国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

秸稈還田對(duì)我國(guó)主要糧食作物產(chǎn)量效應(yīng)的整合(Meta)分析

2020-11-09 05:17楊竣皓駱永麗陳金金敏王振林李勇
關(guān)鍵詞:增產(chǎn)率農(nóng)作物作物

楊竣皓,駱永麗,陳金,金敏,王振林,李勇

秸稈還田對(duì)我國(guó)主要糧食作物產(chǎn)量效應(yīng)的整合(Meta)分析

楊竣皓,駱永麗,陳金,金敏,王振林,李勇

(山東農(nóng)業(yè)大學(xué)/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018)

【】定量分析全國(guó)范圍內(nèi)秸稈還田對(duì)3種糧食作物的產(chǎn)量效應(yīng),為秸稈還田技術(shù)的大面積推廣應(yīng)用提供科學(xué)依據(jù)。本研究搜集了公開發(fā)表的相關(guān)文獻(xiàn)274篇(截至2019年12月31日),整理了1 930組秸稈還田處理與秸稈不還田處理的農(nóng)作物產(chǎn)量數(shù)據(jù)。運(yùn)用整合分析(meta-analysis)方法(主要分析過程包括計(jì)算效應(yīng)值、異質(zhì)性檢驗(yàn)、meta亞組分析、發(fā)表偏倚性檢驗(yàn)),明確了秸稈還田對(duì)3種糧食作物產(chǎn)量的綜合效應(yīng),進(jìn)而量化分析了試驗(yàn)區(qū)域、年均氣溫、年均降雨量、土壤質(zhì)地、土壤酸堿性、作物種類、種植制度、耕作方式、施肥模式、還田年限及秸稈還田量對(duì)秸稈還田增產(chǎn)效應(yīng)的影響。與秸稈不還田相比,秸稈還田顯著提高了3種糧食作物產(chǎn)量,平均增產(chǎn)率約為8.06%(95%CI:7.52%—8.60%),分析結(jié)果不存在發(fā)表偏倚。東南地區(qū)秸稈還田增產(chǎn)率最高,達(dá)到9.37%(95%CI:8.11%—10.64%);年平均氣溫為5—10℃、年平均降雨量超過1 200 mm時(shí),秸稈還田的增產(chǎn)效應(yīng)較高;在黏土、壤土及砂土3種土壤質(zhì)地中,秸稈還田的增產(chǎn)率分別為8.13%(95%CI:6.80%—9.49%)、9.04%(95%CI:8.06%—10.01%)、6.96%(95%CI:5.18%—8.77%);在弱酸性(pH<6.5)土壤中,秸稈還田的增產(chǎn)率較高。在小麥、玉米、水稻3種作物中,秸稈還田對(duì)玉米的增產(chǎn)率達(dá)到9.22%(95%CI:8.38%—10.05%);翻耕與免耕是最能發(fā)揮秸稈還田增產(chǎn)效應(yīng)的耕作方式,增產(chǎn)率分別為11.05%(95%CI:10.05%—12.05%)、8.98%(95%CI:7.21%—10.79%)。不施肥時(shí),秸稈還田顯著提高農(nóng)作物產(chǎn)量,增產(chǎn)率達(dá)到25.66%(95%CI:22.04%—29.38%),增產(chǎn)率顯著高于正常施肥時(shí)的8.08%(95%CI:7.50%—8.68%),但整體的產(chǎn)量水平較低。秸稈還田的增產(chǎn)率達(dá)到9.56%(95%CI:8.21%—10.93%),且還田年限超過20年時(shí)增產(chǎn)效應(yīng)顯著提高(增產(chǎn)率為15.42%,95%CI:11.05%—19.95%)。此外,最適宜的秸稈還田量為半量還田(增產(chǎn)率為9.09%,95%CI:7.41%—10.79%)。秸稈還田能夠顯著提高糧食作物產(chǎn)量,在不同的農(nóng)業(yè)生產(chǎn)區(qū)以免耕或翻耕作業(yè)配合正常的施肥模式、適宜的秸稈還田量長(zhǎng)期還田能夠保持農(nóng)作物的持續(xù)增產(chǎn)。

秸稈還田;全國(guó);農(nóng)作物;產(chǎn)量效應(yīng);整合分析

0 引言

【研究意義】農(nóng)作物秸稈是農(nóng)業(yè)生產(chǎn)的主要產(chǎn)物之一,含有豐富的可供農(nóng)作物生長(zhǎng)的氮、磷、鉀養(yǎng)分[1]。作為傳統(tǒng)的農(nóng)業(yè)大國(guó),中國(guó)每年產(chǎn)生的農(nóng)作物秸稈種類豐富,各類農(nóng)作物秸稈的總產(chǎn)量約占世界秸稈產(chǎn)量的25%[2],同時(shí),農(nóng)作物秸稈的利用方式單一、利用效率低的問題長(zhǎng)期存在[3]。秸稈還田是兼顧了經(jīng)濟(jì)效益與環(huán)境效益的利用方式。近年來,隨著農(nóng)作物秸稈資源數(shù)量持續(xù)增加以及對(duì)還田技術(shù)研究的不斷深入,降低還田成本,實(shí)現(xiàn)秸稈還田持續(xù)增產(chǎn)增收效應(yīng)的目標(biāo)成為可能[4]。【前人研究進(jìn)展】國(guó)內(nèi)外學(xué)者通過田間定位試驗(yàn)對(duì)秸稈還田的產(chǎn)量效應(yīng)進(jìn)行了研究,獲得了大量的田間試驗(yàn)數(shù)據(jù),涉及的農(nóng)作物既包括玉米[5]、水稻[6]、小麥[7]等在我國(guó)大面積種植的糧食作物,也有棉花[8]、油菜[9]、花生[10]等經(jīng)濟(jì)作物。研究表明,農(nóng)作物秸稈還田能夠顯著改善土壤物理結(jié)構(gòu),降低土壤容重、提高土壤孔隙度[11];顯著提高土壤中的全氮、速效氮及磷、鉀養(yǎng)分含量[12],構(gòu)建合理的土壤微生物群落結(jié)構(gòu)[13],具有顯著的增產(chǎn)作用,也具有良好的環(huán)境效益[14]。整合分析(meta-analysis)定義為對(duì)同一主題下多項(xiàng)獨(dú)立試驗(yàn)的研究結(jié)果進(jìn)行綜合的統(tǒng)計(jì)方法,它的起源最早可以追溯到20世紀(jì)初[15]?!颈狙芯壳腥朦c(diǎn)】目前,國(guó)內(nèi)外學(xué)者關(guān)于秸稈還田對(duì)農(nóng)作物的產(chǎn)量效應(yīng)研究多是基于某種作物或某個(gè)地區(qū)進(jìn)行的,研究結(jié)果僅對(duì)某種作物或某個(gè)地區(qū)的生產(chǎn)具有理論指導(dǎo)意義,對(duì)跨作物種類或農(nóng)業(yè)生產(chǎn)區(qū)的產(chǎn)量效應(yīng)尚不清楚。為了定量分析全國(guó)區(qū)域內(nèi)秸稈還田對(duì)農(nóng)作物的產(chǎn)量效應(yīng),需要整合全國(guó)范圍內(nèi)的獨(dú)立試驗(yàn)數(shù)據(jù),運(yùn)用科學(xué)的分析方法進(jìn)行系統(tǒng)綜述?!緮M解決的關(guān)鍵問題】本研究搜集整理了近30年國(guó)內(nèi)外學(xué)者公開發(fā)表的中文文獻(xiàn)數(shù)據(jù),運(yùn)用整合分析方法,定量分析了全國(guó)區(qū)域內(nèi)秸稈還田對(duì)農(nóng)作物的產(chǎn)量效應(yīng),并進(jìn)一步明確了不同區(qū)域、種植制度、耕作方式、施肥模式等因素對(duì)產(chǎn)量效應(yīng)的影響程度,旨在為秸稈還田技術(shù)在全國(guó)范圍內(nèi)的合理推廣應(yīng)用提供科學(xué)的理論依據(jù)。

1 材料與方法

1.1 數(shù)據(jù)來源

以“秸稈還田、產(chǎn)量”為關(guān)鍵詞,在China National Knowledge Infrastructure(CNKI)等主要中文文獻(xiàn)數(shù)據(jù)庫中檢索2019年12月31日之前發(fā)表的田間對(duì)照試驗(yàn)論文(不包括室內(nèi)試驗(yàn)、評(píng)價(jià)類、綜述類、模型模擬類等文章及相關(guān)專業(yè)的碩博士學(xué)位畢業(yè)論文)。按以下標(biāo)準(zhǔn)對(duì)檢索到的文獻(xiàn)進(jìn)行篩選[16]以獲得滿足meta-analysis要求的數(shù)據(jù):(1)試驗(yàn)結(jié)果發(fā)表在最新版北大中文核心期刊中收錄的綜合類期刊,主要包括第四編自然科學(xué)中的生物科學(xué)綜合類及植物學(xué)類、第六編農(nóng)業(yè)科學(xué)中的綜合性農(nóng)業(yè)科學(xué)類、農(nóng)業(yè)基礎(chǔ)科學(xué)類、農(nóng)業(yè)工程類及農(nóng)學(xué)農(nóng)作物類和第七編工業(yè)技術(shù)中的環(huán)境科學(xué)類;(2)田間對(duì)照試驗(yàn)地位于中國(guó)大陸地區(qū);(3)試驗(yàn)以我國(guó)主要農(nóng)作物為研究對(duì)象,田間試驗(yàn)為包括秸稈還田和秸稈不還田處理的對(duì)照試驗(yàn);(4)文獻(xiàn)中有明確的試驗(yàn)重復(fù)數(shù)、各試驗(yàn)處理的產(chǎn)量均值;(5)相同的試驗(yàn)設(shè)計(jì)獲得的試驗(yàn)數(shù)據(jù)發(fā)表在不同期刊時(shí),選擇相關(guān)信息描述最為詳細(xì)的一篇文獻(xiàn);(6)補(bǔ)充原文參考文獻(xiàn)中引用但未被檢索到的遺漏文獻(xiàn)。經(jīng)篩選,共獲得274篇相關(guān)文獻(xiàn)。

