15.36%、5.87%,其他節(jié)間抗折力表現(xiàn)趨勢(shì)與第二節(jié)間一致。說(shuō)明將追肥時(shí)期調(diào)整為起身期與孕穗期1﹕1等量二次性追氮模式有利于提高小麥莖稈各節(jié)間的抗折力。
比較2種類型品種不同節(jié)間的抗折力,從I1—I5呈現(xiàn)逐漸下降的趨勢(shì)。以2017—2018年灌漿期T1處理的5個(gè)節(jié)間為例,與I1相比,山農(nóng)16 I2、I3、I4、I5抗折力分別下降了11.19%、35.49%、45.95%、73.38%,濟(jì)麥22抗折力分別降低了15.66%、42.12%、56.86%、103.91%。不同節(jié)間之間抗折力差異顯著,上部節(jié)間抗折力顯著小于下部節(jié)間,在生育后期受惡劣天氣的影響更容易發(fā)生倒伏,因此上部節(jié)發(fā)生倒伏的可能性同樣不可忽視。
表2 不同春季追氮模式對(duì)不同抗倒伏型小麥品種各節(jié)間抗折力的影響
SN16表示山農(nóng)16,JM22表示濟(jì)麥22。CK表示拔節(jié)期一次性追施2/3,T1表示起身期﹕孕穗期等量二次性追施2/3,T2表示拔節(jié)期﹕開(kāi)花期等量二次性追施2/3,T3表示孕穗期一次性追施2/3。莖稈從基部向上依次進(jìn)行標(biāo)記為I1、I2、I3、I4、I5。同一年份同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平。下同
SN16 and JM22 represent Shannong16 and Jimai22, respectively. CK represents the jointing stage 2/3 which is remaining one-time nitrogen topdressing. TI represents the rising stage﹕booting stage 1/3﹕1/3, which is equal amount of secondary nitrogen topdressing. T2 represents the jointing stage﹕flowering stage 1/3﹕1/3, which is equal amount of secondary nitrogen topdressing. T3 represents booting stage 2/3, which is remaining one-time nitrogen topdressing. The stems are labeled I1, I2, I3, I4 and I5 from the base to top. Different letters of a column in the same year are significantly different at<0.05 level. the same as below
不同春季追氮模式對(duì)小麥莖稈木質(zhì)素的積累具有調(diào)控作用。抗倒伏品種濟(jì)麥22各時(shí)期木質(zhì)素積累量高于山農(nóng)16,在不同生育時(shí)期,木質(zhì)素的積累量呈現(xiàn)顯著差異。隨著生育進(jìn)程推進(jìn),木質(zhì)素總積累量增加,各生育階段木質(zhì)素積累量呈逐漸減小的趨勢(shì)(圖1)。不同處理下,拔節(jié)期至開(kāi)花期木質(zhì)素積累量表現(xiàn)為T(mén)1>T3>CK>T2,開(kāi)花期到灌漿期及灌漿期到成熟期木質(zhì)素積累量表現(xiàn)為T(mén)1>T3>T2>CK,2年結(jié)果趨于一致。以2018—2019年第二節(jié)間為例,拔節(jié)期至開(kāi)花期山農(nóng)16和濟(jì)麥22在T1處理下木質(zhì)素積累量分別比CK、T2、T3處理高出13.43%、30.69%、12.88%和30.79%、38.33%、29.47%,開(kāi)花期至灌漿期山農(nóng)16和濟(jì)麥22在T1處理下木質(zhì)素積累量分別比CK、T2、T3處理高出28.58%、0.27%、4.71%和22.11%、15.97%、16.80%,灌漿期至成熟期山農(nóng)16和濟(jì)麥22在T1處理下木質(zhì)素積累量分別比CK、T2、T3處理高出23.11%、15.38%、8.96%和22.66%、10.97%、1.23%。說(shuō)明起身期﹕孕穗期等量二次性追肥提高了莖稈后期各生育階段木質(zhì)素積累量。
SN16表示山農(nóng)16,JM22表示濟(jì)麥22。J表示拔節(jié)期,A表示開(kāi)花期,F(xiàn)表示灌漿期,M表示成熟期。下同
