張歡歡,崔貴梅,王長(zhǎng)彪,王曉清,郝曜山,杜建中,王亦學(xué),孫毅
玉米雄性不育系晉玉1A的選育及其特性
張歡歡1,崔貴梅2,王長(zhǎng)彪1,王曉清1,郝曜山1,杜建中1,王亦學(xué)1,孫毅1
(1山西農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院/農(nóng)業(yè)部黃土高原作物基因資源與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,太原 030031;2山西大豐種業(yè)有限公司,太原 030031)
【】利用分子生物學(xué)和細(xì)胞學(xué)方法確定晉玉1A的雄性不育類型,鑒定玉米種質(zhì)資源對(duì)該不育系的恢保關(guān)系,并測(cè)定其一般配合力和特殊配合力,為應(yīng)用晉玉1A雄性不育系開展雜交育種工作提供依據(jù)。在海南樂東、山西晉中、忻州和運(yùn)城,調(diào)查晉玉1A連續(xù)3年田間的育性;對(duì)晉玉1A與鄭58的雄花、花藥、花粉進(jìn)行觀察比較;對(duì)晉玉1A與昌7-2雜交F1代的花粉進(jìn)行I2-KI染色觀察;用專性PCR方法對(duì)晉玉1A的不育類型進(jìn)行鑒定;以晉玉1A作母本,與158個(gè)自交系進(jìn)行測(cè)配,對(duì)F1代進(jìn)行田間育性調(diào)查,以篩查與之適配的恢復(fù)系與保持系;對(duì)以晉玉1A配制的可育雜交種F2代群體和BC1群體,進(jìn)行育性調(diào)查;對(duì)晉玉1A及鄭58與10個(gè)玉米自交系雜交F1代的籽粒產(chǎn)量性狀進(jìn)行一般配合力和特殊配合力分析。晉玉1A在以上4個(gè)地點(diǎn),連續(xù)3年的田間不育性狀保持穩(wěn)定。晉玉1A與鄭58的雄花外形相似,但其穎殼不開裂,花藥不外露,無花粉散出。I2-KI染色表明,晉玉1A的花粉完全敗育。對(duì)晉玉1A與昌7-2雜交F1代植株花粉的顯微觀察表明,64.4%的花粉粒能夠被I2-KI正常染色,35.6%花粉粒敗育,說明該不育系屬于配子體不育類型。經(jīng)專性PCR鑒定,晉玉1A和昌7-2的細(xì)胞質(zhì)都屬于S型雄性不育細(xì)胞質(zhì)類型。昌7-2核基因組攜帶恢復(fù)基因,掩蓋了其細(xì)胞質(zhì)雄性不育的表型。鄭用璉等設(shè)計(jì)的專性鑒定引物特異性更強(qiáng)。在以晉玉1A作母本進(jìn)行測(cè)配的158個(gè)自交系中,鑒定出96個(gè)保持類型,47個(gè)恢復(fù)類型和15個(gè)半恢復(fù)類型。在以晉玉1A配制的可育雜交種F2代群體中,存在3.1%—8.7%的不育株,表明恢復(fù)系中存在微效恢復(fù)基因。晉玉1A和鄭58分別與10個(gè)自交系配制的同父異母雜交種之間籽粒產(chǎn)量差異不顯著;對(duì)這些雜交種F1代配合力分析表明,晉玉1A的一般配合力略高于鄭58。晉玉1A屬于S型胞質(zhì)雄性不育系,其不育性狀穩(wěn)定,花粉完全敗育,在現(xiàn)有玉米種質(zhì)資源中有一定量的恢復(fù)與保持類型材料。它與昌7-2雜交的F1代植株能夠產(chǎn)生正常雄穗并散出可育花粉。微效恢復(fù)基因的存在使得花粉可染率向可育方向偏移,并導(dǎo)致F2群體中出現(xiàn)不育株。用晉玉1A和鄭58分別與相同父本配制的雜交種間的產(chǎn)量均無顯著差異,晉玉1A的一般配合力比鄭58略高,可以在玉米雜交種選配中使用,也可用于轉(zhuǎn)育新的不育系。
玉米;雄性不育;恢復(fù)基因;配合力
【研究意義】作物的雄性不育性狀在雜種優(yōu)勢(shì)利用中具有重要的作用。迄今為止,已經(jīng)有許多玉米不育系材料被發(fā)現(xiàn),但受小斑病?;秩尽⑿刍ㄓ圆环€(wěn)定、恢復(fù)基因種質(zhì)狹窄等問題影響,能在生產(chǎn)上應(yīng)用的卻很少。玉米雜種優(yōu)勢(shì)的生產(chǎn)利用雖然可以通過母本自交系去雄來實(shí)現(xiàn),但該方式需要耗費(fèi)大量的人力、物力,增加了制種的成本。創(chuàng)造和挖掘新的敗育穩(wěn)定、無專性致病菌侵染的不育系是許多玉米育種工作者的重要目標(biāo)之一[1]?!厩叭搜芯窟M(jìn)展】早在20世紀(jì)60年代,基于細(xì)胞質(zhì)雄性不育系(cytoplasmic male sterility,CMS)的育種技術(shù)就在玉米雜交種生產(chǎn)過程中得到了廣泛應(yīng)用。依據(jù)雄花育性恢復(fù)的專效性,玉米的細(xì)胞質(zhì)雄性不育類型劃分為3種類型:CMS-T型(Texas)、CMS-S型(USDA)和CMS–C型(Charrua)。S型不育系是3個(gè)類型中最大的類型,中國(guó)育成的雄性不育系大多屬于S型。S型屬于配子體不育,雄花敗育不如T型、C型徹底。目前,T型和C型不育系均有被小斑病菌侵染的報(bào)道,但尚未發(fā)現(xiàn)專門針對(duì)S型不育系的致病菌[2]。對(duì)線粒體基因組的測(cè)序表明,植物的細(xì)胞質(zhì)雄性不育性狀多由線粒體基因組重組產(chǎn)生的特殊嵌合基因?qū)е耓3]。