提取文章中秸稈還田與秸稈不還田處理的產(chǎn)量、產(chǎn)量標(biāo)準(zhǔn)差、處理重復(fù)數(shù)及其他相關(guān)信息(試驗(yàn)區(qū)域、種植制度、耕作方式、施肥模式等),文字、表格形式展示的數(shù)據(jù)直接提取,圖形形式展示的數(shù)據(jù)使用WebPlotDigitizer軟件[17]提取,補(bǔ)全文章中未說明的各處理產(chǎn)量標(biāo)準(zhǔn)差[18-19],共得到1 930組試驗(yàn)數(shù)據(jù)用于Meta分析。

1.2 數(shù)據(jù)分類

考慮到秸稈還田的產(chǎn)量效應(yīng)可能受其他相關(guān)因素影響,根據(jù)文獻(xiàn)中提取到的相關(guān)試驗(yàn)信息進(jìn)行歸納分組,整理得到以下影響因素(表1):試驗(yàn)區(qū)域[20]、年平均氣溫、年平均降雨量、土壤質(zhì)地[21]、土壤酸堿性、作物種類、種植制度、耕作方式、施肥模式[22-26]、還田年限及秸稈還田量[27-29]。通過Meta亞組分析以考察各影響因素對(duì)秸稈還田的產(chǎn)量效應(yīng)的影響程度[30],并尋找異質(zhì)性來源。

1.3 Meta分析過程

1.3.1 計(jì)算效應(yīng)值 首先,本研究采用隨機(jī)效應(yīng)模型評(píng)估秸稈還田對(duì)我國(guó)主要糧食作物的產(chǎn)量效應(yīng),選取生態(tài)學(xué)領(lǐng)域常用的反應(yīng)比(R)的自然對(duì)數(shù)(lnR)作為Meta分析的效應(yīng)值[31],來衡量秸稈還田對(duì)作物產(chǎn)量的影響。具體的計(jì)算公式如下:

lnln(X/X)=ln X-ln X(1)

式中,ln為效應(yīng)值,XX分別表示秸稈還田處理與秸稈不還田處理下作物的產(chǎn)量均值,單位為kg·hm-2。

其次,Meta分析是對(duì)每項(xiàng)獨(dú)立研究的效應(yīng)值進(jìn)行加權(quán)計(jì)算,得到總體平均效應(yīng)值ln++。計(jì)算時(shí),需要確定每項(xiàng)獨(dú)立研究的方差V、權(quán)重W,具體的公式如下:

表1 試驗(yàn)相關(guān)數(shù)據(jù)分類

F0、N0、K0、N-、N+、F分別為不施肥、不施氮肥、不施鉀肥、低氮施肥、高氮施肥和正常施肥;0—50%、50%—100%、100%、>100%分別為以低于前茬作物秸稈產(chǎn)量的50%進(jìn)行還田、以超過前茬作物秸稈產(chǎn)量的50%進(jìn)行還田、以前茬作物全部秸稈產(chǎn)量進(jìn)行還田和以超過前茬作物全部秸稈產(chǎn)量進(jìn)行還田。下同

F0, N0, K0, N-, N+ and F represent different pattern of fertilization: no fertilization, no nitrogen, no potassium, low nitrogen, high nitrogen and normal fertilization. 0-50%, 50%-100%, 100% and >100% mean different amount of straw returned with less than 50% of the ex-crop straw, more than 50% of the ex-crop straw, all of the ex-crop straw and more than all of the ex-crop straw, respectively. The same as below

ln++=∑(lnR×W)/ ∑W(4)

式中,與分別為秸稈還田與秸稈不還田處理下農(nóng)作物的產(chǎn)量標(biāo)準(zhǔn)差,NN分別為秸稈還田與秸稈不還田處理的試驗(yàn)重復(fù)數(shù);2表示研究間方差[32]。

總體平均效應(yīng)值的標(biāo)準(zhǔn)差及其95%的置信區(qū)間通過以下公式計(jì)算:

95%CI=ln++±1.96lnR++(6)

若總體平均效應(yīng)值的95%置信區(qū)間全部大于0,說明秸稈還田對(duì)農(nóng)作物具有顯著的增產(chǎn)作用;若全部小于0,說明秸稈還田對(duì)農(nóng)作物具有顯著的減產(chǎn)效應(yīng);若區(qū)間包含0,則說明秸稈還田對(duì)農(nóng)作物無顯著的產(chǎn)量效應(yīng)。以上原則同樣適用于Meta亞組分析。

最后,將總體平均效應(yīng)值ln++轉(zhuǎn)換為總體的平均產(chǎn)量變化率R,可以更直觀地反映秸稈還田對(duì)農(nóng)作物的產(chǎn)量效應(yīng)[33],相應(yīng)的轉(zhuǎn)換公式為:R=(lnR++-1)×100%。

1.3.2 異質(zhì)性檢驗(yàn) 秸稈還田的產(chǎn)量效應(yīng)是否受其他相關(guān)因素影響可以通過異質(zhì)性檢驗(yàn)確定??傮w平均效應(yīng)值的異質(zhì)性(Qt)表明數(shù)據(jù)偏離均值的程度,Qt值越大,數(shù)據(jù)的離散程度越大。數(shù)據(jù)的整體異質(zhì)性包括由已知因素引起的異質(zhì)性(Qm)和未知因素引起的異質(zhì)性(Qe),已知因素即在文獻(xiàn)中提取到的相關(guān)信息,作為Meta分析中的解釋變量。如果異質(zhì)性檢驗(yàn)達(dá)到極顯著程度(PQ-val<0.0001)[34-35],需要引入解釋變量解釋總體平均效應(yīng)值的異質(zhì)性來源[36]。

1.3.3 Meta亞組分析 Meta亞組分析是為了進(jìn)一步闡明不同影響因素下秸稈還田對(duì)農(nóng)作物的產(chǎn)量效應(yīng),同樣運(yùn)用隨機(jī)效應(yīng)模型,計(jì)算方式與總體的平均效應(yīng)值計(jì)算方式相同[37]。

1.3.4 發(fā)表偏倚性檢驗(yàn) 發(fā)表偏倚性問題是任何科學(xué)研究中的一個(gè)重要問題[38]。Meta分析是基于各項(xiàng)獨(dú)立研究基礎(chǔ)之上進(jìn)行的系統(tǒng)性研究,因此Meta分析的使用更加注重發(fā)表偏倚性問題。發(fā)表偏倚性檢驗(yàn)主要有兩種方法:一種是漏斗圖檢驗(yàn),根據(jù)漏斗圖的對(duì)稱性判斷本研究是否具有發(fā)表偏倚性問題;另一種是計(jì)算失安全系數(shù)[39],失安全系數(shù)的閾值是(5n+10),其中n為Meta分析中的數(shù)據(jù)量,當(dāng)失安全系數(shù)低于閾值時(shí)表明本研究存在發(fā)表偏倚性問題[40]。

1.4 統(tǒng)計(jì)分析

本研究使用Microsoft Excel 2013記錄文獻(xiàn)數(shù)據(jù),建立完整的秸稈還田產(chǎn)量數(shù)據(jù)庫,并進(jìn)行基本的統(tǒng)計(jì)計(jì)算。整合分析過程使用OpenMEE軟件及R-Studio軟件中的“metafor”軟件包進(jìn)行[41],OpenMEE是一款跨平臺(tái)免費(fèi)開放的生態(tài)學(xué)領(lǐng)域?qū)I(yè)Meta分析軟件[42],作圖軟件為Origin 9.1。

2 結(jié)果

2.1 秸稈還田對(duì)農(nóng)作物產(chǎn)量的平均效應(yīng)值及發(fā)表偏倚

采用隨機(jī)效應(yīng)模型計(jì)算秸稈還田對(duì)農(nóng)作物產(chǎn)量的平均效應(yīng)值(表2)。結(jié)果表明,秸稈還田能夠顯著提高農(nóng)作物產(chǎn)量,平均增產(chǎn)率為8.1%(95%CI:7.5%—8.7%)。異質(zhì)性檢驗(yàn)Qt值達(dá)到顯著水平(PQ-val<0.001),需要引入解釋變量。發(fā)表偏倚性檢驗(yàn)漏斗圖(圖1)的對(duì)稱性達(dá)到顯著水平(PB-val>0.05),表明本研究不存在發(fā)表偏倚。此外,本研究的失安全系數(shù)為19 338 930,其統(tǒng)計(jì)學(xué)意義為至少需要19 338 930組具有發(fā)表偏倚性的研究數(shù)據(jù)才能改變本研究的結(jié)論。

圖1 發(fā)表偏倚性檢驗(yàn)漏斗圖

表2 秸稈還田對(duì)農(nóng)作物產(chǎn)量的平均效應(yīng)值

REM、CI、LL、UL分別表示隨機(jī)效應(yīng)模型、置信區(qū)間、下限及上限。Z為效應(yīng)值檢驗(yàn)的統(tǒng)計(jì)量;n為效應(yīng)值數(shù)量;Q為異質(zhì)性檢驗(yàn)的統(tǒng)計(jì)量;PQ為異質(zhì)性檢驗(yàn)的顯著程度;I2為研究間方差占總方差的比例;PB為發(fā)表偏倚性檢驗(yàn)的顯著程度