相同處理下,不同節(jié)間之間存在差異,基部節(jié)間木質(zhì)素積累量要高于上部節(jié)間,在2018—2019年T1處理中,山農(nóng)16第一節(jié)間3個(gè)生育時(shí)期均值較第二節(jié)間、第三節(jié)間、第四節(jié)間、第五節(jié)間分別高出18.46%、30.63%、32.10%、46.53%。JM22第一節(jié)間3個(gè)生育時(shí)期均值較其他節(jié)間高出7.86%、24.01%、42.14%、49.51%。不同處理之間節(jié)間變化趨勢(shì)與T1處理變化規(guī)律一致。3個(gè)生育階段各節(jié)間木質(zhì)素的積累量隨生育期呈現(xiàn)降低的趨勢(shì)。
木質(zhì)素是小麥莖稈的重要組成成分,由愈創(chuàng)木基木質(zhì)素(G型)、紫丁香基木質(zhì)素(S型)和對(duì)羥基苯基木質(zhì)素(H型)3種單體組成。由圖2可知,在小麥中G型、S型單體的含量顯著高于H型,抗倒伏品種濟(jì)麥22 3種單體的總含量顯著高于倒伏敏感型品種山農(nóng)16。開(kāi)花期2種類型品種不同處理間S型單體含量的變化趨勢(shì)表現(xiàn)為T(mén)1>T3>CK>T2,灌漿期和成熟期表現(xiàn)為T(mén)1>T3>T2>CK。隨著生育進(jìn)程推進(jìn),3種單體含量的總和逐漸增加,S型/G型的比例逐漸減少,S型單體含量占3種單體含量總和的31.05%—49.80%,G型單體含量占3種單體含量總和的41.94%—53.21%,G型+S型單體含量占3種單體含量總和的78.05%—93.31%(以2018—2019年數(shù)據(jù)為例)。不同春季追氮模式對(duì)小麥莖稈木質(zhì)素含量及其積累規(guī)律有一定影響,以2018—2019年成熟期第二節(jié)間為例,山農(nóng)16 T1處理S型單體含量分別比CK、T2、T3處理增加了13.01%、25.62%、5.55%,G型單體含量分別比CK、T2、T3處理增加了17.18%、18.01%、1.24%,JM22 T1處理S型單體含量分別比CK、T2、T3處理增加了24.62%、11.34%、11.22%,G型單體含量分別比CK、T2、T3處理增加了14.38%、9.67%、3.03%。追肥模式以起身期﹕孕穗期1﹕1等量二次性追氮模式顯著增加了莖稈生育后期各節(jié)間G型、S型、H型單體的含量,拔節(jié)期全部追施不利于生育后期木質(zhì)素單體的積累。
各節(jié)間變化規(guī)律趨于一致,從開(kāi)花期到成熟期G型、S型、H型單體的含量逐漸增大。從I1至I5 S型、G型單體的含量逐漸下降,3種單體的總含量也逐漸下降。2018—2019年山農(nóng)16成熟期第一節(jié)間S型單體含量較第二節(jié)間、第三節(jié)間、第四節(jié)間、第五節(jié)間分別高出13.71%、39.56%、45.72%、61.26%,G型單體含量較其他節(jié)間分別高出2.73%、10.95%、28.67%、54.14%。不同處理間各節(jié)間變化趨勢(shì)一致,說(shuō)明起身期﹕孕穗期1﹕1等量二次性追施氮肥有利于提高高氮肥處理下小麥生育后期莖稈各節(jié)間木質(zhì)素單體的積累量,孕穗期一次性追氮也有利于生育后期莖稈各節(jié)間木質(zhì)素3種類型單體的積累。
莖稈抗折力與木質(zhì)素積累量、S型單體含量以及S型+G型單體含量呈極顯著正相關(guān)(表3)。2018—2019年成熟期抗折力與木質(zhì)素積累量以及S型單體含量、S型+G型單體含量相關(guān)系數(shù)分別為0.85、0.70和0.66,結(jié)果表明抗折力高的品種莖稈中木質(zhì)素積累量以及S型單體含量、S型+G型單體含量較高。本試驗(yàn)中,T1處理莖稈抗折力優(yōu)于其他處理,說(shuō)明在高施氮量300 kg·hm-2基施1/3條件下可以通過(guò)起身期﹕孕穗期1﹕1等量二次性追施提高莖稈中木質(zhì)素積累量、S型單體含量及G型+S型單體的含量進(jìn)而提高莖稈的抗倒伏能力。
表3 抗折力與木質(zhì)素積累的相關(guān)分析
*表示<0.05的顯著水平,**表示<0.01的顯著水平。下同 *and **represent significant at 0.05 and 0.01 probability levels, respectively. The same as below
苯丙氨酸解氨酶PAL是木質(zhì)素合成途徑的關(guān)鍵起始酶。由圖3可知,木質(zhì)素合成相關(guān)酶基因苯丙氨酸解氨酶(PAL)、肉桂酸4羥化酶(C4H)、羥基肉桂酰輔酶A轉(zhuǎn)移酶(HCT)、香豆酸-3-羥基氧化酶(C3H)、肉桂酰輔酶 A 還原酶(CCR)、肉桂醇脫氫酶(CAD)、香豆酸輔酶A連接酶(4CL)、阿魏酸 5 羥化酶(F5H)、咖啡酸3氧甲基轉(zhuǎn)移酶(COMT)、咖啡酰莽草酸酯酶(CSE)在抗倒伏品種濟(jì)麥22中基因表達(dá)豐度高于倒伏敏感型品種山農(nóng)16。隨著生育進(jìn)程的推進(jìn),PAL、C3H、C4H、COMT、F5H等木質(zhì)素合成相關(guān)酶基因的表達(dá)豐度呈逐漸降低的趨勢(shì)。開(kāi)花期第二節(jié)間不同處理間表現(xiàn)為T(mén)1>CK>T3>T2,開(kāi)花后7 d及之后的時(shí)期,不同處理間表現(xiàn)為T(mén)1>T3>T2>CK。說(shuō)明在本試驗(yàn)追肥條件下,將追肥時(shí)期改為起身肥﹕孕穗期1﹕1等量二次性追施可以提高開(kāi)花期及之后時(shí)期莖稈木質(zhì)素合成相關(guān)酶基因的表達(dá)豐度,拔節(jié)期一次性追施以及過(guò)晚施肥均不利于莖稈中木質(zhì)素合成途徑相關(guān)酶基因的表達(dá),進(jìn)而影響莖稈中木質(zhì)素單體的含量和抗折力,最終影響莖稈質(zhì)量。