玉米CMS-S型不育系在花粉形成的小孢子體成熟階段大量表達(dá)一個(gè)1.6 kb的線粒體轉(zhuǎn)錄本,導(dǎo)致花粉敗育。這段轉(zhuǎn)錄本含有2個(gè)嵌合基因和[3-5]。線粒體重組導(dǎo)致的雄性不育能夠被特殊的核基因——恢復(fù)基因(fertility restorer,)恢復(fù),其在不育系應(yīng)用中具有重要意義。CMS-S型不育系具有1個(gè)主恢復(fù)基因,定位在第2染色體長(zhǎng)臂上,前人用不同的群體進(jìn)行了多次定位,目前仍未確定的信息[6-8],與其連鎖最緊密的2個(gè)分子標(biāo)記間的物理距離仍有1.4 Mb,對(duì)該基因克隆的難度還很大[9]。此外,在多個(gè)材料中還發(fā)現(xiàn)多個(gè)具有恢復(fù)能力的基因分布在玉米的多條染色體上[10-13]。【本研究切入點(diǎn)】目前,已有多種細(xì)胞質(zhì)雄性不育系被發(fā)現(xiàn)和應(yīng)用,但有限的不育細(xì)胞質(zhì)資源一定程度上限制了不育系在玉米雜種優(yōu)勢(shì)育種中的應(yīng)用。【擬解決的關(guān)鍵問題】本研究通過對(duì)細(xì)胞質(zhì)雄性不育系——晉玉1A的農(nóng)藝性狀、不育系類型、配套的保持系與恢復(fù)系鑒定、F2代群體的育性分離特征、雜交種配合力測(cè)定等方面進(jìn)行研究,為應(yīng)用晉玉1A雄性不育系開展雜交育種工作提供依據(jù)。
以昌7-2為母本,鄭58為父本進(jìn)行雜交,然后以鄭58為父本,對(duì)雜交后代進(jìn)行連續(xù)回交,在回交6代后獲得整齊不分離的不育株系,即((昌7-2×鄭58)×鄭58×鄭58……)BC6得到不育系,將此不育系命名為晉玉1A。
試驗(yàn)于2016—2018年在山西省晉中市山西省農(nóng)業(yè)科學(xué)院東陽基地、海南樂東縣山西省農(nóng)業(yè)科學(xué)院南繁基地、山西省運(yùn)城市棉花研究所試驗(yàn)基地和山西省忻州市玉米研究所試驗(yàn)基地進(jìn)行。
盛花期時(shí),取鄭58、晉玉1A、晉玉1A×昌7-2、鄭58×昌7-2的雄花穗,用鑷子剝開小花穎殼,露出花藥并擠出花粉,用0.5% I2-KI溶液染色,在OLYMPUS SZ×16體視顯微鏡下觀察拍照。
在3葉期時(shí),取晉玉1A、鄭58、昌7-2、JnA、B73的葉片,采用CTAB法提取玉米基因組DNA。其中,鄭58為晉玉1A的保持系,昌7-2為晉玉1A的細(xì)胞質(zhì)來源,B73為陰性對(duì)照,JnA為CMS-S型雄性不育系的陽性對(duì)照(由山西省農(nóng)業(yè)科學(xué)院高粱研究所在1996年發(fā)現(xiàn)的玉米不育系材料)。經(jīng)過專效恢復(fù)系分組鑒定、細(xì)胞學(xué)形態(tài)觀察、F1代花粉染色觀察,確定JnA為S型細(xì)胞質(zhì)雄性不育[14-15]。參照Liu等[16]方法設(shè)計(jì)CMS專性鑒定引物CMST-F/R、CMSC-F/R和CMSS-F/R;參照鄭用璉等[17]專利設(shè)計(jì)玉米CMS專性鑒定引物CMST-1/2、CMSC-1/2和CMSS-1/2(表1)。PCR反應(yīng)體系為10×Buffer 2 μl、2.5 mmol·L-1dNTPs 2 μl、10 mmol·L-1引物各0.6 μl、Taq酶0.3 μl、DNA模板2 μl,加ddH2O至20 μl。反應(yīng)程序?yàn)?4℃ 2 min;94℃ 30 s,60℃ 30 s,72℃ 1 min,30個(gè)循環(huán);72℃ 10 min,4℃保存。用1.5%瓊脂糖凝膠電泳檢測(cè)PCR產(chǎn)物。
以晉玉1A為母本,與其他158份玉米自交系雜交,將雜交種按穗行播種,在花期鑒定F1代植株雄花的育性。參照Duvick[18]的育性鑒定方法,在散粉結(jié)束時(shí)根據(jù)花藥的外露程度將育性分為0—5級(jí)。F1代為0—1級(jí)的植株,其父本判定為保持類型;F1代為4—5級(jí)的植株,其父本判定為恢復(fù)類型;其余的父本判定為半恢復(fù)類型。
表1 玉米CMS專性鑒定引物
將晉玉1A×昌7-2、晉玉1A×G155和晉玉1A×昌7-2無葉舌F1代植株分別進(jìn)行自交,在F2代群體散粉期調(diào)查單株雄穗的開花、散粉情況。將穎殼張開、有花粉散出的定義為可育株,將穎殼不張開、無花粉散出的定義為不育株。同時(shí)對(duì)(昌7-2×鄭58)×鄭58的BC1代群體進(jìn)行雄花的育性調(diào)查。