REM, CI, LL, UL represent random effects model, confidence interval, lower limit and upper limit, respectively. Z is the statistic value of effect size; n is the number of effect size; Q is the statistic value of heterogeneity; PQis the significant value of heterogeneity; I2is the percentage of variance between studys; PBis the significant value of publication bias

2.2 秸稈還田對(duì)農(nóng)作物產(chǎn)量效應(yīng)的Meta亞組分析

通過Meta亞組分析對(duì)每組解釋變量進(jìn)行研究,結(jié)果表明秸稈還田對(duì)農(nóng)作物產(chǎn)量的綜合效應(yīng)量受土壤酸堿性、作物種類、種植制度、耕作方式、施肥模式、還田方式等因素的影響達(dá)到極顯著水平(PQ-val<0.0001)(表3)。所有解釋變量的2值,∑2=27.71%,表明本研究納入的解釋變量能夠解釋27.71%的異質(zhì)性來源,剩余的異質(zhì)性來源有待進(jìn)一步研究。

在不同的試驗(yàn)區(qū)域中(圖2-a),東南地區(qū)秸稈還田的增產(chǎn)率最高,達(dá)到9.37%(95%CI:8.11%—10.64%),西南地區(qū)為8.34%(95%CI:6.33%—10.38%),華北地區(qū)為8.04%(95%CI:7.24%—8.85%),東北地區(qū)為7.77%(95%CI:6.13%—9.42%),西北地區(qū)為6.76%(95%CI:5.50%—8.05%),增產(chǎn)率最低。

秸稈還田的增產(chǎn)效應(yīng)在年均氣溫達(dá)到5—10℃時(shí)的增產(chǎn)率((8.73±1.06)%)最高,在年均氣溫低于5℃時(shí)的增產(chǎn)率((7.65±3.04)%)最低(圖2-b)。隨著年均降水量的增加,秸稈還田的增產(chǎn)率呈現(xiàn)出先增加后降低的趨勢(shì)(圖2-c)。年均降水量低于400 mm時(shí),秸稈還田對(duì)農(nóng)作物的增產(chǎn)率((5.57±1.77)%)最低,年均降水量超過400 mm時(shí),增產(chǎn)率顯著提高。在年均降水量超過1 200 mm時(shí),秸稈還田的增產(chǎn)率最高,達(dá)到9.59%(95%CI:7.04%—12.21%)。

秸稈還田在黏土、壤土及砂土3種土壤質(zhì)地中對(duì)農(nóng)作物的增產(chǎn)效應(yīng)沒有顯著差異(圖2-d),增產(chǎn)率分別為(8.13±1.36)%、(9.04±0.97)%、(6.96±1.81)%;圖2-e表明,秸稈還田在弱酸性土壤中更能發(fā)揮其增產(chǎn)效應(yīng),增產(chǎn)率達(dá)到12.46%(95%CI:10.92%—14.01%),中性土壤中的增產(chǎn)效應(yīng)次之,增產(chǎn)率為7.73%(95%CI:6.90%—8.57%),堿性土壤中增產(chǎn)效應(yīng)最低,增產(chǎn)率為6.35%(95%CI:4.74%—7.98%)。

表3 Meta亞組分析結(jié)果

I2為研究間方差在總方差中的比例;Qm為解釋變量異質(zhì)性檢驗(yàn)的統(tǒng)計(jì)量;PQ-val為解釋變量異質(zhì)性檢驗(yàn)的顯著程度;2為解釋變量能夠解釋的異質(zhì)性

I2means the percentage of variance between studys; Qmmeans the statistic value of heterogeneity for explaining variance; PQ-val means the significant value of heterogeneity for explaining variance;2means the heterogeneity for explaining variance

圖2 秸稈還田對(duì)農(nóng)作物產(chǎn)量效應(yīng)的影響因素分析

在主要的糧食作物中,秸稈還田的產(chǎn)量效應(yīng)表現(xiàn)出顯著的差異(圖2-f)。對(duì)玉米的增產(chǎn)作用最大,增產(chǎn)率達(dá)到9.22%(95%CI:8.38%—10.05%);對(duì)水稻的增產(chǎn)作用次之(增產(chǎn)率(7.58±1.03)%),對(duì)小麥的增產(chǎn)作用最低(增產(chǎn)率(5.75±0.86)%),均低于總體的平均水平。圖2-g表明秸稈還田在一年一熟制中的增產(chǎn)作用顯著高于一年兩熟制,增產(chǎn)率分別為8.99%(95%CI:8.00%—9.99%)、7.65%(95%CI:7.00%—8.30%)。

免耕與翻耕是最有利于發(fā)揮秸稈還田增產(chǎn)作用的耕作方式。翻耕秸稈還田的增產(chǎn)率為11.05%,95%CI為10.05%—12.05%,免耕秸稈還田的增產(chǎn)率為8.98%,95%CI為7.21%—10.79%,均高于總體的平均增產(chǎn)率。旋耕與深耕秸稈還田的增產(chǎn)率分別為(6.57±1.27)%、(6.36±1.96)%,均低于總體的平均增產(chǎn)率(圖2-h)。

秸稈還田在正常的施肥模式下能夠提高8.08%(95%CI:7.50%—8.68%)的作物產(chǎn)量(圖2-i),與總體的平均增產(chǎn)率一致,其他施肥方式都會(huì)影響秸稈還田的增產(chǎn)效應(yīng)。不施任何肥料時(shí),秸稈還田對(duì)農(nóng)作物的增產(chǎn)效應(yīng)顯著提高,增產(chǎn)率達(dá)到25.66%(95%CI:22.04%—29.38%),但不施肥時(shí)整體的產(chǎn)量水平較低;不施鉀肥、正常施用氮磷肥時(shí),秸稈還田的增產(chǎn)率最低,為4.08%(95%CI:2.33%—5.87%);不施氮肥、正常施用磷鉀肥時(shí),秸稈還田的增產(chǎn)率為7.24%(95%CI:4.12%—10.46%);低施氮量與高施氮量下,秸稈還田的增產(chǎn)率分別為6.40%(95%CI:4.09%—8.76%)、6.08%(95%CI:2.63%—9.64%);可見,不同氮肥施用方式對(duì)秸稈還田的產(chǎn)量效應(yīng)并無顯著影響。

隨著秸稈還田持續(xù)年限的增加,秸稈還田的增產(chǎn)率在短期內(nèi)略微降低后持續(xù)增加(圖2-j)。持續(xù)秸稈還田超過10年、15年、20年時(shí),相應(yīng)的增產(chǎn)率分別達(dá)到9.74%(95%CI:7.59%—11.92%)、13.88%(95%CI:9.78%—18.13%)、15.42%(95%CI:11.05%—19.95%),增產(chǎn)率的提高趨勢(shì)顯著。

不同的秸稈還田量對(duì)還田后農(nóng)作物產(chǎn)量的影響不顯著(圖2-k)。利用前茬作物50%—100%的秸稈進(jìn)行還田時(shí)增產(chǎn)作用最高,增產(chǎn)率為9.09%(95%CI:7.41%—10.79%),高于秸稈全量還田后(7.91±0.59)%的增產(chǎn)率。秸稈還田量低于50%和超過100%的相關(guān)研究較少,僅有的研究結(jié)果表明兩者的增產(chǎn)率分別為8.72%(95%CI:5.13%—12.42%)、8.21%(95%CI:3.84%—12.77%)。

3 討論

3.1 秸稈還田的增產(chǎn)效應(yīng)

本研究結(jié)果表明,與秸稈不還田相比,秸稈還田顯著提高了農(nóng)作物產(chǎn)量,增產(chǎn)率達(dá)到8.06%(95%CI:7.52%—8.60%,不存在發(fā)表偏倚)。與秸稈不還田相比,秸稈還田顯著改善了土壤物理性狀,降低了土壤容重[42],增加了土壤孔隙度[43],促進(jìn)了土壤微團(tuán)聚體向大團(tuán)聚體的轉(zhuǎn)化,土壤固碳能力顯著提升[44];秸稈還田后土壤中的養(yǎng)分含量顯著增加,0—60 cm土層中的土壤有機(jī)碳及全氮含量顯著提高[45],減少了磷流失,提高了土壤磷儲(chǔ)量[46],同時(shí)提高了土壤中的全鉀及速效鉀含量[47];長(zhǎng)期秸稈還田改變了土壤中的微生物群落結(jié)構(gòu),顯著提高了土壤中的真菌、放線菌豐富度,且隨著秸稈投入量的增加,幾種土壤水解酶的活性也隨之提高[48]。秸稈還田通過改善土壤的理化性質(zhì),提高了土壤生產(chǎn)力,實(shí)現(xiàn)增產(chǎn)。

