歐陽建,周方,盧丹敏,李秀平,黃建安,3,劉仲華,3*
茶多糖調(diào)控肥胖作用研究進(jìn)展
歐陽建1,2,周方1,2,盧丹敏1,2,李秀平1,2,黃建安1,2,3,劉仲華1,2,3*
1. 國家植物功能成分利用工程技術(shù)研究中心,湖南 長沙 410128;2. 湖南農(nóng)業(yè)大學(xué)茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,湖南 長沙 410128;3. 教育部植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長沙 410128
隨著人們生活水平的提高,肥胖的發(fā)病率不斷攀升,已經(jīng)成為嚴(yán)重的健康問題。茶多糖作為一種與蛋白質(zhì)結(jié)合的酸性雜多糖,能夠通過調(diào)節(jié)食物攝取和能量吸收、調(diào)節(jié)脂肪生成、增強(qiáng)抗氧化防御酶活性和減輕炎癥、調(diào)節(jié)腸道菌群紊亂和維護(hù)腸道屏障完整性等不同途徑有效調(diào)控肥胖。綜述了近年來茶多糖調(diào)控肥胖功能及其作用機(jī)理的研究進(jìn)展。
茶多糖;肥胖;調(diào)控;作用機(jī)理
世界范圍內(nèi),超重和肥胖人數(shù)的上升趨勢越來越明顯,肥胖已成為21世紀(jì)最嚴(yán)重的公共衛(wèi)生問題之一[1-2]。過去40年,全球肥胖率增加了8倍[3]。目前我國的肥胖率也在不斷攀升,7~18歲城市男女生超重及肥胖檢出率已經(jīng)分別達(dá)到28.2%和16.4%,這給我國整體健康水平帶來巨大隱患[4]。
肥胖是指可損害健康的異?;蜻^量的脂肪累積。當(dāng)能量攝入和消耗長期不平衡時(shí)會刺激能量以甘油三酯(Triglyceride,TG)的形式在脂肪細(xì)胞中儲存起來,導(dǎo)致脂肪組織重量、人體體重增加,最終產(chǎn)生肥胖[5]。超重和肥胖是肝病、心血管疾病和糖尿病等慢性疾病的主要危險(xiǎn)因素[6-7]。世界衛(wèi)生組織對肥胖的定義為身體質(zhì)量指數(shù)(BMI)≥30?kg·m-2。一般認(rèn)為,肥胖的發(fā)生是由多種因素引起,包括飲食、生活方式、遺傳特點(diǎn)和社會因素4個(gè)方面,與能量吸收代謝、脂肪合成、體內(nèi)氧化應(yīng)激和腸道菌群等密切相關(guān)[8-10]。目前市場上的常用減肥藥物有胰脂肪酶抑制劑奧利司他和食欲抑制劑西布曲明,其副作用較大[11]。肥胖一旦形成就很難控制,因此早期預(yù)防是控制肥胖的關(guān)鍵。
茶作為世界上最受歡迎的天然植物飲料之一,因富含茶多酚、茶氨酸、茶多糖等具有獨(dú)特保健功能的生理活性物質(zhì)而被全球越來越多的消費(fèi)者所接受。與茶多酚相比,茶多糖(Tea polysaccharides,TPS)的健康功能研究相對較少。近年來,國內(nèi)外的研究表明,茶多糖具有抗氧化、抗炎、免疫調(diào)節(jié)和保肝等多種生物活性[12-13],特別是茶多糖在控制肥胖等代謝綜合征方面表現(xiàn)出良好的效果[14-16]。本文主要綜述了茶多糖調(diào)控肥胖功能及其作用機(jī)制,并對茶多糖調(diào)控肥胖研究進(jìn)行展望。
茶多糖是一種與蛋白質(zhì)結(jié)合的酸性雜多糖,主要由中性糖、糖醛酸和蛋白質(zhì)組成。茶多糖在茶葉中的含量與茶葉的老嫩程度及茶樹品種有關(guān),一般粗老葉高于嫩葉,大葉種高于小葉種。由于原料和工藝不同,不同茶類的多糖組成也存在一定差異。Chen等[17]研究發(fā)現(xiàn),烏龍茶多糖中含有26.66%中性糖、40.65%的糖醛酸和19.59%蛋白質(zhì),分子量為1.28×106Da,其中中性糖由-鼠李糖、-半乳糖、-阿拉伯糖和-葡萄糖組成,摩爾比為1.37∶1.00∶1.89∶1.30;而綠茶多糖中含有63.5%中性糖、25.14%的糖醛酸和8.63%的蛋白質(zhì),中性糖組分有核糖、鼠李糖和葡萄糖等。同樣,采用大孔陰離子交換樹脂柱層析法能夠從茶葉中獲得中性多糖(Neutral tea polysaccharides,NTPS)和酸性多糖(Acid tea polysaccharide,ATPS),中性茶多糖中總糖含量占82.7%,且以半乳糖為主,而酸性茶多糖中總糖含量占85.5%,以鼠李糖、阿拉伯糖、半乳糖和半乳糖醛酸為主。茶多糖的結(jié)構(gòu)復(fù)雜。其結(jié)構(gòu)可分為一級和高級結(jié)構(gòu),一級結(jié)構(gòu)包括糖苷鍵類型、單糖組成、支鏈長度與位置等,而以氫鍵結(jié)合形式的主鏈形成的聚合體構(gòu)象,包括單糖殘基形成的有序空間內(nèi)的規(guī)則構(gòu)象構(gòu)成其高級結(jié)構(gòu)[18]。
茶多糖相對分子質(zhì)量、糖苷鍵位置、單糖組成和單糖序列等都對其結(jié)構(gòu)組成具有重要影響,與其生物活性關(guān)系密切。邵淑宏[19]研究表明,烏龍茶發(fā)酵程度的增大能提高多糖中的糖醛酸和蛋白含量,增強(qiáng)對-葡萄糖苷酶的抑制作用和抗氧化活性。Chen等[20]從綠茶中分離純化3種茶多糖偶聯(lián)物進(jìn)行研究,發(fā)現(xiàn)相對分子量較低和蛋白含量較高的茶多糖偶聯(lián)物對提高其生物活性具有重要作用。同時(shí),茶多糖中鼠李糖含量、甘露糖含量和半乳糖醛酸含量與抗氧化活性之間呈極顯著正相關(guān),且糖醛酸含量更高的茶多糖能更好的抑制前脂肪細(xì)胞的增殖與分化,表現(xiàn)出更好的降脂減肥活性[18, 21]。劉海燕等[22]等研究發(fā)現(xiàn),小分子質(zhì)量、單糖種類和半乳糖比例的增加有助于TPS發(fā)揮其生物活性,抑制脂肪吸收,預(yù)防肥胖。