不同節(jié)間木質(zhì)素合成途徑相關(guān)酶基因的表達(dá)豐度呈現(xiàn)I5>I4>I3>I2>I1的趨勢(shì)。相同生育時(shí)期其余節(jié)間木質(zhì)素合成途徑相關(guān)酶基因的表達(dá)豐度與第二節(jié)間開(kāi)花期后木質(zhì)素合成途徑相關(guān)酶的基因表達(dá)豐度變化趨勢(shì)基本一致。結(jié)果表明,不同春季追氮模式對(duì)莖稈各節(jié)間木質(zhì)素合成相關(guān)酶基因的表達(dá)有調(diào)控作用,起身期﹕孕穗期1﹕1等量二次性追施可以提高各節(jié)間開(kāi)花期及之后生育時(shí)期木質(zhì)素合成相關(guān)酶基因的表達(dá)。
山農(nóng)16籽粒產(chǎn)量呈現(xiàn)T1>T2>T3>CK的趨勢(shì),濟(jì)麥22籽粒產(chǎn)量呈現(xiàn)出T1>T2>CK>T3的趨勢(shì),2種類型品種均以T1處理籽粒產(chǎn)量最高,山農(nóng)16在T1處理下2年籽粒產(chǎn)量平均比CK、T2、T3高7.47%、4.37%、5.49%。濟(jì)麥22在T1處理下2年籽粒產(chǎn)量平均比其他處理高9.97%、6.58%、12.59%(表4)。CK、T3處理產(chǎn)量差異不顯著,說(shuō)明過(guò)晚追肥、一次性追肥均不利于籽粒產(chǎn)量的提高。不同處理之間,以T3處理千粒重最高,說(shuō)明孕穗期追肥可以顯著提高籽粒的產(chǎn)量。雖然T3處理千粒重較高,但由于追肥時(shí)期過(guò)晚,植株成穗數(shù)少,導(dǎo)致T3籽粒產(chǎn)量低于T1。拔節(jié)期一次性追氮模式雖可保證足夠穗數(shù),但不利于提高莖稈抗折能力。
表4 不同春季追氮模式對(duì)不同抗倒伏能力小麥籽粒產(chǎn)量的影響
5月3日標(biāo)為開(kāi)花后0 d,7 DAA、14 DAA、21 DAA分別表示開(kāi)花后7 d,14 d,21 d
由表5可知,對(duì)2018—2019年開(kāi)花期、灌漿期、成熟期莖稈基部第二節(jié)間莖稈抗折力、木質(zhì)素積累量等抗倒伏指標(biāo)與籽粒產(chǎn)量進(jìn)行相關(guān)分析,籽粒產(chǎn)量與木質(zhì)素積累量以及S型單體含量呈極顯著正相關(guān)(籽粒產(chǎn)量與開(kāi)花期S型單體含量呈顯著正相關(guān)),籽粒產(chǎn)量與成熟期莖稈抗折力、木質(zhì)素積累量和S型單體的含量呈極顯著正相關(guān),相關(guān)指數(shù)分別為0.69、0.91和0.81,與G型單體含量、S型+G型單體的含量呈顯著正相關(guān),相關(guān)系數(shù)為0.75和0.77。說(shuō)明合理的栽培措施不僅可以提高莖稈的質(zhì)量,籽粒產(chǎn)量也會(huì)增加。
表5 莖稈抗倒伏指標(biāo)與籽粒產(chǎn)量指標(biāo)的相關(guān)分析(2018—2019)
優(yōu)化的氮肥施用模式(基肥﹕拔節(jié)肥﹕孕穗肥4﹕4﹕2)可以提高莖稈中木質(zhì)素合成關(guān)鍵酶PAL、TAL、POD的活性以及木質(zhì)素積累量,提高莖稈抗折力,最終提高莖稈抗倒伏能力[4]。施氮量過(guò)高導(dǎo)致莖稈壁厚、充實(shí)度降低,大小維管束數(shù)目及木質(zhì)素積累量減少,莖稈抗折力降低,在生長(zhǎng)發(fā)育后期易引發(fā)倒伏[15,23]。本試驗(yàn)探討了高施氮量300 kg·hm-2且基施1/3條件下不同春季追氮模式對(duì)莖稈各節(jié)間抗折力的影響,不同處理間莖稈抗折力以起身肥﹕孕穗肥等量二次性追施莖稈抗折力優(yōu)于其他處理,且2種類型品種抗折力隨生育時(shí)期均呈現(xiàn)先增高后降低的趨勢(shì),在灌漿期達(dá)到最大值。S型單體主要為莖稈提供機(jī)械強(qiáng)度支撐[13,15]。在本試驗(yàn)條件下,S型單體的含量在2年生長(zhǎng)季的不同生育時(shí)期均表現(xiàn)為起身期﹕孕穗期1﹕1等量二次性追施顯著高于其他處理。開(kāi)花期木質(zhì)素各生育階段積累量、單體的含量呈現(xiàn)T1>T3>CK>T2的規(guī)律,灌漿期和成熟期呈現(xiàn)T1>T3>T2>CK的趨勢(shì)。起身期﹕孕穗期等量二次性追施(T1)提高了高氮肥種植條件下小麥莖稈各節(jié)間木質(zhì)素合成相關(guān)酶基因的表達(dá)量、各生育階段木質(zhì)素積累量及單體的含量,說(shuō)明起身肥﹕孕穗肥等量二次性追施通過(guò)提高各節(jié)間木質(zhì)素合成途徑關(guān)鍵酶的表達(dá)豐度,進(jìn)而提高了莖稈各節(jié)間木質(zhì)素的積累量,最終提高了各節(jié)間莖稈抗折力。