3.2 影響秸稈還田增產(chǎn)效應(yīng)的因素

3.2.1 試驗(yàn)區(qū)域 由于不同生態(tài)區(qū)域農(nóng)業(yè)生產(chǎn)條件的差異性,農(nóng)業(yè)生產(chǎn)呈現(xiàn)出明顯的地域分異[49]。本研究表明,秸稈還田對(duì)總體農(nóng)作物的增產(chǎn)率在不同試驗(yàn)區(qū)域內(nèi)存在差異,但增產(chǎn)效應(yīng)差異不顯著。宋大利等[50]對(duì)我國(guó)農(nóng)作物秸稈產(chǎn)量及養(yǎng)分含量地區(qū)分布進(jìn)行了研究,結(jié)果表明西北地區(qū)的農(nóng)作物秸稈資源無論是在產(chǎn)量方面還是在養(yǎng)分含量方面,在所有地區(qū)中都是最低的,東南地區(qū)(以長(zhǎng)江中下游地區(qū)為主)的農(nóng)作物秸稈產(chǎn)量雖然沒有達(dá)到最高的產(chǎn)量,但秸稈養(yǎng)分含量卻是所有地區(qū)中最高的?;诖?,可以解釋本研究中秸稈還田對(duì)總體農(nóng)作物的增產(chǎn)效應(yīng)在東南地區(qū)最高而在西北地區(qū)最低。

3.2.2 土壤質(zhì)地及酸堿性 土壤質(zhì)地是土壤中各級(jí)別土粒的質(zhì)量百分比,分為砂土、壤土及黏土三大類,是土壤重要的物理特性,在很大程度上支配土壤的耕作性能[22],不同作物在不同土壤質(zhì)地中表現(xiàn)出不同的氮代謝特征[51],但不同土壤質(zhì)地中秸稈還田增產(chǎn)效應(yīng)的差異機(jī)理有待進(jìn)一步研究。酸性土壤中秸稈還田的增產(chǎn)效應(yīng)更高,可能是由于農(nóng)作物秸稈為堿性物質(zhì),還田后降低了土壤酸性,土壤保肥能力增強(qiáng)[52];而在堿性土壤中,即使耐鹽性較強(qiáng)的作物(棉花),其產(chǎn)量也會(huì)降低[53]。因此,通過秸稈還田可以獲得最適于農(nóng)業(yè)生產(chǎn)的土壤酸堿性,但最適的土壤pH范圍有待進(jìn)一步研究。

3.2.3 種植制度 土壤長(zhǎng)期耕作會(huì)導(dǎo)致土壤鉀素消耗,與單作相比,輪作消耗更嚴(yán)重,而秸稈還田可以增加土壤速效鉀的含量,另外配合使用鉀肥,能夠緩解土壤鉀素的耗竭,從而增加小麥、玉米的產(chǎn)量[54]。一年二熟區(qū)秸稈資源豐富,秸稈還田能增加土壤有機(jī)質(zhì),補(bǔ)充土壤養(yǎng)分,維持土壤的可持續(xù)發(fā)展,對(duì)于增產(chǎn)增收有一定促進(jìn)作用[55-56]。不同作物熟制中秸稈還田的增產(chǎn)效應(yīng)沒有顯著差異,在一年一熟制中,秸稈還田避免了作物生長(zhǎng)發(fā)育早期受到低溫脅迫的影響[57],在一年兩熟制地區(qū)具有充足的光熱資源及豐富的降水量,秸稈還田也有利于農(nóng)作物生長(zhǎng)[58]。

3.2.4 耕作方式 耕作是在播種前,對(duì)土壤、雜草和農(nóng)作物秸稈進(jìn)行的綜合處理[59]。不同的耕作方式顯著影響農(nóng)作物秸稈在土壤中的空間分布狀況[60]。適宜的耕作方式會(huì)加快秸稈的分解速率,改善土壤微生物活性,有利于發(fā)揮秸稈還田的增產(chǎn)作用[61]。本研究主要涉及免耕、翻耕、深耕及旋耕4種耕作方式,分析結(jié)果表明免耕或翻耕條件下秸稈還田的增產(chǎn)效應(yīng)顯著高于深耕或旋耕方式。免耕是指作物播前不用犁、耙整理土地,不清理作物殘茬,直接在原茬地上播種,播后作物生育期間不使用農(nóng)具進(jìn)行土壤管理[62],是保護(hù)性耕作的一種,多應(yīng)用于我國(guó)西北干旱地區(qū),保溫保墑;免耕顯著提高了表層土壤的有機(jī)質(zhì)含量,具有防止水土流失、改善土壤物理性質(zhì)、增產(chǎn)降水儲(chǔ)存、保持土壤水分等優(yōu)勢(shì)[63-64],秸稈還田降低了免耕對(duì)農(nóng)作物的減產(chǎn)程度[65],在短期內(nèi)對(duì)農(nóng)作物具有增產(chǎn)作用[66]。翻耕的耕層一般在20—30 cm[67],翻耕秸稈還田獲得的增產(chǎn)率最高。將農(nóng)作物秸稈翻埋至20 cm土層中有助于農(nóng)作物秸稈的分解,土壤中的有機(jī)質(zhì)、全氮、速效氮、速效磷及速效鉀含量均有所增加,且亞耕層(20—40 cm)土壤養(yǎng)分含量的增幅更加顯著;秸稈深翻還田有效改善了對(duì)農(nóng)業(yè)生產(chǎn)中存在的耕層淺、養(yǎng)分少等[68]土壤肥力退化問題,顯著提高了農(nóng)作物產(chǎn)量[69]。深耕一般耕層在30—60 cm[70],是在不翻動(dòng)上層貧瘠土壤的前提下對(duì)硬質(zhì)土壤和壓實(shí)土壤的破壞過程[71],深耕秸稈還田降低了土壤容重及土壤滲透阻力,能夠緩解了土壤中的水分耗竭,提高農(nóng)作物的水分利用效率,但增產(chǎn)效應(yīng)未達(dá)到顯著水平[72]。旋耕的耕層一般在15—20 cm[67],旋耕作業(yè)操作簡(jiǎn)便、作業(yè)成本低,但旋耕秸稈還田使得農(nóng)作物秸稈大量聚集在土壤表面,形成了缺氧環(huán)境,在秸稈腐解時(shí)可能會(huì)產(chǎn)生H2S等對(duì)農(nóng)作物生長(zhǎng)有害的物質(zhì),降低了秸稈還田的增產(chǎn)效應(yīng)[73];同時(shí),土壤耕層變淺、容重增加、孔隙度降低,農(nóng)作物秸稈的物理阻礙導(dǎo)致作物出苗率低、成穗率低,引起產(chǎn)量下滑[74]。龐黨偉等[75]在長(zhǎng)期旋耕秸稈還田的基礎(chǔ)上進(jìn)行深耕,平衡了各土層的有效養(yǎng)分含量,顯著改善了10—30 cm土層的微生物活性及下層土壤物理性狀,促進(jìn)農(nóng)作物根系下扎對(duì)養(yǎng)分的吸收,實(shí)現(xiàn)了增產(chǎn)。

3.2.5 施肥模式 農(nóng)作物秸稈具有巨大的肥料替代潛力,在全部的化肥投入中,全量秸稈還田能夠替代全部的鉀肥投入、28.77%的磷肥投入及24.25%的氮肥投入;在有效利用的化肥中,全量秸稈還田能夠替代全部的有效鉀肥、有效磷肥及90%的有效氮肥,也就是說,秸稈移除在一定程度上造成了土壤養(yǎng)分損失[76]。本研究結(jié)果表明,不施肥或不施氮肥時(shí)能夠獲得較高秸稈還田增產(chǎn)效應(yīng),尤其是不施肥時(shí)的增產(chǎn)效應(yīng)顯著高于其他施肥方式,但整體的產(chǎn)量水平顯著降低[77],這與前人的整合(Meta)分析結(jié)果一致[78]。就不同的氮肥水平而言,對(duì)于養(yǎng)分含量充足的肥沃土壤來說,無論農(nóng)作物秸稈是否還田,適度減少氮肥施用并未對(duì)土壤的化學(xué)性質(zhì)及微生物群落結(jié)構(gòu)產(chǎn)生顯著影響,不會(huì)改變土壤原有的生態(tài)系統(tǒng)功能[79];同時(shí),適度減少氮肥投入在維持高產(chǎn)的同時(shí)顯著降低了N2O等溫室氣體的排放量[80]。也有研究表明,隨著施氮量的增加,秸稈還田的增產(chǎn)效應(yīng)也隨之增加,而氮肥偏生產(chǎn)力降低,這可能與秸稈還田的深度有關(guān)[81]??紤]到高施氮量時(shí)生產(chǎn)成本的提高以及潛在的環(huán)境污染風(fēng)險(xiǎn),秸稈還田配施低量氮肥應(yīng)該是更為合理的農(nóng)業(yè)生產(chǎn)方式[82]。此外,秸稈還田時(shí)需要施入鉀肥,以緩解土壤中鉀的耗竭、提高土壤的鉀肥力,維持作物高產(chǎn)[83]。

3.2.6 還田年限 本研究表明,秸稈還田對(duì)總體農(nóng)作物的增產(chǎn)效應(yīng)在年際間的增長(zhǎng)趨勢(shì)顯著,可能是由于耕地資源的開發(fā)、農(nóng)業(yè)生產(chǎn)技術(shù)的改良以及育種科學(xué)發(fā)展提供了優(yōu)質(zhì)的種質(zhì)資源[84],產(chǎn)量潛力更高的農(nóng)作物種子配套先進(jìn)的農(nóng)業(yè)生產(chǎn)技術(shù)能夠獲得更高的產(chǎn)量。隨著還田年限的增加,秸稈還田的增產(chǎn)效應(yīng)也隨之顯著提高,這與前人的整合(Meta)分析結(jié)果一致[78]。相關(guān)研究表明,秸稈還田對(duì)土壤有機(jī)質(zhì)的影響是一個(gè)長(zhǎng)期的過程,短時(shí)間內(nèi)很難發(fā)生顯著的變化[85],長(zhǎng)期秸稈還田后,各土層的土壤養(yǎng)分明顯改善,盡管土壤中的有機(jī)質(zhì)積累量減少,但總含量始終穩(wěn)定在較高水平[86]。因此,長(zhǎng)期秸稈還田的增產(chǎn)效應(yīng)會(huì)更加顯著。此外,Li等[87]的研究還發(fā)現(xiàn)長(zhǎng)期秸稈還田還能夠獲得更高的經(jīng)濟(jì)效益,是維持作物高產(chǎn)最有效的方式。