毒理學(xué)評價(jià)研究中將L-O2細(xì)胞暴露于25~400?μg·mL-1的茯磚茶多糖中24?h后,其細(xì)胞存活率仍保持在80%~120%,說明茯磚茶多糖未表現(xiàn)出明顯的細(xì)胞毒性[23]。動物試驗(yàn)中,小鼠飼喂5.0?g·kg-1茶多糖后,試驗(yàn)過程無死亡,給藥后小鼠胸腺、心臟、腎臟和肝臟均無毒性表現(xiàn),且試驗(yàn)組與對照組的肝、脾、胸腺指標(biāo)均無明顯差異,說明茶多糖安全無毒[24]。
同時(shí),采用口服或腹腔注射等不同的TPS攝入方式,其吸收代謝也有一定差異。研究表明,模擬唾液、胃和小腸消化前后,茯磚茶多糖的分子量、單糖含量和還原糖含量均無變化,其可以通過消化系統(tǒng)且不被破壞,到達(dá)大腸后可被其腸道菌群分解利用[24]。韋錚等[25]研究表明,茶多糖的抗氧化活性在經(jīng)過模擬的胃腸消化條件時(shí)與周圍環(huán)境的作用時(shí)間和pH無關(guān),只與茶多糖的濃度有關(guān)。然而,也有研究表明綠茶多糖在唾液消化過程中不能被降解,在模擬胃腸消化過程中可以被分解成更小的片段,作為腸道菌群的主要能量和碳源,并刺激其生長產(chǎn)生有益健康的化合物[26-28]。張高帆等[29]研究顯示,給小鼠腹腔注射200?mg·kg-1劑量的茶多糖組分TPF70后,其各腸段都能消化吸收,其中空腸和回腸吸收最快,在1?h出現(xiàn)吸收高峰,其后下降;胃、十二指腸和大腸在1?h出現(xiàn)高峰,并有部分殘留于糞便中排出體外。同時(shí),其在內(nèi)臟中的濃度比消化道高,以肝臟中的濃度最高,并在3?h達(dá)到高峰。
肥胖是一種營養(yǎng)代謝紊亂,臨床表現(xiàn)為脂肪細(xì)胞增生、肥大。脂肪細(xì)胞增生是由前脂肪細(xì)胞的增殖和分化引起的,其紊亂可導(dǎo)致脂肪組織內(nèi)脂質(zhì)過度沉積,直接影響機(jī)體構(gòu)成和肥胖及相關(guān)疾病的發(fā)展。3T3-L1是一種被廣泛用來研究對脂肪生成影響的細(xì)胞系,李娟等[21]研究發(fā)現(xiàn),添加100?μg·mL-1茶多糖能顯著抑制甘油三酯的合成與3T3-L1前脂肪細(xì)胞的分化。其中,綠茶多糖、烏龍茶多糖和紅茶多糖使前脂肪細(xì)胞的分化率分別顯著下降至62.00%、97.24%和82.95%。脂肪酶與肥胖之間具有密切關(guān)系,利用脂肪酶抑制劑可有效抑制腸道脂肪酶的活性,影響體內(nèi)的脂肪代謝,減少體內(nèi)脂肪積累和合成,從而達(dá)到控制和治療肥胖的目的[30-31]。李祥龍等[32]研究表明,黑茶茶多糖和茶褐素對脂肪酶也具有顯著的抑制作用,其中普洱茶多糖的抑制效果明顯,其半抑制濃度僅為47.57?mg·mL-1。茯磚茶多糖與茶褐素為可逆競爭性抑制關(guān)系,而六堡茶、普洱茶與康磚茶多糖為可逆競爭性與非競爭性混合型。此外,-葡萄糖苷酶抑制劑能降低小腸上消化酶的活性,延緩機(jī)體吸收葡萄糖的速率,研究發(fā)現(xiàn)青磚茶多糖抑制-葡萄糖苷酶活性的效果與陽性對照品阿卡波糖接近,且兩者的半抑制濃度無顯著性差異,而當(dāng)大紅袍TPS-3濃度為1?mg·mL-1時(shí),其對-葡萄糖苷酶的抑制率達(dá)到43.4%[19,33]。
高脂飼料所致的動物肥胖模型與人類主要因能量輸入過多而產(chǎn)生肥胖最為接近,目前已廣泛應(yīng)用于肥胖及其相關(guān)疾病的發(fā)生、發(fā)展和作用機(jī)制的研究[34-35]。Ren等[36]研究發(fā)現(xiàn),400?mg·kg-1和800?mg·kg-1含硒綠茶多糖可顯著改善高脂飲食(High-fat diet,HFD)喂養(yǎng)小鼠的胰島素敏感性,減少肝臟脂肪變性和氧化應(yīng)激損傷,并使氧化應(yīng)激和肝脂質(zhì)恢復(fù)至接近正常值。劉海燕等[22]研究發(fā)現(xiàn),對小鼠進(jìn)行高脂飲食處理的同時(shí)進(jìn)行白茶多糖(300?mg·kg-1)灌胃8周,與模型組相比,其體重降低26.63%,脂肪濕重降低46.31%,皮下脂肪細(xì)胞直徑降低27.96%,對肝損傷和炎癥具有良好的預(yù)防作用,且其預(yù)防肥胖的效果較枸杞多糖和桑葉多糖更佳。李清亮[37]研究表明,1?mg·mL-1黃大茶多糖可以調(diào)節(jié)HFD誘導(dǎo)小鼠的腸道菌群紊亂,維護(hù)腸道屏障功能,從而調(diào)節(jié)肥胖。此外,茶多糖還可以有效降低HFD肥胖大鼠的體重增長,500?mg·kg-1的六堡茶多糖灌胃給高脂血癥肥胖大鼠干預(yù)4周后,與模型組相比其體重受到明顯抑制,同時(shí)其肝臟脂滴明顯減少、變小,肝臟脂肪變性減輕[38]。郭郁等[39]研究表明800?mg·kg-1的TPS灌胃肥胖大鼠6周后,與模型組相比TPS組對體重增長和脂肪質(zhì)量的抑制率分別為12.63%和24.18%,血清中脂聯(lián)素(Adiponectin,ADP)和TG分別升高49.95%和降低41.56%。