莖稈質(zhì)量和木質(zhì)素代謝研究表明,木質(zhì)素的含量與莖稈的抗倒伏能力密切相關(guān),抗倒伏強(qiáng)的品種木質(zhì)素含量較高[4,17]。在本研究中,相同處理間抗倒伏品種濟(jì)麥22抗折力、木質(zhì)素的積累量、單體的含量較倒伏敏感型品種山農(nóng)16高。倒伏一般發(fā)生在小麥生長(zhǎng)發(fā)育的中后期[5]。本研究探究了從開(kāi)花期到成熟期,莖稈各節(jié)間木質(zhì)素單體的含量、木質(zhì)素總量等指標(biāo)隨生育時(shí)期的變化。木質(zhì)素合成相關(guān)酶基因的表達(dá)量隨著生育時(shí)期呈現(xiàn)降低趨勢(shì),木質(zhì)素總積累量隨生育時(shí)期增加,但積累速率逐漸降低。3種木質(zhì)素單體S型、G型、H型的含量隨生育時(shí)期逐漸增加,S型/G型單體的值減小,這與抗折力隨生育時(shí)期進(jìn)程的變化規(guī)律不一致。本研究還發(fā)現(xiàn),2個(gè)生長(zhǎng)季莖稈各節(jié)間抗折力與木質(zhì)素積累量、S型單體含量以及S型+G型單體含量均呈顯著正相關(guān)。結(jié)合前人研究結(jié)果,高施氮量300 kg·hm-2且基施1/3條件下,在小麥不同生育時(shí)期可以通過(guò)合理追肥定向調(diào)控莖稈的機(jī)械強(qiáng)度,將追肥時(shí)期改為起身期﹕孕穗期1﹕1等量二次性追施,提高莖稈各節(jié)間木質(zhì)素合成關(guān)鍵酶基因的表達(dá)以及木質(zhì)素單體的積累,以達(dá)到提高莖稈抗倒伏能力的目的。不同節(jié)間之間,莖稈基部節(jié)間短而充實(shí),上部節(jié)間中空細(xì)長(zhǎng),且上部節(jié)間拔節(jié)時(shí)間晚,木質(zhì)素積累量小于下部節(jié)間。從I1—I5莖稈抗折力、木質(zhì)素積累量及單體的含量逐漸減少,木質(zhì)素合成相關(guān)酶各節(jié)間表達(dá)規(guī)律與上述指標(biāo)相反,從I1—I5相關(guān)酶基因的表達(dá)量逐漸增加,推測(cè)是由于上部節(jié)間拔節(jié)較晚,莖稈組織幼嫩,相關(guān)酶基因的表達(dá)量較高。
在實(shí)際大田生產(chǎn)中,兼顧籽粒產(chǎn)量和莖稈質(zhì)量一直是研究的重點(diǎn)[14-15,18]。小麥籽粒產(chǎn)量及構(gòu)成因素受多種條件的影響,包括氮肥施入量、肥料利用率、施用時(shí)期以及氮肥基追比例[4,6,9-10]。合適的栽培措施可以保證莖稈質(zhì)量,增加籽粒產(chǎn)量,且適宜的追肥時(shí)期可顯著增加莖稈中的單糖、多糖的含量,提高莖稈充實(shí)度,促使纖維素及木質(zhì)素的形成,提高抗折力,改善其抗倒伏性能[44-46]。本研究表明,起身期、拔節(jié)期追肥有助于提高小麥分蘗成穗率,孕穗肥有助于顯著提高千粒重,減緩后期木質(zhì)素積累速率的降低,增加木質(zhì)素單體的含量。本研究還發(fā)現(xiàn),從開(kāi)花期到成熟期,籽粒產(chǎn)量與木質(zhì)素積累量以及S型單體含量呈極顯著正相關(guān)(籽粒產(chǎn)量與開(kāi)花期S型單體含量呈顯著正相關(guān)),說(shuō)明在增強(qiáng)莖稈抗倒伏能力的同時(shí),籽粒產(chǎn)量也能得到提高。結(jié)合前人分析可得,在高施氮量300 kg·hm-2基施1/3情況下,在小麥生育后期以起身期﹕孕穗期1﹕1等量二次性追氮可以提高莖稈中木質(zhì)素總積累量及木質(zhì)素單體的積累,有助于提高莖稈抗折力,增加籽粒產(chǎn)量。
本試驗(yàn)條件下,基肥﹕起身肥﹕孕穗肥為1﹕1﹕1施用時(shí)較其他處理顯著提高了小麥生育后期莖稈各節(jié)間的抗折力、木質(zhì)素積累量、單體含量、木質(zhì)素合成途徑相關(guān)酶基因的表達(dá)以及產(chǎn)量。開(kāi)花期、灌漿期、成熟期莖稈抗折力與木質(zhì)素積累量、S型單體含量、S型+G型單體含量存在極顯著正相關(guān)關(guān)系,說(shuō)明抗倒伏品種具有更高的木質(zhì)素合成相關(guān)基因的表達(dá)量、木質(zhì)素積累量和木質(zhì)素單體含量。起身期:孕穗期1﹕1等量二次性追施既可以保證單位面積成穗數(shù),又能提高粒重,進(jìn)而獲得高產(chǎn)。拔節(jié)期一次性追肥雖然可以保證足夠的穗數(shù),但不利于莖稈各節(jié)間抗折力和產(chǎn)量的提高。因此,在高施氮量300 kg·hm-2且基施1/3條件下,起身期與孕穗期1﹕1等量二次性追氮模式可作為黃淮海麥區(qū)高施氮量300 kg·hm-2基施1/3條件下既能保證高產(chǎn)又能提高生育后期莖稈質(zhì)量的春季適宜追氮模式。