3.2.7 秸稈還田量 本研究結(jié)果表明,不同的秸稈還田量對(duì)秸稈還田的增產(chǎn)效應(yīng)沒有顯著影響,以50%—100%的農(nóng)作物秸稈產(chǎn)量進(jìn)行還田獲得的增產(chǎn)水平相對(duì)較高。與全量秸稈還田相比,半量秸稈還田顯著提高了耕層土壤孔隙度、降低了土壤容重,有利于根系在深層土壤中的生長(zhǎng)延伸,改善了深層土壤根系密度及根系結(jié)構(gòu),產(chǎn)量水平略高于全量秸稈還田[88],同時(shí)顯著降低了田間溫室氣體的排放量,保證了土壤的可持續(xù)性[89]。也有研究表明,全量秸稈還田顯著提高了土壤養(yǎng)分及土壤酶活性,同時(shí)提高了農(nóng)作物產(chǎn)量及水分利用效率,增產(chǎn)效應(yīng)顯著高于半量秸稈還田,但更高的秸稈還田量沒有進(jìn)一步提高產(chǎn)量水平[90]。此外,小麥秸稈半量、全量還田均顯著降低了水稻中Cd向上的轉(zhuǎn)運(yùn)能力,降低了水稻地上部分Cd累積量(<0.05)??傮w而言,全量秸稈還田在全生育期土壤中DGT提取態(tài)Cd含量顯著低于半量還田,解毒效果更好[91-92]。研究結(jié)果發(fā)現(xiàn),不同的秸稈還田量在促進(jìn)早、晚稻分蘗的效果上具有差異,在早稻季低量還田優(yōu)于高量,而在晚稻季則相反。究其原因可能是早、晚稻生育期間的溫度差異而致[93]。

3.3 本研究的不足之處

本研究通過整合(Meta)分析方法對(duì)秸稈還田下農(nóng)作物的產(chǎn)量特征進(jìn)行了定量分析,分析結(jié)果在一定程度上證明了秸稈還田具有顯著的增產(chǎn)效應(yīng),與絕大多數(shù)的田間試驗(yàn)結(jié)果一致,僅有極少數(shù)的田間試驗(yàn)研究發(fā)現(xiàn)秸稈還田不存在顯著的增產(chǎn)效應(yīng)、甚至?xí)档娃r(nóng)作物產(chǎn)量。同時(shí),本研究也存在一定的局限性。秸稈還田的增產(chǎn)效應(yīng)受各種因素的影響,包括但不僅限于本研究中所討論的,可能的影響因素還有很多,比如農(nóng)業(yè)生產(chǎn)中使用的不同小麥品種、玉米品種、還田秸稈的長(zhǎng)度、土壤的基礎(chǔ)肥力等,文獻(xiàn)中涉及的相關(guān)數(shù)據(jù)較少不易提取,需要更多的田間試驗(yàn)結(jié)果,因此本研究中并未討論;本研究充分考慮了全國(guó)范圍內(nèi)秸稈還田的產(chǎn)量效應(yīng),對(duì)于宏觀上認(rèn)識(shí)秸稈還田的增產(chǎn)作用具有一定意義,但與全國(guó)范圍內(nèi)不同區(qū)域的實(shí)際情況或特定作物種類缺乏聯(lián)系,進(jìn)一步的分析研究需要與實(shí)際生產(chǎn)問題結(jié)合,考察不同區(qū)域內(nèi)秸稈還田的增產(chǎn)效應(yīng)。此外,本研究只收集整理了中文文獻(xiàn),缺少高質(zhì)量的英文文獻(xiàn)。

4 結(jié)論

全國(guó)范圍內(nèi),農(nóng)作物秸稈還田具有顯著的增產(chǎn)效應(yīng),增產(chǎn)率達(dá)到8.06%。不同試驗(yàn)地區(qū)秸稈還田的增產(chǎn)效應(yīng)沒有顯著差異,東南地區(qū)較高,西北地區(qū)較低。在年平均氣溫為5—10℃、年平均降水量達(dá)到800— 1 200 mm的酸性壤土(pH<6.5)中,秸稈還田對(duì)農(nóng)作物的增產(chǎn)率相對(duì)較高;在氣候干旱地區(qū)采用免耕、在農(nóng)作物秸稈產(chǎn)量豐富地區(qū)采用翻耕更能發(fā)揮秸稈還田的增產(chǎn)效應(yīng);在犧牲部分產(chǎn)量的情況下可以適當(dāng)減少氮肥的施用量,能夠兼顧經(jīng)濟(jì)與環(huán)境效益;合理的還田量為半量還田,不還田的剩余秸稈可以作飼料或生產(chǎn)其他能源物質(zhì);長(zhǎng)期秸稈還田能夠獲得更高的增產(chǎn)效應(yīng)。

[1] 牛新勝, 巨曉棠. 我國(guó)有機(jī)肥料資源及利用. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2017, 23(6): 1462-1479.

NIU X S, JU X T. Organic fertilizer resources and utilization in China., 2017, 23(6): 1462-1479. (in Chinese)

[2] 高利偉, 馬林, 張衛(wèi)峰, 王方浩, 馬文奇, 張福鎖. 中國(guó)作物秸稈養(yǎng)分資源數(shù)量估算及其利用狀況. 農(nóng)業(yè)工程學(xué)報(bào), 2009, 25(7): 173-179.

GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China., 2009, 25(7): 173-179. (in Chinese)

[3] 彭春艷, 羅懷良, 孔靜. 中國(guó)作物秸稈資源量估算與利用狀況研究進(jìn)展. 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2014, 35(3): 14-20.

PENG C Y, LUO H L, KONG J. Advance in estimation and utilization of crop residues resources in China., 2014, 35(3): 14-20. (in Chinese)

[4] 劉曉永, 李書田. 中國(guó)秸稈養(yǎng)分資源及還田的時(shí)空分布特征. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(21): 1-19.

LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China., 2017, 33(21): 1-19. (in Chinese)

[5] ZHANG P, CHEN X L, WEI T, YANG Z, JIA Z K, YANG B P, HAN Q F, REN X L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China., 2016, 160: 65-72.

[6] WANG W Q, LAI D Y F, SARDANS J, WANG C, DATTA A, PAN T, ZENG C S, BARTRONS M, PE?UELAS J. Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in Southeastern China., 2015, 181: 42-51.

[7] FAN J L, LUO R Y, LIU D Y, CHEN Z M, LUO J F, BOLAND N, TANG J W, HAO M D, MCCONKEY B, DING W X. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland., 2018, 219: 14-23.

[8] MAO L L, GUO W J, YUAN Y C, QIN D L, WANG S L, NIE J J, ZHAO N, SSONG X L, SUN X Z. Cotton stubble effects on yield and nutrient assimilation in coastal saline soil., 2019, 239: 71-81.

[9] 王昆昆, 劉秋霞, 朱蕓, 李小坤, 任濤, 魯劍巍, 叢日環(huán). 稻草覆蓋還田對(duì)直播冬油菜生長(zhǎng)及養(yǎng)分積累的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25(6): 1047-1055.

WANG K K, LIU Q X, ZHU Y, LI X K, REN T, LU J W, CONG R H. Effects of straw mulching on growth and nutrients accumulation of direct-sown winter oilseed rape., 2019, 25(6): 1047-1055. (in Chinese)

[10] 趙繼浩, 李穎, 錢必長(zhǎng), 李金融, 劉兆新, 高芳, 楊堅(jiān)群, 甄曉宇, 楊東清, 李向東. 秸稈還田與耕作方式對(duì)麥后復(fù)種花生田土壤性質(zhì)和產(chǎn)量的影響. 水土保持學(xué)報(bào), 2019, 33(5): 272-280, 287.

ZHAO J H, LI Y, QIAN B C, LI J R, LIU Z X, GAO F, YANG J Q, ZHEN X Y, YANG D Q, LI X D. Effects of straw return and tillage on soil properties and yield of multi-cropping peanut after wheat., 2019, 33(5): 272-280, 287. (in Chinese)

[11] WANG J, SUN N, XU M G, WANG S Q, ZHANG J B, CAI Z C, CHENG Y. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil., 2019, 337: 710-717.

[12] WANG L, YUAN X L, LIU C, LI Z G, CHEN F, LI S Q, WU L H, LIU Y. Soil C and N dynamics and hydrological processes in a maize-wheat rotation field subjected to different tillage and straw management practices., 2019, 285: 106616.

[13] CHEN Z M, WANG H Y, LIU X W, ZHAO X L, LU D J, ZHOU J M, LI C Z. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system., 2017, 165: 121-127.

[14] YANG Y T, HUANG Q, YU H Y, SONG K F, MA J, XU H, ZHANG G B. Winter tillage with the incorporation of stubble reduces the net global warming potential and greenhouse gas intensity of double- cropping rice fields., 2018, 183: 19-27.

[15] GUREVITCH J, KORICHEVA J, NAKAGAWA S, STEWART G. Meta-analysis and the science of research synthesis., 2018, 555(7695): 175-182.