400?mg·kg-1的紅茶多糖持續(xù)給高脂飲食大鼠灌胃45?d后其體重和附睪脂肪細(xì)胞數(shù)量與正常飲食組接近,與模型組相比體重增長降低16.78%,血清中ADP上升了50.53%,肝臟中TG和丙二醛(Malondialdehyde,MDA)分別下降33.34%和21.39%,糞便中短鏈脂肪酸含量增加了69.08%,從而可控制高脂飲食引起的肥胖[14]。另外,500?mg·kg-1的普洱茶多糖飼喂高脂飲食小鼠28?d對小鼠的正常發(fā)育和飲水量沒有影響,但能有效抑制血脂升高,與高脂模型組相比,其血清中TG、低密度脂蛋白膽固醇(Low density lipoprotein-cholesterol,LDL-C)和總膽固醇(Total cholesterol,TC)分別下降40.60%、24.38%和25.36%[40]。
身體能量的動態(tài)平衡為身體的能量攝入等于消耗。當(dāng)在某一特定時(shí)間內(nèi)能量攝入超過消耗增加體重,或者,能量消耗超過攝入減少體重時(shí),會出現(xiàn)一個(gè)新的穩(wěn)態(tài)平衡設(shè)定值,在能量平衡的動態(tài)階段控制體重要比在能量平衡的穩(wěn)態(tài)狀態(tài)下控制體重更容易[41]。能量穩(wěn)態(tài)是由來自下丘腦神經(jīng)回路、腸道、脂肪組織和其他周圍器官的信號來平衡,這些信號有助于調(diào)節(jié)我們的食欲、進(jìn)食行為和飽足感[42]。動態(tài)的能量平衡對于預(yù)防肥胖十分重要,進(jìn)食行為是獲取能量的關(guān)鍵。研究表明,400?mg·kg-1的茶多糖可以有效降低高脂飲食大鼠的日常食物攝入量和食物的利用率,減少能量的攝入和脂肪的積累,減輕體重和Lee’s指數(shù),從而控制高脂飲食引起的肥胖[14,43]。
不良飲食是肥胖發(fā)生的重要原因,高脂高糖食物中含有大量能量,長期食用易使身體動態(tài)能量平衡失衡,減少對食物中能量的吸收是預(yù)防肥胖的重要方式[41,44]。食物攝入后的脂質(zhì)在小腸內(nèi)乳化、水解和吸收,膽固醇和脂肪酸可被小腸頂端表面的脂質(zhì)轉(zhuǎn)運(yùn)體作用進(jìn)入腸上皮細(xì)胞,被吸收的脂質(zhì)被包裝成乳糜微粒分泌到淋巴系統(tǒng)并循環(huán)[45]。體外研究表明,茶多糖可以干擾脂質(zhì)的消化吸收。采用Caco-2細(xì)胞模型研究了綠茶提取物和天然綠茶TPS對水稻淀粉消化后葡萄糖轉(zhuǎn)運(yùn)的影響發(fā)現(xiàn),TPS能抑制淀粉水解成葡萄糖,顯著降低葡萄糖的擴(kuò)散速率和比例,限制葡萄糖在腸道細(xì)胞中的運(yùn)輸,有效降低餐后血糖水平[46]。同時(shí),TPS處理可以降低高脂飲食大鼠對脂質(zhì)和脂肪酸的消化和吸收,顯著改善脂質(zhì)水平和脂質(zhì)氧化,抑制肝臟中總膽固醇和總脂質(zhì)的積累,刺激膽固醇轉(zhuǎn)化為膽汁酸,通過增加糞便排泄量達(dá)到降低膽固醇的作用,從而有效預(yù)防和改善肥胖[15,38,43]。
脂肪組織在調(diào)節(jié)人體能量平衡和營養(yǎng)穩(wěn)態(tài)方面發(fā)揮著重要作用[11]。人體內(nèi)有兩種脂肪組織,即棕色脂肪組織(Brown adipose tissue,BAT)和白色脂肪組織(White adipose tissue,WAT),它們在結(jié)構(gòu)和功能上有所不同[47]。BAT主要分布在小型哺乳動物和新生兒中,專門通過產(chǎn)生熱量來消耗能量;而WAT主要分布于成年人中,以甘油三酯的形式儲存多余的能量[47-48]。超重或肥胖的明顯特征是脂肪細(xì)胞數(shù)量和大小因增生和肥大而過度增加[49]。針對脂肪細(xì)胞的生命周期和代謝功能,抑制脂肪細(xì)胞增殖和分化,以及調(diào)節(jié)能量代謝是預(yù)防和治療肥胖的有效途徑[45]。李娟等[21]研究發(fā)現(xiàn),100?μg·mL-1的TPS可以顯著抑制3T3-L1前脂肪細(xì)胞的增殖,增加G0/G1分化期細(xì)胞數(shù)量抑制前體細(xì)胞向成熟脂肪細(xì)胞的分化,激活磷酸腺苷活化蛋白激酶(Adenosine monophosphate-activated proteinkinase,AMPK)信號通路調(diào)節(jié)脂肪因子的表達(dá),最終減少TG和成熟脂肪細(xì)胞的積累。
動物體內(nèi)脂質(zhì)的主要來源有兩種,一種是胃腸道的直接吸收,另一種是肝臟和脂肪組織中合成。此外,脂肪的分解代謝和氧化主要在肝臟和骨骼肌中進(jìn)行。一系列研究表明,TPS可以通過調(diào)控脂質(zhì)代謝基因的表達(dá)和脂肪生成來調(diào)節(jié)脂肪總量、脂肪區(qū)域和體重的變化[50-52]。高劑量的TPS干預(yù)(800?mg·kg-1·d-1)可以上調(diào)高脂飲食飼養(yǎng)小鼠的肉堿棕櫚酰基(Carnitine palmitoyl transterase-1,CPT-1)的表達(dá),下調(diào)過氧化物酶體增殖物激活受體(Peroxisome proliferator-activated receptor gamma,PPAR)、固醇調(diào)節(jié)元件結(jié)合蛋白1c(Sterol regulatory element-binding protein-1c,SREBP-1c)、脂肪酸合酶(Fatty acid synthase,F(xiàn)AS)和肝X受體(Liver X receptor,LXR)的表達(dá),顯著降低脂肪指數(shù)和脂肪細(xì)胞面積,增強(qiáng)脂肪酸的氧化和分解以及抑制脂肪生成和積累,從而調(diào)節(jié)肥胖[43,53]。