以晉玉1A和鄭58為母本,分別與10個(gè)玉米自交系(PH4CV、PHB1M、PH6WC、B73、L269、Mo17、昌7-2、G154、G30和G31)進(jìn)行不完全雙列雜交,配制20個(gè)雜交組合。2016年在晉中試驗(yàn)地春播,按小區(qū)(2.25 m×5 m)播種,行距45 cm,株距41.7 cm,每行12株,每小區(qū)6行,種植密度約64 000株/hm2,設(shè)3次重復(fù)。成熟后,收獲中間2行進(jìn)行測(cè)產(chǎn)。用谷物水分儀測(cè)量水分,按14%的含水分折算每公頃產(chǎn)量。采用R軟件V3.6.0版本進(jìn)行數(shù)據(jù)分析[19],采用ggplot2包繪圖[20]。根據(jù)田間產(chǎn)量進(jìn)行配合力方差分析,進(jìn)一步評(píng)估籽粒產(chǎn)量性狀的一般配合力(general combining ability,GCA)和特殊配合力(specific combining ability,SCA)。
晉玉1A在晉中地區(qū)春播生育期130 d左右,平均株高154.2 cm,平均穗位高63 cm,15—16片葉,葉色淡綠,葉片較窄,穗位以上葉片上沖,而葉尖輕度下垂。雄穗分枝4—6個(gè)且與主軸夾角極小。果穗柄較短,與莖夾角小,黃綠色花絲,平均穗長(zhǎng)17.1 cm,穗行數(shù)14—16行,白軸,籽粒桔黃色偏硬粒型,千粒重320 g左右,品質(zhì)好,無專性感病。
晉玉1A雄花外形與鄭58雄花相似,花藥不開裂,無花粉散出。偶爾可見有一兩朵小花穎殼張開,但未見花藥伸出(圖1-1)。剝開穎殼觀察,晉玉1A花藥個(gè)數(shù)與鄭58無差異,但晉玉1A花藥干癟,花粉粒少,I2-KI染色無明顯反應(yīng)(圖1-2)。晉玉1A的花粉粒經(jīng)I2-KI溶液染色后,呈棕黃色(圖1-3),正常玉米花粉呈深黑色(圖1-4)。
晉玉1A×昌7-2的花粉經(jīng)I2-KI溶液染色后,部分花粉不能被染色(圖2-A)。鄭58×昌7-2的花粉經(jīng)I2-KI溶液染色后,幾乎所有花粉均能被染色(圖2-B)。統(tǒng)計(jì)5個(gè)視野下共379粒晉玉1A×昌7-2的花粉,其中244粒能被正常染色,135?;ǚ壑荒苡^察到不規(guī)則形狀的花粉壁而不能被正常染色。其中,正?;ǚ壅?3.4%,花粉可染率進(jìn)行χ2檢驗(yàn),結(jié)果表明,其不符合1﹕1的分離比例。雖然晉玉1A與恢復(fù)系的F1代花粉可染率偏離了50%,但能夠觀察到花粉壁,符合配子體不育的特征,仍可以判定晉玉1A屬于CMS-S型不育系。
根據(jù)專性PCR鑒定結(jié)果(圖3),CMSS-F/R與CMSS-1/2 2對(duì)引物均支持晉玉1A為CMS-S類型,同時(shí),CMSC-F/R引物在JnA、晉玉1A與鄭58中存在非特異性擴(kuò)增條帶;CMST-F/R與CMST-1/2均不支持晉玉1A為CMS-T類型。綜上所述,晉玉1A屬于S型不育系,昌7-2也具有S型雄性不育細(xì)胞質(zhì)特征。晉玉1A的S型細(xì)胞質(zhì)來源于昌7-2而非自然突變。
通過對(duì)158份自交系與晉玉1A雜交后代的育性恢復(fù)調(diào)查,結(jié)果表明,47個(gè)為恢復(fù)類型,96個(gè)為保持類型,還有15個(gè)為半恢復(fù)類型。
通過對(duì)(昌7-2×鄭58)×鄭58 BC1回交群體的調(diào)查發(fā)現(xiàn),48株的群體中有25株不育株,經(jīng)χ2檢驗(yàn),不育株與可育株的分離比例,符合1﹕1的期望值,表明昌7-2具有1個(gè)恢復(fù)基因。但是對(duì)4個(gè)F2代群體的雄花育性調(diào)查表明,在F2代群體中存在育性恢復(fù)不徹底的現(xiàn)象,不育株出現(xiàn)的比例為3.4%—8.7%(表2)。
以晉玉1A與鄭58為母本,分別與10個(gè)玉米自交系(PH4CV、PHB1M、PH6WC、B73、L269、Mo17、昌7-2、G154、G30和G31)進(jìn)行不完全雙列雜交,每個(gè)組合設(shè)3個(gè)區(qū)組重復(fù)測(cè)產(chǎn)(圖4)。鄭58×G31的產(chǎn)量最高,為14 062.64 kg·hm-2,較生產(chǎn)上常用的雜交種鄭58×昌7-2(13 553.69 kg·hm-2)提高了3.76%。晉玉1A×L269產(chǎn)量為13 768.04 kg·hm-2,較生產(chǎn)上常用的雜交種鄭58×昌7-2提高了1.58%,較鄭58×L269(13 084.98 kg·hm-2)產(chǎn)量提高了5.22%。T測(cè)驗(yàn)表明,晉玉1A、鄭58與相同父本配制的雜交種間的產(chǎn)量均無顯著差異。需要說明的是,利用晉玉1A配制的雜交組合中,只有昌7-2為父本的組合育性恢復(fù)完全。以PH4CV為父本的組合有部分植株的花藥伸出,但花粉很少,其余的組合均為雄性不育。
1:雄花;2:花藥;3:晉玉1A的花粉粒;4:鄭58的花粉粒。A:晉玉1A;B:鄭58
M:Marker 2000;1—3:B73(陰性對(duì)照);4—6:JnA(陽性對(duì)照);7—9:晉玉1A;10—12:昌7-2(晉玉1A的細(xì)胞質(zhì)來源);13—15:鄭58(晉玉1A的保持系)
圖4 以晉玉1A與鄭58分別為母本配制雜交種的產(chǎn)量比較
通過對(duì)以晉玉1A與鄭58分別為母本配制雜交種的產(chǎn)量進(jìn)行方差分析(表3),結(jié)果表明,不同雜交組合的產(chǎn)量在父本間的差異達(dá)到極顯著水平,而在母本和父母本互作間的差異不顯著。