[1] 李金才, 尹鈞, 魏鳳珍. 播種密度對(duì)冬小麥莖稈形態(tài)特征和抗倒指數(shù)的影響. 作物學(xué)報(bào), 2005, 31(5): 662-666.
LI J C, YIN J, WEI F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat.,2005, 31(5): 662-666. (in Chinese)
[2] 魏鳳珍, 李金才, 王成雨, 屈會(huì)娟, 沈?qū)W善. 氮肥運(yùn)籌模式對(duì)小麥莖稈抗倒性能的影響. 作物學(xué)報(bào), 2008, 34(6): 1080-1085.
WEI F Z, LI J C, WANG C Y, QU H J, SHEN X S. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat., 2008, 34(6): 1080-1085. (in Chinese)
[3] 邊大紅, 劉夢(mèng)星, 牛海峰, 魏鐘博, 杜雄, 崔彥宏. 施氮時(shí)期對(duì)黃淮海平原夏玉米莖稈發(fā)育及倒伏的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(12): 2294-2304.
BIAN D H, LIU M X, NIU H F, WEI Z B, DU X, CUI Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (L.) in the Huang-Huai-Hai plain.,2017, 50(12): 2294-2304. (in Chinese)
[4] CHEN X G, WANG J, WANG Z L, LI W Q, WNAG C Y, YAN S H, LI H M, ZHANG A J, TANG Z H, WEI M. Optimized nitrogen fertilizer application mode increased culms lignin accumulation and lodging resistance in culms of winter wheat., 2018, 228: 31-38.
[5] 安志超, 黃玉芳, 趙亞南, 汪洋, 劉小寧, 葉優(yōu)良. 植株氮營(yíng)養(yǎng)狀況與冬小麥倒伏的關(guān)系. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(3): 751-757.
AN Z C, HUANG Y F, ZHAO Y N, WANG Y, LIU X N, YE Y L. Relationship between plant nitrogen nutrition and lodging of winter wheat.,2018, 24(3): 751-757. (in Chinese)
[6] 張明偉, 馬泉, 丁錦峰, 李春燕, 朱新開(kāi), 封超年, 郭文善. 密度與肥料運(yùn)籌對(duì)遲播小麥產(chǎn)量和莖稈抗倒能力的影響. 麥類作物學(xué)報(bào), 2018, 38(5): 584-592.
ZHANG M W, MA Q, DING J F, LI C Y, ZHU X K, FENG C N, GUO W S. Effect of density and nitrogen applicationon clum lodging resistance and yield of late sowing wheat., 2018, 38(5): 584-592. (in Chinese)
[7] 張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風(fēng). 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學(xué)報(bào), 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement., 2008, 45(5): 915-924. (in Chinese)
[8] 趙風(fēng)華, 馬軍花, 歐陽(yáng)竹. 過(guò)量施氮對(duì)冬小麥生產(chǎn)力的影響.植物生態(tài)學(xué)報(bào), 2012, 36(10): 1075-1081.
ZHAO F H, MA J H, OUYANG Z. Effects of excessive nitrogen supply on productivity of winter wheat., 2012, 36(10): 1075-1081. (in Chinese)
[9] 周潔, 王旭, 朱玉磊, 劉惠惠, 陳翔, 魏鳳珍, 孫建強(qiáng), 宋有洪, 李金才. 氮肥運(yùn)籌模式對(duì)小麥莖稈抗倒性能與產(chǎn)量的影響. 麥類作物學(xué)報(bào), 2019, 39(8): 979-987.