Wu等[14]對基因表達(dá)譜陣列篩選出參與肝臟和附睪組織脂質(zhì)代謝的13個(gè)基因進(jìn)行研究發(fā)現(xiàn),TPS可通過影響脂質(zhì)代謝的差異基因表達(dá)調(diào)節(jié)包括膽汁酸分泌、轉(zhuǎn)化生長因子信號傳導(dǎo)、胰島素信號傳導(dǎo)、糖脂代謝、脂肪酸降解和AMPK信號通路等代謝,抑制脂肪形成、加速脂肪消化和促進(jìn)脂肪分解。
越來越多的研究顯示,氧化應(yīng)激和慢性低度炎癥是與肥胖等代謝性疾病的起因、發(fā)病機(jī)制和發(fā)展密切相關(guān)的兩個(gè)重要機(jī)制[36,53-54]。事實(shí)上,內(nèi)臟脂肪組織堆積會引發(fā)促氧化和促炎癥狀態(tài),而氧化應(yīng)激又可通過刺激白色脂肪組織的沉積和改變食物攝入,增加前脂肪細(xì)胞的增殖、脂肪細(xì)胞的分化和成熟脂肪細(xì)胞的大小,從而引發(fā)肥胖[55-56]。
肥胖作為一種慢性疾病,表現(xiàn)為身體脂肪的不斷增加。脂肪組織不僅是甘油三酯的儲存器官,還能產(chǎn)生具有生物活性的脂肪因子,包括具有炎癥功能的白細(xì)胞介素6(Interleukin,IL-6)、腫瘤壞死因子(Tumor necrosis factoralpha,TNF-)和調(diào)節(jié)食物攝入量的瘦素(Leptin,LEP)。分泌的脂肪因子反過來刺激產(chǎn)生活性氧,對不同器官造成直接或間接損害[55]。隨著氧化還原狀態(tài)的改變和代謝風(fēng)險(xiǎn)的增加,氧化應(yīng)激是肥胖的一個(gè)后果,也是肥胖進(jìn)一步發(fā)展的誘因。隨著脂肪組織的增加,谷胱甘肽過氧化物酶(Glutathione peroxidase,GSH-PX)和過氧化氫酶(Catalase,CAT)等抗氧化酶的活性明顯下降,不斷產(chǎn)生的活性氧和抗氧化能力的下降最終會導(dǎo)致機(jī)體產(chǎn)生與肥胖相關(guān)的各種代謝綜合征[55]。一系列試驗(yàn)表明,TPS具有良好的抗氧化和抗炎作用,能有效調(diào)控肥胖[23,36,53]。超氧化物自由基被認(rèn)為是一種主要的活性氧,細(xì)胞試驗(yàn)表明,茯磚茶多糖濃度超過500?μg·mL-1時(shí)對超氧化物自由基的清除能力超過85%,從而有效減少DNA、蛋白質(zhì)和脂質(zhì)的氧化損傷[23]。動物試驗(yàn)中,Mao等[38]發(fā)現(xiàn)500?mg·kg-1的高劑量六堡茶多糖能顯著恢復(fù)由HFD誘導(dǎo)的高脂血癥大鼠血清和肝臟中GSH-PX和CAT活力下降,顯著提升肝臟中的谷胱甘肽酶(Glutathione,GSH)水平,而治療組血漿中的MDA水平呈顯著地劑量依賴性降低。Ren等[36]研究表明,紫陽綠茶多糖能顯著恢復(fù)果糖引起的小鼠肝臟總超氧化物歧化酶(Total superoxide dismutase,T-SOD)和GSH-PX活性的下降,減輕胰島素抵抗、肝臟氧化應(yīng)激和肝臟脂肪變性,有效預(yù)防非酒精性脂肪肝的發(fā)生。此外,TPS和茶多酚的協(xié)同作用能進(jìn)一步提高肝臟的抗氧化能力,且比TPS或茶多酚單獨(dú)處理具有更強(qiáng)的抗氧化作用[57]。然而,有研究表明茶多酚是粗茶多糖化合物中的主要抗氧化成分,TPS幾乎沒有抗氧化活性[58]。同時(shí),綠茶TPS可以抑制高脂飲食大鼠對脂肪酸的吸收和脂肪細(xì)胞因子如TNF-、IL-6的基因表達(dá),降低肝糖異生和糖原分解等活動從而減少甘油三酯的積累[43,55]。
人體腸道中存在大量的微生物,種類繁多,大致可以分為3類:中性菌、有害菌和有益菌。隨著分子生物學(xué)的發(fā)展,腸道菌群與肥胖的關(guān)系近年來受到越來越多的關(guān)注。一系列研究顯示,腸道及其微生物與宿主的生理、營養(yǎng)和免疫等功能密切相關(guān)[59-61]。人類腸道生態(tài)系統(tǒng)的穩(wěn)定性和多樣性主要與生存環(huán)境和飲食習(xí)慣有關(guān),且其微生物種群的多樣性有20%以上依賴于與飲食習(xí)慣相關(guān)的環(huán)境因素[62-63]。腸道微生態(tài)的紊亂和菌群結(jié)構(gòu)的失衡會導(dǎo)致宿主循環(huán)系統(tǒng)內(nèi)毒素的積累,從而誘發(fā)機(jī)體的慢性炎癥,導(dǎo)致肥胖。