通過對(duì)父母本的一般配合力及效應(yīng)值進(jìn)行估算(表4),結(jié)果表明,母本中晉玉1A的一般配合力(114.51)比鄭58高(-114.51)。父本材料中L269、G31、PHB1M、PH6WC和昌7-2的一般配合力均為正值,分別為1 307.86、1 133.71、932.83、872.56和705.11,其中L269的一般配合力最高。
表3 雜交種產(chǎn)量的方差分析
**在<0.01水平時(shí)差異極顯著 ** significant difference at<0.01
表4 自交系的一般配合力及效應(yīng)值
通過對(duì)雜交種的特殊配合力及特殊配合力效應(yīng)值進(jìn)行估算(表5),鄭58×G31與鄭58×昌7-2的特殊配合力最高,分別為924.79和844.44,一般配合力對(duì)于產(chǎn)量的貢獻(xiàn)相對(duì)較大。
表5 晉玉1A與鄭58配制的雜交組合的特殊配合力
在玉米細(xì)胞質(zhì)雄性不育系研究中,確定雄性不育細(xì)胞質(zhì)的類型非常重要。對(duì)于玉米雄性不育細(xì)胞質(zhì)類型的鑒定方法主要有大田育性恢復(fù)專效性鑒定[21]、線粒體DNA鑒定法[22]、細(xì)胞學(xué)差異比較以及專性PCR檢測(cè)法[16-17]。其中,專性PCR檢測(cè)從導(dǎo)致細(xì)胞質(zhì)雄性不育的基因入手,來揭示材料歸屬,是最可靠方便的方法。專性PCR檢測(cè)法具有快速、簡(jiǎn)便、準(zhǔn)確的特點(diǎn),許多研究已經(jīng)利用該技術(shù)成功進(jìn)行了不育系類型鑒定,結(jié)果與傳統(tǒng)的恢復(fù)專效性鑒定結(jié)果相符[23-26]。此外,田紅麗等[27]還針對(duì)玉米S型不育系開發(fā)葉綠體InDel標(biāo)記。
為了鑒定晉玉1A所屬的細(xì)胞質(zhì)雄性不育類型,本研究用了2套不同的引物進(jìn)行鑒定,其中Liu等[16]的專性鑒定引物(CMSC-F/R、CMST-F/R和CMSS- F/R)CMSC-F/R產(chǎn)生了非特異性擴(kuò)增,造成了晉玉1A屬于CMS-C型的誤判。通過比較回交母本與父本材料,以及鄭用璉等[17]的專性鑒定引物(CMSC-1/2、CMST-1/2和CMSS-1/2)的PCR結(jié)果,推測(cè)晉玉1A屬于CMS-S型細(xì)胞質(zhì)雄性不育類型。
陳偉等[24]研究發(fā)現(xiàn)CMS-T Mo17(CMS-T型)、CMS Tangxu Mo17(CMS-S型)、CMS-P POP(CMS-S型)、POP(N型)、Mo17(N型)在使用CMSC-F/R引物擴(kuò)增時(shí)均出現(xiàn)了非特異性條帶,該條帶與CMS-C Mo17(CMS-C型)的特異性條帶大小非常接近。孫麗芳等[25]發(fā)現(xiàn)T103(CMS-T型)、HD103、85218B在使用CMSC-F/R引物擴(kuò)增時(shí)也出現(xiàn)了非特異性條帶。由此可以看出,如果缺乏CMS-C型的陽性對(duì)照,CMSC-F/R引物的擴(kuò)增結(jié)果非常容易造成誤判。而鄭用璉等[17]設(shè)計(jì)的特異性PCR引物特異性更好,結(jié)果更準(zhǔn)確,建議作為以后玉米細(xì)胞質(zhì)雄性不育類型鑒定的標(biāo)準(zhǔn)引物使用。通過將晉玉1A與昌7-2的PCR結(jié)果比較,可以看到晉玉1A的細(xì)胞質(zhì)不育類型與昌7-2一致,說明晉玉1A的不育性不是在連續(xù)回交過程中產(chǎn)生突變?cè)斐傻?,而是利用?8連續(xù)回交造成了昌7-2恢復(fù)基因的丟失,導(dǎo)致晉玉1A雄性不育。昌7-2雖然攜帶S型細(xì)胞質(zhì)不育基因,但由于其本身具有恢復(fù)基因,掩蓋了其細(xì)胞質(zhì)雄性的性狀,結(jié)果表明,通過對(duì)自交材料的特異性PCR檢測(cè)可以篩選具有細(xì)胞質(zhì)不育基因的材料。
細(xì)胞學(xué)研究表明,CMS-C和CMS-T為孢子體不育,屬于無花粉類型,而CMS-S型為配子體不育,花粉敗育發(fā)生在二核后期,在花粉完全充實(shí)之前,花粉粒內(nèi)含物消失,只留下花粉壁[28]。CMS-C和CMS-T型不育系與其恢復(fù)系雜交的F1代花粉表現(xiàn)為全可育;CMS-S型不育系與其恢復(fù)系雜交的F1代植株的花粉粒理論上應(yīng)出現(xiàn)50%的不育。晉玉1A×昌7-2雜交F1代的花粉經(jīng)I2-KI染色后觀察到不能被染色的敗育花粉粒占35.6%,基本符合CMS-S型F1代花粉半不育的特征。但其花粉可染率不符合50%的理論值。這種偏分離現(xiàn)象也出現(xiàn)在Mo17cms-Tangxu、PoPcms-P等CMS-S型不育系的F1代中,受基因型和環(huán)境因素影響,使得S型不育系F1代的花粉可染率向可育方向發(fā)生了一定程度的偏移[24]。