[16] DEMALACH N, ZAADY E, KADMON R. Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis., 2017, 26: 983-992.

[17] BURDA B U, O`CONNOR E A, WEBBER E M, REDMOND N, PERDUE L A. Estimating data from figures with a web-based program: Considerations for a systematic review., 2017, 8(3): 258-262.

[18] GATTINGER A, MULLER A, HAENI M, SKINNER C, FLIESSBACH A, BUCHMANN N, MADER P, STOLZE M, SMITH P, SCIALABBA E N, NIGGLI U. Enhanced top soil carbon stocks under organic farming., 2012, 109(44): 18226-18231.

[19] WANG L F, SHANGGUAN Z P. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau., 2015, 5: 12225.

[20] 柴如山, 王擎運(yùn), 葉新新, 江波, 趙強(qiáng), 王強(qiáng), 章力干, 郜紅建. 我國(guó)主要糧食作物秸稈還田替代化學(xué)氮肥潛力. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(11): 2583-2593.

CHAI R S, WANG Q Y, YE X X, JIANG B, ZHAO Q, WANG Q, ZHANG L G, GAO H J. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning., 2019, 38(11): 2583-2593. (in Chinese)

[21] 吳克寧, 趙瑞. 土壤質(zhì)地分類及其在我國(guó)應(yīng)用探討. 土壤學(xué)報(bào), 2019, 56(1): 227-241.

WU K N, ZHAO R. Soil texture classification and its application in China., 2019, 56(1): 227-241. (in Chinese)

[22] 任思洋, 張青松, 李婷玉, 張福鎖. 華北平原五省冬小麥產(chǎn)量和氮素管理的時(shí)空變異. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(24): 4527-4539.

REN S Y, ZHANG Q S, LI T Y, ZHANG F S. Spatiotemporal variation of winter wheat yield and nitrogen management in five provinces of North China Plain., 2019, 52(24): 4527-4539. (in Chinese)

[23] 吳鵬年, 王艷麗, 李培富, 王西娜, 侯賢清. 滴灌條件下秸稈還田配施氮肥對(duì)寧夏揚(yáng)黃灌區(qū)春玉米產(chǎn)量和土壤理化性質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(12): 4177-4185.

WU P N, WANG Y L, LI P F, WANG X N, HOU X Q. Effects of straw returning combined with nitrogen fertilizer on spring maize yield and soil physicochemical properties under drip irrigation condition in Yellow River pumping irrigation area, Ningxia, China., 2019, 30(12): 4177-4185. (in Chinese)

[24] 于寧寧, 任佰朝, 趙斌, 劉鵬, 張吉旺. 施氮量對(duì)夏玉米籽粒灌漿特性和營(yíng)養(yǎng)品質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(11): 3771-3776.

YU N N, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize., 2019, 30(11): 3771-3776. (in Chinese)

[25] 劇成欣, 陳堯杰, 趙步洪, 劉立軍, 王志琴, 楊建昌. 實(shí)地氮肥管理對(duì)不同氮響應(yīng)粳稻品種產(chǎn)量和品質(zhì)的影響. 中國(guó)水稻科學(xué), 2018, 32(3): 237-246.

JU C X, CHEN Y J, ZHAO B H, LIU L J, WANG Z Q, YANG J C. Effect of site-specific nitrogen management on grain yield and quality of japonica rice varieties differed in response to nitrogen., 2018, 32(3): 237-246. (in Chinese)

[26] 吳培, 陳天曄, 袁嘉琦, 黃恒, 邢志鵬, 胡雅杰, 朱明, 李德劍, 劉國(guó)林, 張洪程. 施氮量和直播密度互作對(duì)水稻產(chǎn)量形成特征的影響. 中國(guó)水稻科學(xué), 2019, 33(3): 269-281.

WU P, CHEN T Y, YUAN J Q, HUANG H, XING Z P, HU Y J, ZHU M, LI D J, LIU G L, ZHANG H C. Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice., 2019, 33(3): 269-281. (in Chinese)

[27] 李昊, 李世平, 南靈, 李河, 郭清卉. 中國(guó)棉花地膜覆蓋產(chǎn)量效應(yīng)的Meta分析. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(7): 228-235.

LI H, LI S P, NAN L, LI H, GUO Q H. Meta-analysis of effect of plastic film mulching on cotton yield in China., 2017, 48(7): 228-235. (in Chinese)

[28] 王紅妮, 王學(xué)春, 趙長(zhǎng)坤, 李軍, 秦儉, 龍祖利. 油菜秸稈還田對(duì)水稻根系、分蘗和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(4): 1243-1252.

WANG H N, WANG X C, ZHAO C K, LI J, QIN J, LONG Z L. Effects of oilseed rape straw incorporation on root, tiller and grain yield of rice., 2019, 30(4): 1243-1252. (in Chinese)

[29] 張婷, 孔云, 李剛, 楊殿林, 趙建寧, 張貴龍, 王麗麗, 修偉明. 不同秸稈還田量對(duì)華北小麥—玉米體系土壤中小型節(jié)肢動(dòng)物的影響. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2019, 25(1): 70-75.

ZHANG T, KONG Y, LI G, YANG D L, ZHAO J N, ZHANG G L, WANG L L, XIU W M. Effects of straw returning on soil meso- and micro-arthropod community diversity in wheat-maize fields in North China., 2019, 25(1): 70-75. (in Chinese)

[30] ZHENG H F, YING H, YIN Y L, WANG Y C, HE G, BIAN Q Q, CUI Z L, YANG Q H. Irrigation leads to greater maize yield at higher water productivity and lower environmental costs: a global meta- analysis., 2019, 273: 62-69.

[31] HEDGES L V, GUREVITCH J, CURTIS P S.The meta-analysis of response ratios in experimental ecology., 1999, 80(4): 1150-1156.

[32] VERONIKI A A, JACKSON D, VIECHTBAUER W, BENDER R, BOWDEN J, KNAPP G, KUSS O, HIGGNS P T J, LANGN D, SALANTI G. Methods to estimate the between-study variance and its uncertainty in meta-analysis., 2016, 7(1): 55-79.

[33] ZHANG T, CHEN H Y H, RUAN H H. Global negative effects of nitrogen deposition on soil microbes., 2018, 12(7): 1817-1825.

[34] BENITEZ-LOPEZ A, ALKEMADE R, SCHIPPER A M, INGRAM D J, VERWEIJ P A, EIKELBOOM J A J, HUIJBREGTS M A J. The impact of hunting on tropical mammal and bird populations., 2017, 356(6334): 180-183.

[35] ZHAO J, YANG Y D, ZHANG K, JEONG J, ZENG Z H, ZANG H D. Does crop rotation yield more in China? A meta-analysis., 2020, 245. doi: 10.1016/j.fcr.2019.107659.

[36] DARYANTO S, WANG L X, JACINTHE P A. Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: A meta-analysis., 2017, 7(1): 12117.

[37] BEGG C B, BERLIN J A. Publication bias: A problem in interpreting medical data., 1988, 151(3): 419-463.

[38] FRAGKOS K C, TSAGRIS M, FRANGOS C C. Publication bias in meta-analysis: Confidence intervals for Rosenthal's fail-safe number., 2014, 2014: 1-17.

[39] ORWIN R G. A fail-safe n for effect size in meta-analysis., 1983, 8(2): 157-159.

[40] VIECHTBAUER W. Conducting meta-analyses in R with the metafor package., 2010, 36(3): 1-48.

[41] WALLACE B C, LAJEUNESSE M J, DIETZ G, DAHABREH I J, TRIKALINOS T A, SCHMID C H, GUREVITCH J. OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology., 2016, 8(8): 941-947.

[42] ZHANG P, WEI T, LI Y L, WANG K, JIA Z K, HAN Q F, REN S L. Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China., 2015, 153: 28-35.

[43] WANG C, ZHANG Z, FAN S, MWIYA R, XIE M. Effects of straw incorporation on desiccation cracking patterns and horizontal flow in cracked clay loam., 2018, 182(1): 130-143.

[44] 李昊昱, 孟兆良, 龐黨偉, 陳金, 侯永坤, 崔海興, 金敏, 王振林, 李勇. 周年秸稈還田對(duì)農(nóng)田土壤固碳及冬小麥-夏玉米產(chǎn)量的影響. 作物學(xué)報(bào), 2019, 45(6): 893-903.

LI H Y, MENG Z L, PANG D W, CHEN J, HOU Y K, CUI H X, JIN M, WANG Z L, LI Y. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland., 2019, 45(6): 893-903. (in Chinese)

[45] ZHANG P, WEI T, LI Y L, WANG K, JIA Z K, HAN Q F, REN S L. Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China., 2015, 153: 28-35.

[46] LI F, LIANG X, LIU Z, TIAN G. No-till with straw return retains soil total P while reducing loss potential of soil colloidal P in rice-fallow systems., 2019, 286. doi: 10.1016/j.agee.2019.106653.

[47] 伍佳, 王忍, 呂廣動(dòng), 隆斌慶, 楊飛翔, 陳慧娜, 黃璜. 不同秸稈還田方式對(duì)水稻產(chǎn)量及土壤養(yǎng)分的影響. 華北農(nóng)學(xué)報(bào), 2019, 34(6): 177-183.

WU J, WANG R, Lü G D, LONG B Q, YANG F X, CHEN H N, HUANG H. Effects of different straw returning ways on rice yield and soil nutrients., 2019, 34(6): 177-183. (in Chinese)

[48] ZHAO S C, LI K J, ZHOU W, QIU S J, HUANG S W, HE P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China., 2016, 216: 82-88.