諸多研究表明,茶多糖可以調(diào)節(jié)腸道菌群紊亂,抑制與肥胖相關(guān)的有害菌生長,促進(jìn)有益菌的增殖,維護(hù)腸道屏障功能完整性,從而預(yù)防和治療肥胖[26-27,37,53]。腸道是吸收營養(yǎng)和水分的主要器官,是與環(huán)境因素接觸最大的區(qū)域,含有大量的專門免疫細(xì)胞,可以協(xié)調(diào)防御反應(yīng),防止或抵消宿主及其免疫系統(tǒng)暴露于不同來源的干擾源[64]。李海珊等[12]研究發(fā)現(xiàn),50?mg·kg-1和100?mg·kg-1的TPS喂養(yǎng)小鼠21?d后顯著增強(qiáng)其腸道巨噬細(xì)胞吞噬能力,提高結(jié)腸內(nèi)含水量和短鏈脂肪酸的生成,從而增強(qiáng)機(jī)體的免疫調(diào)節(jié)功能以維護(hù)腸道健康。部分研究者進(jìn)一步探討了HFD誘導(dǎo)的肥胖等代謝綜合征和腸道菌群的關(guān)系。李清亮[37]研究表明,黃大茶TPS能調(diào)節(jié)高脂飲食小鼠的腸道菌群組成,降低厚壁菌門()與擬桿菌門()的比例,增加與多糖代謝相關(guān)及抑制肥胖發(fā)生的菌群如丁酸弧菌屬()、普世菌屬()和雙歧桿菌屬()的含量,降低與腸道菌群失調(diào)和肥胖發(fā)生的相關(guān)菌屬如韋榮球菌科()和脫硫弧菌科()的相對豐度,增強(qiáng)腸道上皮細(xì)胞的通透性,提高腸道屏障作用。腸道微生物群也可以直接或通過信號分子(包括短鏈脂肪酸和膽汁酸)影響許多重要代謝過程[65-68]。研究者利用模擬仿生系統(tǒng)發(fā)現(xiàn)茶多糖通過調(diào)節(jié)腸道菌群發(fā)酵促進(jìn)短鏈脂肪酸產(chǎn)生,其可被機(jī)體的腸道吸收并作為腸道上皮細(xì)胞和肝臟的主要能源,影響腸道屏障功能和糖異生等代謝,抑制膽固醇的積累和脂肪的生成[37,65]。另外,膽汁酸與腸道菌群之間存在雙向關(guān)系,一方面膽汁酸在肝臟中由膽固醇產(chǎn)生,在腸道中由腸道菌群代謝;另一方面結(jié)腸膽汁酸可以調(diào)節(jié)微生物的組成,抑制某些微生物的生長[61,69]。
綜上所述,茶多糖可有效調(diào)控肥胖,其作用機(jī)制主要包括茶多糖減少食物攝取和能量吸收、調(diào)節(jié)脂質(zhì)代謝基因的表達(dá)和抑制脂肪生成、增強(qiáng)抗氧化防御酶活性和減輕炎癥、調(diào)節(jié)腸道菌群紊亂和維護(hù)腸道屏障完整性等多種途徑(圖1)。盡管TPS顯示了良好的抵抗肥胖特性,但與菌類多糖和某些植物多糖相比還有很大差距。目前,全球已有不少菌類多糖的分子量、結(jié)構(gòu)式、空間構(gòu)像、構(gòu)效關(guān)系、作用靶點(diǎn)都非常清晰,并已經(jīng)開發(fā)出天然藥物面市。因此,茶多糖及其在控制體重、抵御肥胖功能方面仍有一系列的問題需要深入探究。
圖1 茶多糖調(diào)控肥胖機(jī)制分析
首先,TPS的化學(xué)結(jié)構(gòu)錯(cuò)綜復(fù)雜,多種生物活性與其化學(xué)結(jié)構(gòu)之間的關(guān)系仍需進(jìn)一步研究。分子量大小曾被認(rèn)為是影響TPS抗氧化活性的重要參數(shù),低分子量TPS組分比高分子量TPS組分具有更高的抗氧化活性[70-72]。然而,分子量與TPS抗氧化活性的關(guān)系在許多其他研究中仍沒有得到證實(shí)[73-74]。近幾十年來,研究者對TPS的化學(xué)結(jié)構(gòu)和生物活性進(jìn)行了廣泛的探索,但由于結(jié)構(gòu)的復(fù)雜性和多樣性,其結(jié)構(gòu)特征、溶液行為、空間構(gòu)象與生物活性之間的關(guān)系尚不清楚[75]。
其次,TPS的分離純化技術(shù)與市場對TPS大規(guī)模高質(zhì)量的需求不相適應(yīng)。目前,已開發(fā)的溶劑提取、酶法提取、超聲波提取、微波提取及沉淀法、柱色譜法、納米膜法等茶多糖提取分離方法,還難以滿足國內(nèi)外天然藥物和功能食品生產(chǎn)對純度和規(guī)模的要求。因此,需要建立純度高、分子量與空間結(jié)構(gòu)穩(wěn)定、構(gòu)效關(guān)系明晰的茶多糖分離純化技術(shù)體系,以滿足規(guī)?;蜆?biāo)準(zhǔn)化生產(chǎn)。
再次,TPS調(diào)控肥胖是其自身還是體內(nèi)代謝物發(fā)揮作用仍不明確。目前的體內(nèi)外試驗(yàn)表明,TPS可以調(diào)節(jié)高脂食物誘導(dǎo)大鼠的腸道菌群結(jié)構(gòu),但基于斯皮爾曼相關(guān)分析很難證明這些關(guān)聯(lián)的因果關(guān)系。因此,有必要應(yīng)用無菌動物和糞便移植進(jìn)一步研究調(diào)節(jié)腸道菌群失調(diào)和代謝物的關(guān)系,從而作為預(yù)防和治療肥胖等代謝性疾病的新靶點(diǎn)[9]。
最后,TPS調(diào)控肥胖的有效劑量及其臨床效果亟待研究。目前TPS調(diào)節(jié)肥胖的研究主要集中在細(xì)胞和動物領(lǐng)域,且以黑茶TPS為主,而在人體臨床及流行病學(xué)方面的研究幾乎空白。動物和人體在有效劑量和吸收代謝方面差異較大,體外試驗(yàn)、動物試驗(yàn)與人體臨床的效果還存在差距。
因此,TPS調(diào)控機(jī)體肥胖的有效劑量、作用機(jī)制及體內(nèi)代謝過程均有待系統(tǒng)深入研究,此外,還需開展人體流行病學(xué)研究。
[1] Breda J, Jewell J, Keller A. The importance of the World Health Organization sugar guidelines for dental health and obesity prevention [J]. Caries Research, 2019, 53: 149-152.