玉米細(xì)胞質(zhì)雄性不育恢復(fù)基因的克隆工作難度較大,3種細(xì)胞質(zhì)不育類型中只有CMS-T型的恢復(fù)基因被克隆[29]。CMS-S型雄性不育系的恢復(fù)基因主效是,其被定位在第2染色體長(zhǎng)臂上,距離whp1與BNL17.14標(biāo)記6.4 cM的位點(diǎn)上[30]。許多學(xué)者投入大量工作進(jìn)行的定位工作[6-8, 11],目前,最接近的標(biāo)記為A165與CG2,2個(gè)標(biāo)記間的物理距離約為1.4 Mb,但對(duì)于的克隆難度依然很大[9]。
CMS-S型雄性不育系的育性恢復(fù)機(jī)制是復(fù)雜的,除了主效基因外,還有多個(gè)基因參與。鐵雙貴[31]曾檢測(cè)到6個(gè)對(duì)育性有顯著效應(yīng)的QTL,其中有4個(gè)位于第2染色體長(zhǎng)臂,在位點(diǎn)附近還有2個(gè)效應(yīng)顯著的QTL位點(diǎn)。此外,在第9染色體與第6染色體上也分別檢測(cè)到2個(gè)QTL位點(diǎn)。Susan等[10]對(duì)51個(gè)含有等位基因的材料進(jìn)行評(píng)估,將其中42個(gè)材料的等位基因定位于第2染色體長(zhǎng)臂上,但仍有9個(gè)等位基因定位在其他染色體上。Feng等[12]GWAS分析表明,來自不同染色體上的多個(gè)SNP位點(diǎn)與S型不育系的育性恢復(fù)相關(guān)。Su等[32]通過BSR-RNA-seq的方法將部分育性恢復(fù)的微效基因定位至第2染色體的短臂上的5個(gè)區(qū)段。GABAY-LAUGHNAN等[33]通過篩選轉(zhuǎn)座子庫,發(fā)現(xiàn)了10獨(dú)立的含有恢復(fù)基因的突變體,這些突變體中許多存在種子致死表型,這些突變體具有一致的特征:核基因編碼的細(xì)胞色素氧化酶豐度增加,而線粒體編碼的ATP合酶1亞基的含量降低。
晉玉1A的F2代群體中出現(xiàn)了少量的不育株,侯愛斌等[15]在JnA×恢313的F2代中也觀察到了不育株的出現(xiàn)。這是由于微效恢復(fù)基因的存在使得F1植株中具有基因型的配子成為可育配子,產(chǎn)生F1代花粉可染率向可育方向偏移[31]。基因型可育配子參與受精影響了F2群體的基因型,微效恢復(fù)基因不能夠或者不能單獨(dú)使基因型不育系恢復(fù)育性,從而造成晉玉1A與恢復(fù)系雜交后的F2群體會(huì)出現(xiàn)一定比例的不育株。
在雄性不育性狀利用方面,不育系的配合力低及育性不穩(wěn)定等問題是育種中的主要問題[34]。本研究表明,晉玉1A均不存在以上問題,能夠應(yīng)用于玉米制種。首先,晉玉1A不育性狀能穩(wěn)定保持,不受環(huán)境影響,能夠作為雜交育種的母本使用。其次,晉玉1A與恢復(fù)系的F1雜交種育性完全恢復(fù),花粉半可育。配合力測(cè)定表明,晉玉1A的一般配合力比鄭58略高,其與保持系鄭58作母本與不同父本配制的雜交種產(chǎn)量無明顯差異,與B73、G154、G30配制的雜交種較鄭58配制的同型雜交種產(chǎn)量均值提高幅度在10%以上。
此外,在生產(chǎn)田中有意引入不育株也有增產(chǎn)的作用。劉春增等[35]利用雄性不育系或者人工去雄均能夠達(dá)到增加小區(qū)產(chǎn)量的目的,玉米在雄穗的散粉期,也是雌穗發(fā)育需要養(yǎng)分的重要時(shí)期,利用不育基因來減少其花粉發(fā)育對(duì)植株體內(nèi)的養(yǎng)分消耗,無疑是很好的增產(chǎn)措施。馬沖[36]試驗(yàn)也取得了相似的結(jié)論,并提出1﹕3的最佳比例,將不育雜種與可育雜交種混合,既滿足不育株和可育株對(duì)花粉的需要,又最大限度地發(fā)揮雄性不育的增產(chǎn)作用。具有S型恢復(fù)基因的玉米自交系的種質(zhì)資源相對(duì)較少,配制完全可育的雜交種需要對(duì)父本材料進(jìn)行連續(xù)多代回交轉(zhuǎn)育,摻合型的栽培方式有利于加快晉玉1A不育系的推廣應(yīng)用。隨著主推品種雄穗大小越來越小,雜交種自身的花粉量已經(jīng)很小,需要注意防范大田玉米授粉期受氣候異常、病蟲害等外界因素導(dǎo)致的花期不育、授粉不充分等風(fēng)險(xiǎn)。
晉玉1A的育性穩(wěn)定,花藥不外露,花粉完全敗育,無育性恢復(fù)風(fēng)險(xiǎn),屬于S型胞質(zhì)互作不育類型。晉玉1A有合適的保持系與恢復(fù)系,鄭58能夠作為它的保持系,而它與昌7-2及其衍生系雜交F1的植株能夠正常開花散粉,育性恢復(fù)。因此,昌7-2系列的玉米自交系可以作它的恢復(fù)系。昌7-2不僅具有主效恢復(fù)基因,還有微效恢復(fù)基因,導(dǎo)致花粉可染率向可育方向偏移。晉玉1A、鄭58與相同父本配制的雜交種間的產(chǎn)量均無顯著差異,晉玉1A的一般配合力比鄭58略高,可以用于選配新的雜交種和轉(zhuǎn)育新的不育系。
[1] 李小琴, 劉紀(jì)麟, 萬邦惠, 鄭用璉, 李建生, 徐尚忠, 季世國(guó). 玉米新不育胞質(zhì)WBMs的利用潛力研究. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(8): 1099-1103.