ZHOU J, WANG X, ZHU Y L, LIU H H, CHEN X, WEI F Z, SUN J Q, SONG Y H, LI J C. Effects of nitrogen fertilizer management on stem lodging resistance and yield of wheat., 2019, 39(8): 979-987. (in Chinese)
[10] 盧昆麗, 尹燕枰, 王振林, 李勇, 彭佃亮, 楊衛(wèi)兵, 崔正勇, 楊東清, 江文文. 施氮期對(duì)小麥莖稈木質(zhì)素合成的影響及其抗倒伏生理機(jī)制. 作物學(xué)報(bào), 2014, 40(9): 1686-1694.
LU K L, YIN Y P, WANG Z L, LI Y, PENG D L, YANG W B, CUI Z Y, YANG D Q, JIANG W W. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat., 2014, 40(9): 1686-1694. (in Chinese)
[11] 張明偉, 易媛, 董召娣, 柯裴蓓, 朱新開(kāi), 封超年, 郭文善, 彭永欣. 氮肥對(duì)揚(yáng)麥20莖稈性狀和抗倒性能的影響. 麥類作物學(xué)報(bào), 2014, 34(9): 1260-1266.
ZHANG M W, YI Y, DONG Z D, KE P P, ZHU X K, FENG C N, GUO W S, PENG Y X. Effects of nitrogen on internode traits and lodging resistance of wheat variety Yangmai 20.,2014, 34(9): 1260-1266. (in Chinese)
[12] 周羊梅, 顧正中, 王安邦, 楊子博, 冷蘇鳳. 播期、密度和不同施氮時(shí)期對(duì)高產(chǎn)品種‘淮麥33’產(chǎn)量和品質(zhì)的調(diào)控. 中國(guó)農(nóng)學(xué)通報(bào), 2019, 35(19): 1-5.
ZHOU Y M, GU Z Z, WANG A B, YANG Z B, LENG S F. Effect of sowing date, density and nitrogen management on grain yield and quality of high yield ‘Huaimai 33’., 2019, 35(19): 1-5. (in Chinese)
[13] Zheng M J, Chen J, Shi Y H, Li Y X, Yin Y P, Yang D Q, Luo Y L, Pang D W, XU X, Li W Q, Ni J, Wang Y Y, Wang Z L, Li Y. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat., 2017, 7(1): 41805.
[14] Xu C L, GAO Y B, TIAN B J, REN J H, MENG Q F, WANG P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities.,2017, 200: 71-79.
[15] Luo Y L, NI J, PANG D W, JIN M, CHEN J, KONG X, LI W Q, CHANG Y L, LI Y, WANG Z L.Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat., 2019 , 241: 107572.
[16] KAMRAN M, AHMAD I, WANG H Q, WU X R, XU J, LIU T N, DING R X, HAN Q F. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis.,2018, 224: 148-159.
[17] ZHENG M J, GU S B, CHEN J, LUO Y L, LI W Q, NI J, LI Y,WANG Z L. Development and validation of a sensitive UPLC-MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw., 2017, 1055-1056: 178-184.
[18] Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. Lodging resistance of winter wheat (L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid., 2014, 157: 1-7.
[19] 陳曉光, 史春余, 尹燕枰, 王振林, 石玉華, 彭佃亮, 倪英麗, 蔡鐵. 小麥莖稈木質(zhì)素代謝及其與抗倒性的關(guān)系.作物學(xué)報(bào), 2011, 37(9): 1616-1622 .
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in wheat., 2011, 37(9): 1616-1622. (in Chinese)
[20] 董琦, 王愛(ài)萍, 梁素明. 小麥基部莖節(jié)形態(tài)結(jié)構(gòu)特征與抗倒性的研究. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 23(3): 188-191.
DONG Q, WANG A P, LIANG S M. Study on the architectural characteristics of wheat stalks., 2003, 23(3): 188-191. (in Chinese)
[21] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, Chen F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization: improving lignin processing in the biorefinery., 2014, 344(6185): 1246843.
[22] 蔣明金, 王海月, 何艷, 王春雨, 李娜, 楊志遠(yuǎn), 孫永健, 馬均. 氮肥管理對(duì)直播雜交水稻抗倒伏能力的影響. 核農(nóng)學(xué)報(bào), 2020, 34(1): 157-168.
JIANG M J, WANG H Y, HE Y, WANG C Y, LI N, YANG Z Y, SUN Y J, MA J. Effect of nitrogen fertilizer management on lodging resistance of direct-seeding hybrid rice., 2020, 34(1): 157-168. (in Chinese)
[23] ZHANG W J, WU L M, WU X R, DING Y F, LI G H, LI J Y, WENG F, LIU Z H, TANG S, DING C Q, WANG S H. Lodging resistance of japonica rice (L.): Morphological and anatomical traits due to top-dressing nitrogen application rates., 2016, 9(1): 31.