[2] Silvia B S, Ana O R, Mirjam M H, et al. Clustering of multiple energy balance-related behaviors in school children and its association with overweight and obesity: WHO European Childhood Obesity Surveillance Initiative (COSI 2015-2017) [J]. Nutrients, 2019, 11(3): 511. doi: 10.3390/nu11030511.
[3] Ezzati M, Bentham J, Di C M, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults [J]. Lancet, 2017, 390(10113): 2627-2642.
[4] 馬冠生. 中國兒童肥胖報(bào)告[R]. 北京: 人民衛(wèi)生出版社, 2017. Ma G S. Report on childhood obesity in china [R]. Beijing: People's Medical Publishing House, 2017.
[5] Guida S, Venema K. Gut microbiota and obesity: involvement of the adipose tissue [J]. Journal of Functional Foods, 2015, 14: 407-423.
[6] Guh D P, Zhang W, Bansback N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis [J]. BMC Public Health, 2009, 9: 88. doi: 10.1186/1471-2458-9-88.
[7] Piche M E, Poirier P, Lemieux I, et al. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update [J]. Progress Cardiovasc Diseases, 2018, 61(2): 103-113.
[8] Lee E Y, Yook K H. Epidemic obesity in children and adolescents: risk factors and prevention [J]. Front Med, 2018, 12(6): 658-666.
[9] Chen G, Chen R, Chen D, et al. Tea polysaccharides as potential therapeutic options for metabolic diseases [J]. Journal of Agricultural and Food Chemistry, 2018, 67(19): 5350-5360.
[10] Guirro M, Herrero P, Costa A, et al. Comparison of metaproteomics workflows for deciphering the functions of gut microbiota in an animal model of obesity [J]. Journal of Proteomics, 2019, 209: 103489. doi: 10.1016/j.jprot.2019.103489.
[11] Song D, Cheng L, Zhang X, et al. The modulatory effect and the mechanism of flavonoids on obesity [J]. Journal of Food Biochemistry, 2019, 43(8): e12954. doi: 10.1111/jfbc.12954.
[12] 李海珊, 劉麗喬, 聶少平. 茶多糖對小鼠腸道健康及免疫調(diào)節(jié)功能的影響[J]. 食品科學(xué), 2017, 38(7): 187-192.Li H S, Liu L Q, Nie S P. Effects of green tea polysaccharides on intestinal health and immune regulation in mice [J]. Food Science, 2017, 38(7): 187-192.
[13] Yang C S, Zhang J, Zhang L, et al. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea [J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174.
[14] Wu T, Guo Y, Liu R, et al. Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats [J]. Food Function, 2016, 7(5): 2469-2478.
[15] Nakamura M, Miura S, Takagaki A, et al. Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide [J]. International Journal Food Science Nutrients, 2017, 68(3): 321-330.
[16] Li S, Chen H, Wang J, et al. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice [J]. International Journal Biological Macromolecules, 2015, 81: 967-974.
[17] Chen H, Wang Z, Qu Z, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea [J]. European Food Research and Technology, 2009, 229(4): 629-635.
[18] 艾于杰. 抗氧化活性茶多糖構(gòu)效關(guān)系研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2019. Ai Y J. Study on the structure-activity relationship of antioxidant polysaccharides [D]. Wuhan: Huazhong Agricultural University, 2019.
[19] 邵淑宏. 烏龍茶多糖理化性質(zhì)及抗氣化、降血糖活性研究[D]. 杭州: 浙江大學(xué), 2015. Shao S H. Study on physical and chemical properties of dragon tea polysaccharide and its anti-gasification and hypoglycemic activity [D]. Hangzhou: Zhejiang University, 2015.
[20] Chen H, Zhang M, Qu Z, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea () [J]. Food Chemistry, 2008, 106(2): 559-563.
[21] 李娟, 劉銳, 吳濤, 等.不同茶多糖對3T3-L1前脂肪細(xì)胞分化的抑制作用比較[J]. 食品科學(xué), 2017, 38(21): 187-193. Li J, Liu R, Wu T, et al. Comparison of the inhibitory effects of different tea polysaccharides on the differentiation of 3T3-L1 preadipocytes [J]. Food Science, 2017, 38(21): 187-193.
[22] 劉海燕, 任發(fā)政, 李景明, 等. 幾種植物多糖的結(jié)構(gòu)特征與預(yù)防肥胖活性研究[J]. 中國食物與營養(yǎng), 2019, 25(12): 44-51. Liu H Y, Ren F Z, Li J M, et al. Structural characteristics and anti-obesity efficacy of several plant polysaccharides [J]. Food and Nutrition in China, 2019, 25(12): 44-51.
[23] Chen G, Wang M, Xie M, et al. Evaluation of chemical property, cytotoxicity and antioxidant activityandof polysaccharides from Fuzhuan brick teas [J]. International Journal Biological Macromolecules, 2018, 116: 120-127.
[24] Chen H X, Zhang M, Qu Z S. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 2256-2260.