Li X Q, Liu J L, Wan B H, Zheng Y L, Li J S, Xu S Z, Ji S G. Classification of male sterile cytoplasms of WBMs in maize (L.)., 2004, 37(8): 1099-1103. (in Chinese)
[2] 段柳靜. 玉米C型胞質(zhì)雄性不育育性恢復(fù)主基因的精細(xì)定位[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2009.
Duan L J. Linkage mapping of
[3] Allen J O, Fauron C M, Minx P, Roark L, Oddiraju S, Lin G N, Meyer L, Sun H, Kim K, Wang C. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize., 2007, 177(2): 1173-1192.
[4] Susan G L, Kuzmin E V, Jessica M, Leah R, Newton K J. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize., 2009, 182(182): 91-103.
[5] Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear geneaffects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize., 1997, 147(2): 847-860.
[6] 石永剛, 鄭用璉, 李建生, 劉紀(jì)麟. 玉米S組CMS育性恢復(fù)基因的分子標(biāo)記定位. 作物學(xué)報(bào), 1997, 23(1): 1-6.
Shi Y G, Zheng Y L, Li J S, Liu J L. Mapping CMS-S restores genewith RFLPs and RAPDs., 1997, 23(1): 1-6. (in Chinese)
[7] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to, a fertility restorer gene for S cytoplasmic male sterility in maize., 2006, 276(2): 162-169.
[8] 薛亞東. 玉米S-CMS育性恢復(fù)基因精細(xì)定位和玉米耐旱全基因組關(guān)聯(lián)分析[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2013.
Xue Y D. Fine-mapping of a restorer of fertility gene for S-CMS in maize and genome-wide association study(GWAS) of drought tolerance in maize (L.)[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[9] 李鵬, 肖森林, 王淑霞, 劉娟, 趙賢容, 陳化榜. 玉米S型細(xì)胞質(zhì)雄性不育恢復(fù)基因Rf3的精細(xì)定位及其候選基因預(yù)測(cè). 山東農(nóng)業(yè)科學(xué), 2014, 46(8): 1-5.
Li P, Xiao S L, Wang S X, Liu J, Zhao X R, Chen H B. Fine mapping of fertility restorer gene3 of S-Type cytoplasmic male sterility and candidate gene prediction in maize., 2014, 46(8): 1-5. (in Chinese)
[10] Susan G L, Chase C D, Ortega V M, Liming Z. Molecular-genetic characterization of CMS-S restorer-of-fertility alleles identified in Mexican maize and teosinte., 2004, 166(2): 959.
[11] Tie S, Xia J, Qiu F, Zheng Y. Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping., 2006, 24(1): 71-80.
[12] Feng Y, Zheng Q, Song H, Wang Y, Wang H, Jiang L, Yan J, Zheng Y, Yue B. Multiple loci not onlyinvolved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize., 2015, 128(11): 2341-2350.
[13] 馮陽. 玉米S型細(xì)胞質(zhì)雄性不育育性恢復(fù)基因位點(diǎn)全基因組關(guān)聯(lián)分析研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2015.
Feng Y. Genome-wide association analysis of fertility restoration ability to S type cytoplasmic male sterile in maize[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[14] 侯愛斌, 柳青山, 李團(tuán)銀, 崔貴梅, 侯旭東, 袁愛平. 玉米細(xì)胞質(zhì)不育系JnA的分組鑒定和花粉敗育觀察. 作物學(xué)報(bào), 2004, 30(12): 1278-1280.
Hou A B, Liu Q S, Li T Y, Cui G M, Hou X D, Yuan A P. Observation on pollen abortion and classification of cytoplasmic male sterile inbred JnA in maize., 2004, 30(12): 1278-1280. (in Chinese)
[15] 侯愛斌, 柳青山, 董良利, 李團(tuán)銀, 侯旭東, 梁篤, 段冰. 玉米細(xì)胞質(zhì)雄性不育系JnA的分組鑒定及利用. 華北農(nóng)學(xué)報(bào), 2006, 21(1): 31-34.
Hou A B, Liu Q S, Dong L L, Li T Y, Hou X D, Liang D, Duan B. Application and classification of cytoplasmic male sterile inbred JnA in maize., 2006, 21(1): 31-34. (in Chinese)
[16] Liu Z, Peter S O, Long M, Weingartner U, Kaeser O. A PCR assay for rapid discrimination of cytoplasm types in maize., 2002, 42(2): 566-569.