[49] 劉彥隨, 張紫雯, 王介勇. 中國(guó)農(nóng)業(yè)地域分異與現(xiàn)代農(nóng)業(yè)區(qū)劃方案. 地理學(xué)報(bào), 2018, 73(2): 203-218.

LIU Y S, ZHANG Z W, WANG J Y.Regional differentiation and comprehensive regionalization scheme of modern agriculture in China., 2018, 73(2): 203-218. (in Chinese)

[50] 宋大利, 侯勝鵬, 王秀斌, 梁國(guó)慶, 周衛(wèi). 中國(guó)秸稈養(yǎng)分資源數(shù)量及替代化肥潛力. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(1): 1-21.

SONG D L, HOU S P, WANG X B, LIANG G Q, ZHOU W. Nutrient resource quantity of crop straw and its potential of substituting., 2018, 24(1): 1-21. (in Chinese)

[51] 熊淑萍, 張娟娟, 楊陽, 劉娟, 王曉航, 吳延鵬, 馬新明. 不同冬小麥品種在3種質(zhì)地土壤中氮代謝特征及利用效率分析. 植物生態(tài)學(xué)報(bào), 2013, 37(7): 601-610.

XIONG S P, ZHANG J J, YANG Y, LIU J, WANG X H, WU Y P, MA X M. Research on nitrogen metabolism characteristics and use efficiency in different winter wheat cultivars grown on three soil textures., 2013, 37(7): 601-610. (in Chinese)

[52] 劉成, 劉曉雨, 張旭輝, 李戀卿, 潘根興. 基于整合分析方法評(píng)價(jià)我國(guó)生物質(zhì)炭施用的增產(chǎn)與固碳減排效果. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(3): 696-706.

LIU C, LIU X Y, ZHANG X H, LI L Q, PAN G X. Evaluating the effects of biochar amendment on crop yield and soil carbon sequestration and greenhouse gas emission using meta-analysis., 2019, 38(3): 696-706. (in Chinese)

[53] 秦都林, 王雙磊, 劉艷慧, 聶軍軍, 趙娜, 毛麗麗, 宋憲亮, 孫學(xué)振. 濱海鹽堿地棉花秸稈還田對(duì)土壤理化性質(zhì)及棉花產(chǎn)量的影響. 作物學(xué)報(bào), 2017, 43(7): 1030-1042.

QIN D L, WANG S L, LIU Y H, NIE J J, ZHAO N, MAO L L, SONG X L, SUN X Z. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil., 2017, 43(7): 1030-1042. (in Chinese)

[54] 譚德水, 金繼運(yùn), 黃紹文, 李書田, 何萍. 不同種植制度下長(zhǎng)期施鉀與秸稈還田對(duì)作物產(chǎn)量和土壤鉀素的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(1): 133-139.

TAN D S, JIN J Y, HUANG S W, LI S T, HE P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems., 2007, 40(1): 133-139. (in Chinese)

[55] 姜井軍, 石廣躍. 麥玉輪作和麥稻輪作制度下的秸稈還田技術(shù)研究進(jìn)展. 農(nóng)業(yè)科技通訊, 2014(11):135-138.

JIANG J J, SHI G Y. Research progress on straw mulching technology under wheat-and-rice and wheat-and-jade rotation system., 2014(11): 135-138. (in Chinese)

[56] 王宏庭, 金繼運(yùn), 王斌, 趙萍萍. 山西褐土長(zhǎng)期施鉀和秸稈還田對(duì)冬小麥產(chǎn)量和鉀素平衡的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(4): 801-808.

WANG H T, JIN J Y, WANG B, ZHAO P P. Effects of long-term potassium application and wheat straw return to cinnamon soil on wheat yields and soil potassium balance in Shanxi., 2010, 16(4): 801-808. (in Chinese)

[57] QI G.P, KANG Y X, YIN M H, MA Y L, BAI Y S, WANG J H. Yield responses of wheat to crop residue returning in China: A meta-analysis., 2019, 59(5): 2185-2200.

[58] 肖瓊, 王齊齊, 鄔磊, 蔡岸冬, 王傳杰, 張文菊, 徐明崗. 施肥對(duì)中國(guó)農(nóng)田土壤微生物群落結(jié)構(gòu)與酶活性影響的整合分析. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(6): 1598-1609.

XIAO Q, WANG Q Q, WU L, CAI A D, WANG C J, ZHANG W J, XU M G. Fertilization impacts on soil microbial communities and enzyme activities across China’s croplands: a meta-analysis., 2018, 24(6): 1598-1609. (in Chinese)

[59] OBOUR P B, JENSEN J L, LAMANDE M, WATTS C W, MUNKHOLM L J. Soil organic matter widens the range of water contents for tillage., 2018, 182(1): 57-65.

[60] ZHOU H, ZHANG C L, ZHANG W L, YANG Q J, LI D, LIU Z Y, XIA J F. Evaluation of straw spatial distribution after straw incorporation into soil for different tillage tools., 2020, 196. doi: 10.1016/j.still.2019.104440.

[61] SUN B J, JIA S X, ZHANG S X, MCLAUGHLIN N B, ZHANG X P, LIANG A Z, CHEN X W, WEI S C, LIU S Y. Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China., 2016, 155: 421-428.

[62] 高云超, 朱文珊. 秸稈覆蓋免耕土壤微生物生物量與養(yǎng)分轉(zhuǎn)化的研究. 中國(guó)農(nóng)業(yè)科學(xué), 1994, 27(6): 41-49.

GAO Y C, ZHU W S. The relationship between soil microbial biomass and the transformation of plant nutrients in straw mulched no-tillage soils., 1994, 27(6): 41-49. (in Chinese)

[63] DONG W Y, LIU E K, WANG J B, YAN C G, LI J, ZHANG Y Q. Impact of tillage management on the short- and long-term soil carbon dioxide emissions in the dryland of Loess Plateau in China., 2017, 307: 38-45.

[64] ABDULLAH A S. Minimum tillage and residue management increase soil water content, soil organic matter and canola seed yield and seed oil content in the semiarid areas of Northern Iraq., 2014, 144(1): 150-155.

[65] PITTELKOW C M, LIANG X, LINQUIST B A, JAN VAN GROENIGEN K, LEE J, LUNDY M E, VAN GESTEL N, SIX J, VENTEREA R T, VAN KESSEL C. Productivity limits and potentials of the principles of conservation agriculture., 2014, 517(7534): 365-368.

[66] POWLSON D S, STIRLING C M, JAT M L, GERAAD B G, PALM C A, SANCHEZ P A, CASSMAN K G. Limited potential of no-till agriculture for climate change mitigation., 2014, 4(8): 678-683.

[67] 王群, 王建, 張學(xué)林, 趙亞麗, 李潮海. 不同耕作模式下小麥玉米周年生產(chǎn)及土壤養(yǎng)分變化特征. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2015, 49(4): 429-437.

WANG Q, WANG J, ZHANG X L, ZHAO Y L, LI C H. Change characteristics of wheat and maize anniversary production and soil nutrient content under different roration tillage patterns., 2015, 49(4): 429-437. (in Chinese)

[68] 吳萍萍, 李錄久, 耿言安, 姚文麒. 耕作與施肥措施對(duì)江淮地區(qū)白土理化性質(zhì)及水稻產(chǎn)量的影響. 水土保持學(xué)報(bào), 2018, 32(6): 243-248.

WU P P, LI L J, GENG Y A, YAO W Q. Effects of tillage and fertilization on physicochemical properties of albic soil and rice yields in Jianghuai region., 2018, 32(6): 243-248. (in Chinese)

[69] 蔡紅光, 梁堯, 劉慧濤, 劉劍釗, 秦裕波, 劉方明, 袁靜超, 張洪喜, 任軍, 王立春. 東北地區(qū)玉米秸稈全量深翻還田耕種技術(shù)研究. 玉米科學(xué), 2019, 27(5): 123-129.

CAI H G, LIANG Y, LIU H T, LIU J Z, QIN Y B, LIU F M, YUAN J C, ZHANG H X, REN J, WANG L C. Research on full maize straw returning with deep ploughing mode in the northeast China., 2019, 27(5): 123-129. (in Chinese)

[70] 胡振琪, CHONG S K. 深耕對(duì)復(fù)墾土壤物理特性改良的研究. 土壤通報(bào), 1999(6): 248-250, 264.

HU Z Q, CHONG S K. Study on the improvement of physical properties of reclaimed soil by deep tillage., 1999(6): 248-250, 264. (in Chinese)

[71] MA S Y, YU Z W, SHI Y, GAO Z Q, LUO L P, CHU P F, GUO Z J. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain., 2015, 150: 9-17.

[72] XIE J H, WANG L L, LI L L, COULTER J A, CHAI Q, ZHANG R Z, LUO Z Z, CARBERRY P, RAO K P C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China., 2020, 199. doi: 10.1016/j.still.2020.104584.

[73] ZHANG J, HAN X N, LAMINE S M, JIANG Y, AFREH D, QIAN H Y, FENG X M, ZHENG C Y, DENG Z W, ZHANG W J. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system., 2017, 250: 37-43.

[74] 陳金, 龐黨偉, 韓明明, 尹燕枰, 鄭孟靜, 駱永麗, 王振林, 李勇. 耕作模式對(duì)土壤生物活性與養(yǎng)分有效性及冬小麥產(chǎn)量的影響. 作物學(xué)報(bào), 2017, 43(8): 1245-1253.