[25] 韋錚, 賀燕, 郝麒麟, 等. 茶多糖在模擬胃腸消化體系的抗氧化作用研究[J]. 食品與發(fā)酵工業(yè), 2020, 46(10): 109-117.Wei Z, He Y, Hao Q L, et al. Study on the antioxidant effect of tea polysaccharides under the conditions of simulating gastrointestinal digestion[J]. Food and Fermentation Industries, 2020, 46(10): 109-117.
[26] Chen G J, Xie M H, Wan P, et al. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea [J]. Food Chemistry, 2018, 244: 331-339.
[27] Li W W, Wang C, Yuan G Q, et al. Physicochemical characterisation and α-amylase inhibitory activity of tea polysaccharides under simulated salivary, gastric and intestinal conditions [J]. International Journal of Food Science & Technology, 2018, 53(2): 423-429.
[28] Fernández J, Redondo-B S, Gutiérrez-del R I, et al. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review [J]. Journal of Functional Foods, 2016, 25: 511-522.
[29] 張高帆, 陳萍, 徐思綺, 等. 茶多糖對四氧嘧啶模型小鼠的降糖作用及其體內(nèi)分布規(guī)律研究[J]. 營養(yǎng)學(xué)報(bào), 2015, 37(4): 384-388. Zhang G F, Chen P, Xu S Q, et al. Hypoglycemic effect of tea polysaccharide on alloxan model mice and its in vivo research on distribution law [J]. Journal of Nutrition, 2015, 37(4): 384-388.
[30] Sánchez J, Priego T, Palou M, et al. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life [J]. Endocrinology, 2008, 149(2): 733-740.
[31] 楊志秋, 詹莉莉, 傅正偉. 脂肪酶抑制劑應(yīng)用于抗肥胖的研究進(jìn)展[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2011, 11(21): 4178-4181. Yang Z Q, Zhan L L, Fu Z W. Recent advances of lipase inhibitor in the application of anti-obesity [J]. Progress in Modern Biomedicine, 2011, 11(21): 4178-4181.
[32] 李祥龍, 李曉梅, 楊煦, 等. 黑茶茶褐素與茶多糖對脂肪酶的抑制作用[J]. 食品與機(jī)械, 2018, 34(3): 27-31, 58. Li X L, Li X M, Yang X, et al. Study of inhibition of black tea theabrownin and tea polysaccharides on lipase [J]. Food and Machinery, 2018, 34(3): 27-31, 58.
[33] 舒婷, 肖暢, 何慧, 等. 青磚茶粗多糖抑制-葡萄糖苷酶活性的研究[J]. 食品科技, 2019, 44(3): 194-199. Shu T, Xiao C, He H, et al. Inhibitory effects of crude polysaccharide of green brick tea on-glucosidase activity [J]. Food Science and Technology, 2019, 44(3): 194-199.
[34] 和興萍, 羅燕, 李雪, 等. 幾種降脂減肥實(shí)驗(yàn)動物模型的建立與比較[J]. 中華中醫(yī)藥學(xué)刊, 2017, 35: 1747-1751. He X P, Luo Y, Li X, et al. Comparison of several kinds of lipid-Lowering diet experimental animal model [J]. Chinese Journal of Traditional Chinese Medicine, 2017, 35: 1747-1751.
[35] 陳粉粉, 郭愛偉, 周杰瓏, 等. ICR小鼠肥胖模型的建立以及肥胖指標(biāo)和脂肪組織形態(tài)學(xué)比較[J]. 安徽農(nóng)業(yè)科學(xué), 2012, 40(5): 2720-2073. Chen F F, Guo A W, Zhou J L, et al. Establishment of the obesity model of ICR mice and the comparison of the obesity index and morphology of adipose tissue [J]. Journal of Anhui Agri, 2012, 40(5): 2720-2073.
[36] Ren D, Hu Y, Luo Y, et al. Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice [J]. Food Function, 2015, 6(10): 3342-3350.
[37] 李清亮. 黃大茶茶多糖對飼喂高脂日糧小鼠腸道菌群的調(diào)節(jié)作用[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2018. Li Q L. Polysacchardies in Large Yellow tea modulate gut microbiome in HFD fed mice [D]. Hefei: Anhui Agricultural University, 2018.
[38] Mao Y, Wei B, Teng J, et al. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia [J]. International Journal of Food Science & Technology, 2018, 53(3): 599-607.
[39] 郭郁, 吳濤, 劉銳, 等. 紅茶提取物減肥作用研究[J]. 現(xiàn)代食品科技, 2017, 33(2): 16-21. Guo Y, Wu T, Liu R, et al. Study on the weight-loss effect of black tea extracts [J]. Modern Food Science and Technology, 2017, 33(2): 16-21.
[40] 吳文華. 洱茶調(diào)節(jié)血脂功能評價(jià)及其生化機(jī)理的研究[D] . 重慶: 西南農(nóng)業(yè)大學(xué), 2003. Wu W H. Functional appraisal of blood lipid adjusted by Puer tea and study on its physiochemical mechanism [D]. Chongqing: Southwest Agricultural University, 2003.
[41] Olsen M K, Johannessen H, Cassie N, et al. Steady-state energy balance in animal models of obesity and weight loss [J]. Scandinavian Journal Gastroenterology, 2017, 52(4): 442-449.
[42] Ahima R S, Antwi D A. Brain regulation of appetite and satiety [J]. Endocrinology and Metabolism Clinics of North America, 2008, 37(4): 811-823.
[43] Xu Y, Zhang M, Wu T, et al. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet [J]. Food Function, 2015, 6(1): 297-304.
[44] Maniadakis N, Kapaki V, Damianidi L, et al. A systematic review of the effectiveness of taxes on nonalcoholic beverages and high-in-fat foods as a means to prevent obesity trends [J]. ClinicoEconomics and Outcomes Research, 2013, 5: 519-543.
[45] Huang J, Wang Y, Xie Z, et al. The anti-obesity effects of green tea in human intervention and basic molecular studies [J]. European Journal Clinical Nutrition, 2014, 68(10): 1075-1087.
[46] Chung J O, Yoo S H, Lee Y E, et al. Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch [J]. Food & Function, 2019, 10(2): 746-753.