[17] 鄭用璉, 方明鏡, 張方東, 劉紀(jì)麟. 鑒別玉米細(xì)胞質(zhì)雄性不育材料胞質(zhì)類型的方法:中國(guó), CN1514017. 2004,
Zheng Y L, Fang M J, Zhang F D, Liu J L. Methods to identify cytoplasm types of maize: China, CN1514017. 2004. (in Chinese)
[18] Duvick D N. Allelism and comparative genetics of fertility restoration of cytoplasmically pollen sterile maize., 1956, 41(4): 544.
[19] Team R C. R: A language and environment for statistical computing. 2018, R Foundation for Statistical Computing, Vienna, Austria.
[20] Wickham H.. New York: Springer International Publishing, 2016.
[21] 李小琴, 劉紀(jì)麟, 萬邦惠, 徐尚忠, 季世國(guó). 玉米CMS育性恢復(fù)專效性分類系統(tǒng)的研究. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 1999, 18(3): 1-4.
Li X Q, Liu J L, Wan B H, Xu S Z, Ji S G. Research on the classification system of fertility restorer specific effect of CMS in maize., 1999, 18(3): 1-4. (in Chinese)
[22] 謝友菊, 戴景瑞. 用線粒體DNA鑒定玉米雄性不育細(xì)胞質(zhì)的研究. 遺傳學(xué)報(bào), 1988, 15(5): 335-339.
Xie Y J, Dai J R. Study on identification of male sterile cytoplasma using analysis of mitochondrial DNAs in maize., 1988, 15(5): 335-339. (in Chinese)
[23] 張祖新, 方明鏡, 杜何為, 鄧?yán)蛉? 鄭用璉. 基于PCR技術(shù)的玉米CMS材料胞質(zhì)類型的快速鑒定. 作物學(xué)報(bào), 2005, 31(10): 1386-1388.
Zhang Z X, Fang M J, Du H W, Deng L R, Zheng Y L. The rapid discrimination based on PCR on cytoplasmic types of male sterile line of maize (L.)., 2005, 31(10): 1386-1388. (in Chinese)
[24] 陳偉, 劉占先, 鄂立柱, 楊會(huì), 戴景瑞. 玉米細(xì)胞質(zhì)雄性不育材料CMS-P的胞質(zhì)分類研究. 作物學(xué)報(bào), 2007, 33(2): 196-200.
Chen W, Liu Z X, E L Z, Yang H, Dai J R. Classification of male sterile cytoplasm of CMS-P in maize ()., 2007, 33(2): 196-200. (in Chinese)
[25] 孫麗芳, 鄧杰, 王霞, 趙偉, 楊克軍, 苗興芬, 高樹仁. 玉米細(xì)胞質(zhì)雄性不育系胞質(zhì)類型鑒定及花粉敗育研究. 作物雜志, 2016, 172(3):27-32.
SUN L F, DENG J, WANG X, ZHAO W, YANG K J, MIAO X F, GAO S R. Type Identification of cytoplasmic male sterile line and study of pollen abortion in maize., 2016, 172(3):27-32. (in Chinese)
[26] ZHOU G C, SHI H C, YU X J, YUAN J C, GUO Q, ZHAO C Y, SUN Q, KE Y P. Genetic characterisation and cytological identification of a male sterile mutant in maize (L.)., 2018, 46(2): 344-354.
[27] 田紅麗, 晏朋濤, 王蕊, 楊揚(yáng), 許理文, 易紅梅, 王元東, 宋偉, 席章營(yíng), 趙久然, 王鳳格. 基于葉綠體InDel標(biāo)記對(duì)玉米S型胞質(zhì)不育制種鑒定的研究. 玉米科學(xué), 2019, 27(2): 53-60, 68.
Tian H L, Yan P T, Wang R, Yang Y, Xu L W, Yi H M, Wang Y D, Song W, Xi Z Y, Zhao J R, Wang F G. Identification of maize S-type cytoplasmic male sterile (CMS) using two chloroplast inDel markers in seed production., 2019, 27(2): 53-60, 68. (in Chinese)
[28] 夏濤, 劉紀(jì)麟. 玉米細(xì)胞質(zhì)雄性不育的細(xì)胞學(xué)研究. 作物學(xué)報(bào), 1989, 15(2): 97-103.
Xia T, Liu J L. The cytological study of cytoplasmic male sterility in maize., 1989, 15(2): 97-103. (in Chinese)
[29] WAN X, WU S, LI Z, DONG Z, AN X, MA B, TIAN Y, LI J. Maize genic male-sterility genes and their applications in hybrid breeding: Progress and perspectives., 2019,12(3): 321-342.
[30] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus () and aberrant pollen transmission of the nonrestoringallele., 1997, 95(4): 525-531.
[31] 鐵雙貴. 玉米S組CMS育性不穩(wěn)定現(xiàn)象遺傳與基因定位[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2000.
Tie S G. Genetic genome-wide analysis of maize S-CMS unstable fertility restoration based on QTL mapping[D]. Wuhan: Huazhong Agricultural University, 2000. (in Chinese)
[32] Su A, Song W, Xing J, Zhao Y, Zhang R, Li C, Duan M, Luo M, Shi Z, Zhao J. Identification of genes potentially associated with the fertility instability of S-Type cytoplasmic male sterility in maize via bulked segregant RNA-Seq., 2016, 11(9): e0163489.