[24] MIAO Y C, LIU C J. ATP-binding cassette-like transporters are involved in the transport of lignin percursors across plasma and vacuolar membranes., 2010, 107(52): 22728-22733.
[25] ALEJANDRO S, LEE Y, TOHGE T, SUDRE D, OSORIO S, PARK J, BOVET L, LEE Y, GELDNER N, FERNIE A R, MARTINOIA E. AtABCG29 is a monolignol transporter involved in lignin biosynthesis., 2012, 22(13): 1207-1212.
[26] 任佰朝, 李利利, 董樹(shù)亭, 劉鵬, 趙斌, 楊今勝, 王丁波, 張吉旺. 種植密度對(duì)不同株高夏玉米品種莖稈性狀與抗倒伏能力的影響. 作物學(xué)報(bào), 2016, 42(12): 1864-1872.
REN B Z, LI L L, DONG S T, LIU P, ZHAO B, YANG J S, WANG D B, ZHANG J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights.,2016, 42(12): 1864-1872. (in Chinese)
[27] SYROS T, YUPSANIS T, ZAFIRIADIS H, ECONOMOU A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings ofL..,2004, 161(1): 69-77.
[28] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis.2003, 54(1): 519-546.
[29] VANHOLME R, DEMEDTS B, MORREEL K, RALPH J, BOERJAN W. Lignin biosynthesis and structure., 2010, 153(3): 895-905.
[30] 章霄云, 郭安平, 賀立卡, 孔祥. 木質(zhì)素生物合成及其基因調(diào)控的研究進(jìn)展. 分子植物種, 2006, 4(3): 431-437.
ZHANG X Y, GUO A P, HE L K, KONG X. Advances in study of lignin biosynthesis and its genetic manipulation.,2006, 4(3): 431-437. (in Chinese)
[31] ANDERSON N A, TOBIMATSU Y, CIESIELSKI P N, XIMENES E, RALPH J, DONORHOE B S, LADISCH M, CHAPPLE C. Manipulation of guaiacyl and syring monomer biosynthesis in ancinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modifed cell wall structure., 2015, 27(8): 2195-2209.
[32] 劉希強(qiáng), 張涵, 龔攀, 宮文龍, 王贊. 紫花苜蓿不同發(fā)育時(shí)期次生壁合成調(diào)控的轉(zhuǎn)錄組分析. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(11): 2049-2059.
LI X Q, ZHANG H, GONG P, GONG W L, WANG Z. Transcriptome analysis of secondary cell wall synthesis regulation at different developmental stages in alfalfa (L.)., 2018, 51(11): 2049-2059. (in Chinese)
[33] VOELKER S L, LACHENBRUCH B, MEINZER F C, STRAUSS H S. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents., 2011, 189(4): 1096-1109.
[34] TAKEDA Y, KOSHIBA T, TOBIMATSU Y, SUZUKI S, MURAKAMI S, YAMAMURA M, RAHMAN M M, TAKANO T, HATTORI T, SAKAMOTOO M, UMEZAWA T. Regulation ofexpression to modulate cell wall lignin structure in rice., 2017, 246(2): 337-349.
[35] Wu Z Y, Wang N F, Cao Y P, Liu W W , Bao Y, Fu C X. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis., 2019, 17(4): 836-845.
[36] SHAFRIN F, DAS S S, SANAN M N, KHAN H. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute., 2015, 89(4-5): 511-527.
[37] SYKES R W, GJERSING E L, FOUTZ K, ROTTMANN W H. KUHN S A, FOSTER C E, ZIEBELL A, TURNER G B. DECKER S R, HINCHEE M A W, DAVIS M F. Down-regulation of-coumaroyl quinate/shikimate 3′-hydroxylase (C3’H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway ofleads to improved sugar release., 2015, 8(1): 128-137.
[38] 黃杰恒, 李威, 曲存民, 劉列釗, 徐新福, 王瑞, 李加納. 甘藍(lán)型油菜不同抗倒性材料中木質(zhì)素代謝途徑關(guān)鍵基因表達(dá)特點(diǎn). 作物學(xué)報(bào), 2013, 39(8): 1339-1344.
HUANG J H, LI W, QU C M, LIU L Z, XU X F, WANG R, LI J N. Expression characteristics of key genes in lignin pathway among different lodging resistance lines ofL., 2013, 39(8): 1339-1344. (in Chinese)
[39] SHI R, YANG C M, LU S F, SEDEROFF R, CHIANG V L. Specific downregulation of PAL genes by artificial micro RNAs in Populustrichocarpa., 2010,232 (6): 1281-1288.
[40] BAXTER H L, MAZAREI M, LABBE N, KLINE L M, CHENG Q, WINDHAM M T, MANN D G, FU C X, ZIEBELL A, SYKES R W, RODRIGUEZ M, DAVIS M F, MIELENZ J R, DIXON R A, WANG Z Y, STEWART C N. Two-year field analysis of reduced recalcitrance transgenic switchgrass., 2015, 12(7): 914-924.
[41] CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production., 2007, 25(7): 759-761.