[47] Saely C H, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review [J]. Gerontology, 2012, 58(1): 15-23.
[48] Frühbeck G, Becerril S, Sáinz N, et al. BAT: A new target for human obesity? [J]. Trends in Pharmacological Sciences, 2009, 30(8): 387-396.
[49] Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences [J]. Clinical Chemistry, 2008, 54(6): 945-955.
[50] Hammad S S, Eck P, Sihag J, et al. Common variants in lipid metabolism-related genes associate with fat mass changes in response to dietary monounsaturated fatty acids in adults with abdominal obesity [J]. The Journal of Nutrition, 2019, 149(10): 1749-1756.
[51] Bazhan N M, Baklanov A V, Piskunova J V, et al. Expression of genes involved in carbohydrate-lipid metabolism in muscle and fat tissues in the initial stage of adult-age obesity in fed and fasted mice [J]. Physiological Reports, 2017, 5(19): e13445. doi: 10.14814/phy2.13445.
[52] Catalán V, Rodríguez A, Ramírez B, et al. Association of increased Visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity [J]. Nutrition Metabolism & Cardiovascular Diseases, 2017, 21(4): 245-253.
[53] Chen G J, Xie M H, Wan P, et al. Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota [J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2783-2795.
[54] Manna P, Jain S K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies [J]. Metabolic Syndrome And Related Disorders, 2015, 13(10): 423-444.
[55] Fernandez S A, Madrigal S E, Bautista M, et al. Inflammation, oxidative stress, and obesity [J]. International Journal of Molecular Sciences, 2011, 12(5): 3117-3132.
[56] Savini I, Catani M V, Evangelista D, et al. Obesity-associated oxidative stress: strategies finalized to improve redox state [J]. International Journal of Molecular Sciences, 2013, 14(5): 10497-10538.
[57] Wang J, Liu W, Chen Z, et al. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma [J]. Biomed Pharmacother, 2017, 90: 160-170.
[58] Wang Y, Zhao Y, Andrae M K, et al. Tea polysaccharides as food antioxidants: an old woman's tale? [J]. Food Chemistry, 2013, 138(2/3): 1923-1927.
[59] Zhang L, Gui S, Liang Z, et al.cecropin (Mdc) alleviates-induced colonic mucosal barrier impairment: associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora [J]. Frontiers in Microbiology, 2019, 10: 522. doi: 10.3389/fmicb.2019.00522.
[60] Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes [J]. The Annual Review of Medicine, 2011, 62: 361-380.
[61] Huang F, Zheng X, Ma X, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism [J]. Nature Communications, 2019, 10(1): 4971. doi: 10.1038/s41467-019 -12896-x.
[62] Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gutmicrobiota [J]. Nature, 2018, 555: 210-215.
[63] Rosenbaum M, Knight R, Leibel R L. The gut microbiota in human energy homeostasis and obesity [J]. Trends Endocrinol Metab, 2015, 26(9): 493-501.
[64] Bernardi S, Del Bo C, Marino M, et al. Polyphenols and intestinal permeability: rationale and future perspectives [J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 1816-1829.
[65] Dugas L R, Lie L, Plange-Rhule J, et al. Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol [J]. BMC Public Health, 2018, 18(1): 978. doi: 10.1186/s12889-018 -5879-6.
[66] Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism [J]. Nature, 2012, 489(7415): 242-249.
[67] Petriz B A, Castro A P, Almeida J A, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats [J]. BMC Genomics, 2014, 15: 511. doi: 10.1186/1471-2164-15-511.
[68] Queipo M I, Seoane L M, Murri M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels [J]. Plos One, 2013, 8(5): e65465. doi: 10.1371/journal.pone.0065465.
[69] Wahlstr?m A, Sayin S I, Marschall H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism [J]. Cell Metabolism, 2016, 24(1): 41-50.
[70] Chen H, Qu, Z, Fu L L, et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea [J]. Journal of Food Science, 2009, 74(6): 469474. doi: 10.1111/j.1750-3841.2009.01231.x.
[71] Chen H X, Zhang M, Qu Z S, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea () [J]. Food Chemistry, 2008, 106: 559-563.
[72] Du L L, Fu Q Y, Xiang L P, et al. Tea polysaccharides and their bioactivities [J]. Molecules, 2016, 21(11): 1449. doi: 10.3390/molecules21111449.
[73] Wang Y F, Liu Y Y, Huo J L, et al. Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides [J]. International Journal Biological Macromolecules, 2013, 62: 714-719.
[74] Zhang X, Chen H X, Zhang N, et al. Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea [J]. Food Research International, 2013, 53: 726-731.
[75] Chen G, Yuan Q, Saeeduddin M, et al. Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities [J]. Carbohydrate Polymers, 2016, 153: 663-678.
ResearchProgress of Tea Polysaccharides in Regulating Obesity
OUYANG Jian1,2, ZHOU Fang1,2, LU Danmin1,2, LI Xiuping1,2, HUANG Jian'an1,2,3, LIU Zhonghua1,2,3*
1. National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; 2. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China; 3.Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
With the improvement of people's living standards, the incidence of obesity has been rising, which has become a serious health problem of the society. Tea polysaccharide, as an acid heteropolysaccharide combined with protein, can regulate food intake and energy absorption, regulate adipogenesis, enhance antioxidant defense enzyme activities and reduce inflammation, regulate intestinal flora disorders and maintain different pathways such as intestinal barrier integrity, thereby effectively regulates obesity. The regulation mechanism of tea polysaccharides on obesity was reviewed based on the researches in recent years.
tea polysaccharide, obesity, regulation, mechanism of action
S571.1;Q946.3
A
1000-369X(2020)05-565-11
2020-03-16
2020-05-17
國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0400803)、國家自然科學(xué)基金(31801574)、國家茶葉產(chǎn)業(yè)技術(shù)體系研究項(xiàng)目(CARS-19-C01)
歐陽建,男,碩士研究生,主要從事茶葉深加工與功能成分利用方面的研究。*通信作者:larkin-liu@163.com