[33] GABAY-LAUGHNAN S, SETTLES A M, HANNAH L C, PORCH T G, BECRAFT P W, MCCARTY D R, KOCH K E, ZHAO L, KAMPS T L, CHAMUSCO K C, CHASE C D. Restorer-of-fertility mutations recovered in transposon-active lines of S male-sterile maize., 2018, 8(1): 291-302.
[34] 呂慶雪, 于彩虹, 李毅丹, 高嵩, 牟勇, 林志, 宋廣樹, 劉偉. 淺析玉米雜交制種技術(shù). 分子植物育種, 2018, 16(12): 4037-4042.
Lü Q X, YU C H, LI Y D, GAO S, MU Y, LIN Z, SONG G S, LIU W. Analysis of hybrid seed production in maize., 2018, 16(12): 4037-4042. (in Chinese)
[35] 劉春增, 郭永才, 關(guān)國(guó)志, 司智成, 魯保良, 劉日尊, 趙文媛. 利用雄性不育生產(chǎn)玉米雜交種增產(chǎn)因素分析. 雜糧作物, 2000, 20(5): 11-13.
Liu C Z, Guo Y C, Guan G Z, Si Z C, Lu B L, Liu R Z, Zhao W Y. Analysis of factors for increasing yield of hybrid maize by using male sterility., 2000, 20(5): 11-13. (in Chinese)
[36] 馬沖. 玉米S型胞質(zhì)不育系應(yīng)用潛力與增產(chǎn)效應(yīng)研究[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2005.
Ma C. Study on yield response and application potential of cytoplasmic male sterile lines in maize[D]. Zhengzhou: Henan Agricultural University, 2005. (in Chinese)
Breeding and characteristics of a new male sterile line of maize, Jinyu1A
ZHANG HuanHuan1, CUI GuiMei2, WANG ChangBiao1, WANG XiaoQing1, HAO YaoShan1,
(1College of Life Sciences, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031;2The Seed Industry Limited Company of Shanxi Dafeng, Taiyuan 030031)
【】The study was aimed to determine the type of the male sterile line of maize, Jinyu1A, by molecular biology and cytology approaches, identify restoring and maintaining relationships of maize germplasm resources to the sterile line, and to test its general combining ability (GCA) and specific combining ability (SCA).【】The stability of sterility of Jinyu1A was investigated at 4 locations (Ledong, Jinzhong, Xinzhou and Yuncheng) for successive 3 years. Tassel, anther and pollen grains of Jinyu1A was observed and compared with Zheng58. F1pollen grains of Jinyu1A×Chang7-2 were observed by I2-KI staining. The sterility type of Jinyu1A was identified by specific PCR. Jinyu1A was used as the female parent and test-crossed with 158 maize inbred lines. The fertility of F1plants was investigated to screen for the suitable restorer and maintainer lines. The fertility of F2and BC1population plants was investigated. The grain yield general combining ability and specific combining ability of Jinyu1A were estimated by analyzing the data of its F1hybrids.【】The sterility characters of Jinyu1A were stable in the 4 locations for the 3 years. The appearance of tassel of Jinyu1A was similar to that of Zheng58, but its glumes were closed, anthers were withered and could not exert out of the glumes, and I2-KI staining showed that the pollen of Jinyu1A was completely sterile. The microscopical observation on the pollen grains of F1hybrid plants of Jinyu1A and Chang7-2 showed that 64.4% of the pollen grains could be stained dark by I2-KI and 35.6% pollen grains were aborted, which indicated that the sterile line belonged to S-type cytoplasmic sterile lines. The cytoplasm of Jinyu1A and Chang7-2 were identified as S-type male sterile type by specific PCR. The nuclear genome of Chang7-2 carries restorer genes, which concealed the phenotype of cytoplasmic male sterility. The specific primers suggested by ZHENG. were more applicable for categorizing maize cytoplasm sterile types. Among 158 inbred lines test-crossed with Jinyu1A as female parent, 96 maintainers, 47 restorers, and 15 semi-restorers were identified. There were 3.1%-8.7% sterile plants in F2populations derived from fertile F1plants of crosses between Jinyu1A and the restorer lines, which indicated that there were minor effect restorer genes in the restorer lines. There was no significant difference in the grain yields of the hybrids between each of Jinyu1A and Zheng58 as females and other 10 inbred lines as males, respectively. However, the F1combining ability analysis of these hybrids showed that the general combining ability of Jinyu1A was slightly higher than that of Zheng58.【】Jinyu1A was a S-type cytoplasmic male sterile line with stable male sterile characters and completely aborted pollen grains. There are a certain amount of restorer and maintainer type breeding stocks for Jinyu1A in the present maize germplasm resources. F1plants of its hybrid with Chang7-2 could produce normal panicles and disperse fertile pollen. The existence of minor effect restorer gene(s) made the pollen dyeability shift to the direction of fertility, which led to the emergence of a few fertile plants in F2populations. There was no significant difference in the grain yield between the hybrids with Jinyu1A and Zheng58 each as female parents test-crossed with the same male parents. The general combining ability of Jinyu1A was slightly higher than that of Zheng58, indicating that it could be used in the breeding programs for selecting new maize hybrids and male sterile lines.
maize; male sterility; restorer gene; combining ability
10.3864/j.issn.0578-1752.2020.21.002
2019-12-14;
2020-03-07
國(guó)家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2016ZX08003-001)、山西省重點(diǎn)研發(fā)計(jì)劃(201803D221017-2)、山西省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新研究課題(YCX2018D2YS07)
張歡歡,E-mail:frank.red@163.com。崔貴梅,E-mail:guimeicui@126.com。張歡歡和崔貴梅為同等貢獻(xiàn)作者。通信作者孫毅,E-mail:sunyi692003@163.com
(責(zé)任編輯 李莉)