[42] ISHIMARU K, TOGAWA E, OOKAWA T, KASHIWAGI T, MADOKA Y, HIROTSU N. New target for rice lodging resistant and its effect in a typhoon., 2008, 227(3): 601-609.
[43] BERRY P M, SPINK J. Predicting yield losses caused by lodging in wheat., 2012, 137(3):19-26.
[44] 陳曉光, 石玉華, 王成雨, 尹燕枰, 寧堂原, 史春余, 李勇, 王振林. 氮肥和多效唑?qū)π←溓o稈木質(zhì)素合成的影響及其與抗倒伏性的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(17): 3529-3536.
CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat., 2011, 44(17): 3529-3536. (in Chinese)
[45] 楊世民, 謝力, 鄭順林, 李靜, 袁繼超. 氮肥水平和栽插密度對(duì)雜交稻莖稈理化特性與抗倒伏性的影響. 作物學(xué)報(bào), 2009, 35(1): 93-103.
YANG S M, XIE L, ZHENG S L, LI J, YUAN J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice., 2009, 35(1): 93-103. (in Chinese)
[46] AHMAD I, MENG X P, KAMRAN M, ALI S, AHMAD S, LIU T N, CAI T, HAN Q F. Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions., 2020, 19(1): 62-77.
Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat
DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin
(College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong)
【】The purpose of this experiment was to explore the effects of different spring nitrogen topdressing modes on stem lodging resistance, lignin accumulation, grain yield of winter wheat, and to identify the appropriate spring nitrogen topdressing modes under the condition of high nitrogen application, so as to provide technical support for high and stable yield and stress-resistant cultivation of winter wheat.【】In the two wheat growing seasons of 2017-2018 and 2018-2019, the lodging sensitive variety Shannong 16 and the lodging resistant variety Jimai 22 were used as test materials, and the application rate was 1/3 under high nitrogen application rate of 300 kg·hm-2. There were four types of spring topdressing modes, which were equal amount of secondary nitrogen topdressing and remaining one-time nitrogen topdressing, namely the rising stage﹕booting stage 1/3﹕1/3 (T1), jointing stage: flowering stage 1/3﹕1/3 (T2), the remaining 2/3 nitrogen was applied at the booting stage (T3) and the remaining 2/3 nitrogen was applied at the jointing stage (CK). The effects of different nitrogen topdressing modes on stem resistance, lignin accumulation, expressive abundance of the key genes involving in lignin biosynthesis pathway and grain yield of winter wheat were studied.【】The total lignin accumulation and lignin monomers content of the lodging resistance wheat were both higher than those of the lodging sensitive wheat. The breaking strength under T1, CK was higher than that under T2 and T3, the lignin accumulation and monomer content were T1>T3>CK>T2 in two types cultivar, and the breaking strength, lignin accumulation, monomer content under all treatments at grain filling stage and maturity stage were T1>T3>T2>CK in two types cultivar. The breaking strength of Shannong 16 and Jimai 22 under T1 treatment were increased by 24.69%, 19.97%, 13.15% and 26.92%, 15.36%, 5.87%, respectively, compared with CK, T2, T3 at grain filling stage. The average lignin accumulation of Shannong 16 and Jimai22 under T1 at each growth stage was 21.71%, 15.45% , 8.85% and 25.19%, 21.75%, 15.83% higher than CK, T2, and T3, respectively. The average content of S monomer was 18.82%, 18.48%, and 8.39% higher than CK, T2 and T3 at maturity stage, respectively. The expressive abundance of key genes involved in lignin biosynthesis pathway (phenylalanine ammonia-lyase: PAL, caffeic acid3-o-methytransferase: COMT, coumarate-3-hydroxyl oxidase: C3H, innamoyl Co A reductase: CCR, cinnamate 4-hydroxylase: C4H etc.) decreased with the growth process, that tended to T1>T3>T2>CK under different stage of growth. The 1000-grain weight of the nitrogen topdressing remaining one-time at booting stage was higher than other treatments. T1 treatment could increase the spike number, grain number and yield. The lignin accumulation and monomer content of stem in different internodes during the same stage were I1>I2>I3>I4>I5.【】Under the condition of high nitrogen application rate of 300 kg·hm-2and basal application rate of 1/3, the same amount of secondary nitrogen topdressing modes treatment at the rising stage and booting stages significantly improved the breaking strength, lignin accumulation, lignin monomer content, the expressive abundance of key genes involved in lignin biosynthesis pathway and yield after anthesis stage, compared with other spring nitrogen topdressing modes. Therefore, the same amount of secondary nitrogen topdressing mode at rising stage and booting stage could be used as an appropriate spring nitrogen topdressing mode under the condition of high nitrogen application rate of 300 kg·hm-2and basal application rate of 1/3 in Huang-Huai-Hai plain.
nitrogen topdressing modes; lodging resistance; lignin accumulation; grain yield; winter wheat
10.3864/j.issn.0578-1752.2020.21.009
2020-05-14;
2020-07-29
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0301001,2016YFD0300403)
董荷荷,E-mail:dong15650092156@163.com。通信作者李勇,E-mail:wooowo@126.com
(責(zé)任編輯 楊鑫浩)