CHEN J, PANG D W, HAN M M, YIN Y P, ZHENG M J, LUO Y L, WANG Z L, LI Y. Effects of tillage patterns on soil biological activity, availability of soil nutrients and grain yield of winter wheat., 2017, 43(8): 1245-1253. (in Chinese)

[75] 龐黨偉, 陳金, 唐玉海, 尹燕枰, 楊東清, 崔正勇, 鄭孟靜, 李勇, 王振林. 玉米秸稈還田方式和氮肥處理對(duì)土壤理化性質(zhì)及冬小麥產(chǎn)量的影響. 作物學(xué)報(bào), 2016, 42(11): 1689-1699.

PANG D W, CHEN J, TANG Y H, YIN Y P, YANG D Q, CUI Z Y, ZHENG M J, LI Y, WANG Z L. Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat., 2016, 42(11): 1689-1699. (in Chinese)

[76] YIN H J, ZHAO W Q, LI T, CHENG X Y, LIU Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources., 2018, 81(2): 2695-2702.

[77] AKHTAR K, WANG W Y, REN G X, KHAN A, FENG Y Z, YANG G H, WANG H Y. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production., 2019, 132. doi: 10.1016/j.envint.2019. 105092.

[78] HUANG S, ZENG Y J, WU J F, SHI Q H, PAN X H. Effect of crop residue retention on rice yield in China: A meta-analysis., 2013, 154: 188-194.

[79] LI H, ZHANG Y Y, YANG S, WANG Z R, FENG X, LIU H Y, JIANG Y. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season., 2019, 283: 106578.

[80] TAN Y C, WU D, BOL R, WU W L, MENG F Q. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields., 2019, 272: 266-275.

[81] 周珂, 王曉軍, 李華芝, 徐欣, 高洪生, 焦曉光. 秸稈深埋條件下不同施氮水平對(duì)玉米產(chǎn)量和氮吸收利用的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2019, 35(33): 6-11.

ZHOU K, WANG X J, LI H Z, XU X, GAO H S, JIAO X G. The effects of different nitrogen application levels on maize yield and the absorption and utilization of nitrogen under straw deep burial., 2019, 35(33): 6-11. (in Chinese)

[82] DOSSOU-YOVO E R, BRUGGEMANN N, AMPOFO E, IGUE A M, JESSE N, HUAT J, AGBOSSOU E K. Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin., 2016, 163: 152-159.

[83] ZHAO S C, HE P, QIU S J, JIA L L, LIU M C, JIN J Y, JOGNSTON A M. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China., 2014, 169: 116-122.

[84] 蓋鈞鎰, 劉康, 趙晉銘. 中國(guó)作物種業(yè)科學(xué)技術(shù)發(fā)展的評(píng)述. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(17): 3303-3315.

GAI J Y, LIU K, ZHAO J M. A Review on Advances in Science and Technology in Chinese Seed Industry., 2015, 48(17): 3303-3315. (in Chinese)

[85] ZHENG L, WU W L, WEI Y P, HU K L. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China., 2015, 145: 78-86.

[86] ZHANG Z Q, QIANG H J, MCHUGH A D, HE J, LI H W, WANG Q J, LU Z Y. Effect of conservation farming practices on soil organic matter and stratification in a mono-cropping system of Northern China., 2016, 156: 173-181.

[87] LI Z, YANG X, CUI S, YANG Q, YANG X L, LI J C, SHEN Y Y. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative., 2018, 222(4): 164-179.

[88] XU X, PANG D W, CHEN J, LUO Y L, ZHENG M J, YIN Y P, LI Y X, LI Y, WANG Z L. Straw return accompany with low nitrogen moderately promoted deep root., 2018, 221: 71-80.

[89] GAO F, LI B, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of residue management strategies on greenhouse gases and yield under double cropping of winter wheat and summer maize., 2019, 687: 1138-1146.

[90] WANG X J, JIA Z K, LIANG L Y, ZHAO Y F, YANG B P, DING R X, WANG J P, NIE J F. Changes in soil characteristics and maize yield under straw returning system in dryland farming.earch, 2018, 218: 11-17.

[91] 黃界潁, 武修遠(yuǎn), 佟影影, 曹森, 高越, 楊卉艷.小麥秸稈還田量對(duì)土壤Cd有效性及水稻Cd亞細(xì)胞分布的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2020, 39(7): 1503-1511.

HUANG J Y, WU X Y, TONG Y Y, CAO S, GAO Y, YANG H Y. Effects of returning wheat straw on available cadmium and subcellular distribution of cadmium in rice., 2020, 39(7): 1503-1511. (in Chinese)

[92] 段桂蘭, 王芳, 岑況, 王伯勛, 程旺大, 劉躍川, 張紅梅. 秸稈還田對(duì)水稻鎘積累及其亞細(xì)胞分布的影響. 環(huán)境科學(xué), 2017, 38(9):3927-3936.

DUAN G L, WANG F, CEN K, WANG B X, CHENG W D, LIU Y C, ZHANG H M. Effects of straw incorporation on cadmium accumulation and subcellular distribution in rice., 2017, 38(9): 3927-3936. (in Chinese)

[93] 胡明芳, 趙振勇, 張科. 周年秸稈還田量對(duì)南方雙季稻生長(zhǎng)及產(chǎn)量的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2020, 36(4): 1-6.

HU M F, ZHAO Z Y, ZHANG K.Effect of annual straw returning amount on growth and yield of double cropping rice in south China., 2020, 36(4): 1-6. (in Chinese)

Effects of Main Food Yield under Straw return in China:A Meta-analysis

YANG JunHao, LUO YongLi, CHEN Jin, JIN Min, WANG ZhenLin, LI Yong

(Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong)

【】In order to provide scientific grounds for the implementation of grain crop straw return, this study quantified the yield effect of straw return.【】It was collected and sorted out the published Chinese literatures in the past 30 years (a total of 274 piece of literature and 1 930 pairs data until December 31, 2019). By using meta-analysis method, the comprehensive effect of straw returning on crop yield was clarified with the main analysis process, included calculation of effect value, heterogeneity test, meta-subgroup analysis and publication bias test. And then, the effects under different experiment region, average annual temperature, average annual precipitation, soil texture, soil pH, crop type, planting system, tillage method, fertilization method, experiment duration and return amount was further quantitatively analyzed.【】Compared with straw remove, straw return significantly increased crop yield, and the average increasing rate was about 8.06%, with a 95% confidence interval of 7.52%-8.60%. No publication bias was found in the result. The yield effect was the highest in the southeastern region, reaching 9.37% (95% CI: 8.11%-10.64%). The straw-return effect was higher when the average annual temperature was 5-10 °C and the average annual precipitation is more than 1 200 mm. In different soil texture, the yield effect of straw return was 8.13% in clay (95% CI: 6.80%-9.49%), 9.04% in loam (95% CI: 8.06%-10.01%) and 6.96% in sandy soils (95% CI: 5.18%-8.77%), respectively. Among the three types of grain crops, namely, wheat, corn, and rice, the increase rate of yield on maize reached 9.22% (95% CI: 8.38%-10.05%) by straw returning. Plowing and no-till was the best tillage methods exerting the yield effect of straw returning, the increasing rate of yield were 11.05% (95% CI: 10.05%-12.05%) and 8.98% (95% CI: 7.21%-10.79%), respectively. When the straw was returned to the field without fertilization, the crop yield was significantly increased with an increase rate of 25.66% (95% CI: 22.04%-29.38%), which was significantly higher than that of 8.08% (95% CI: 7.50%-8.68%) under normal fertilization, but the overall yield level was lower. The yield increase rate of straw mulching reached 9.56% and the yield increase effect of straw mulching over 20 years was significantly increased (yield increase rate: 15.42%, 95% CI: 11.05%-19.95%). In addition, the most suitable amount of straw was half of the ex-crop (increase rate of yield was 9.09%, 95% CI: 7.41%-10.79%).【】Straw return could significantly increase crop yield in different agricultural production areas. Furthermore, the long-term implication of crop straw with no-till or plowing tillage, normal fertilization and appropriate amount, could maintain continuous increase in crop yield.

straw return; China; crop; yield effect; meta-analysis

10.3864/j.issn.0578-1752.2020.21.010

2020-05-14;

2020-07-30

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0301001,2016YFD0300400)

楊竣皓,E-mail:1023932708@qq.com。通信作者李勇,E-mail:woooowo@126.com

(責(zé)任編輯 楊鑫浩)

猜你喜歡
增產(chǎn)率農(nóng)作物作物
高溫干旱持續(xù) 農(nóng)作物亟須“防護(hù)傘”
俄發(fā)現(xiàn)保護(hù)農(nóng)作物新方法
夏季農(nóng)作物如何防熱害
厲害了!農(nóng)作物“喝”上環(huán)保酵素
專題性作物博物館的興起與發(fā)展
作物遭受霜凍該如何補(bǔ)救
四種作物 北方種植有前景
流翔高鈣作物葉片管理技術(shù)
有機(jī)肥在辣椒上的應(yīng)用效果試驗(yàn)
復(fù)合微生物肥料在水稻生產(chǎn)上的應(yīng)用效果分析
教育| 永城市| 吉首市| 封丘县| 成安县| 渝北区| 尉氏县| 峨眉山市| 石台县| 聂荣县| 北宁市| 平武县| 西乌| 青岛市| 德保县| 汉阴县| 静安区| 双辽市| 大丰市| 法库县| 临安市| 永丰县| 辽源市| 西安市| 全南县| 哈密市| 宝鸡市| 广东省| 乡宁县| 裕民县| 常宁市| 彰化县| 来凤县| 屏边| 南昌市| 景宁| 建平县| 漳平市| 安多县| 璧山县| 马龙县|