王琴,劉澤厚,萬(wàn)洪深,魏會(huì)廷,龍海,李濤,鄧光兵,李俊,楊武云
川麥42和川農(nóng)16抗穗發(fā)芽QTL定位及聚合效應(yīng)分析
王琴1,2,劉澤厚1,2,萬(wàn)洪深1,2,魏會(huì)廷2,3,龍海4,李濤4,鄧光兵4,李俊1,2,楊武云1,2
(1四川省農(nóng)業(yè)科學(xué)院作物研究所,成都 610066;2農(nóng)業(yè)部西南地區(qū)小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,成都 610066;3四川省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所,成都 610066;4中國(guó)科學(xué)院成都生物研究所,成都 610041)
【】小麥穗發(fā)芽嚴(yán)重影響小麥產(chǎn)量和品質(zhì),是全球小麥生產(chǎn)面臨的重大問(wèn)題之一。通過(guò)鑒定挖掘抗穗發(fā)芽QTL,聚合穗發(fā)芽抗性位點(diǎn),選育抗穗發(fā)芽小麥品種,為四川小麥穗發(fā)芽抗性改良提供技術(shù)和材料支撐。以川麥42/川農(nóng)16重組自交系(RIL,F(xiàn)8)為材料,于2016—2018年分別在2個(gè)環(huán)境下對(duì)RIL群體進(jìn)行籽粒發(fā)芽指數(shù)(GI,2016和2018)、籽粒發(fā)芽率(GR,2016和2018)和整穗發(fā)芽率(SGR,2017和2018)3個(gè)穗發(fā)芽指標(biāo)測(cè)定。利用90K SNP芯片構(gòu)建的遺傳圖譜檢測(cè)全基因組穗發(fā)芽相關(guān)QTL,并分析抗性QTL聚合效應(yīng)。雙親間GI、GR和SGR指標(biāo)值差異顯著,親本川農(nóng)16穗發(fā)芽抗性明顯優(yōu)于親本川麥42。共檢測(cè)到11個(gè)與穗發(fā)芽抗性有關(guān)的QTL,主要分布在2B、2D、3A、3D、4A、5A、5B和6B染色體上。5B染色體上檢測(cè)到的單個(gè)環(huán)境表達(dá)的整穗發(fā)芽QTL解釋的表型變異率最大,達(dá)到29%;在2D和3A染色體上檢測(cè)到的整穗發(fā)芽主效QTL,以及5A染色體上檢測(cè)到的與種子休眠相關(guān)的籽粒發(fā)芽主效QTL,在2個(gè)環(huán)境下均能表達(dá),其抗穗發(fā)芽等位變異均來(lái)源于川農(nóng)16。基因型分析發(fā)現(xiàn),RIL群體中不同株系聚合抗性QTL的數(shù)量變幅為1—9個(gè),表現(xiàn)為抗穗發(fā)芽的株系均攜帶4—9個(gè)與穗發(fā)芽相關(guān)的抗性QTL。重組自交系群體中6個(gè)株系GI、GR和SGR值均在15%以下,表現(xiàn)出高抗穗發(fā)芽特性;這6個(gè)優(yōu)異株系聚合了多個(gè)與穗發(fā)芽相關(guān)的抗性QTL,且均聚合了川麥42在4A染色體上的微效QTL(和),以及川農(nóng)16在2D和5B染色體上的主效QTL(和);編號(hào)為104和125的優(yōu)異株系已通過(guò)審定,定名為川麥104和川麥64。其中,川麥104于2012年同時(shí)通過(guò)國(guó)家和四川省審定,其抗穗發(fā)芽能力強(qiáng),產(chǎn)量、品質(zhì)、抗病等優(yōu)良性狀突出,聚合了7個(gè)正向穗發(fā)芽QTL,包括2B、2D和5B染色體上來(lái)源于川農(nóng)16的4個(gè)抗性QTL(、、和),以及4A和6B染色體上來(lái)源于川麥42的3個(gè)QTL(、和);近年來(lái),川麥104已成為西南麥區(qū)小麥育種的核心親本,育成小麥品種(系)18個(gè)。共檢測(cè)到11個(gè)抗穗發(fā)芽QTL,其中3個(gè)來(lái)源于川麥42,8個(gè)來(lái)源于川農(nóng)16;RIL群體中的抗穗發(fā)芽株系均攜帶4—9個(gè)抗性QTL,優(yōu)異株系川麥104和川麥64高抗穗發(fā)芽,均聚合了7個(gè)穗發(fā)芽抗性QTL。
小麥;穗發(fā)芽;QTL定位;QTL聚合;聚合效應(yīng)
【研究意義】小麥?zhǔn)斋@前期如遇連續(xù)陰雨或濕熱環(huán)境,其籽粒在麥穗上萌動(dòng)、發(fā)芽的現(xiàn)象即為穗發(fā)芽(pre-harvest sprouting,PHS)[1]。小麥穗發(fā)芽在全世界小麥種植區(qū)均有發(fā)生,全球每年由小麥穗發(fā)芽引起的直接經(jīng)濟(jì)損失約為10億美元[2-3];中國(guó)約有83%的小麥種植區(qū)均發(fā)生過(guò)嚴(yán)重的穗發(fā)芽危害,尤其是長(zhǎng)江中下游麥區(qū)、西南麥區(qū)和東北春麥區(qū)頻繁發(fā)生,黃淮冬麥區(qū)和北方冬麥區(qū)也時(shí)有發(fā)生,嚴(yán)重影響中國(guó)小麥的安全生產(chǎn)[1,4-6]。四川盆地在小麥成熟期降雨較多,特別是近2年,小麥?zhǔn)斋@前2—3 d連續(xù)陰雨,生產(chǎn)上,穗發(fā)芽敏感的品種穗發(fā)芽發(fā)生嚴(yán)重,引起其內(nèi)部籽粒蛋白質(zhì)和儲(chǔ)藏物質(zhì)分解,導(dǎo)致產(chǎn)量和品質(zhì)嚴(yán)重降低,給種植大戶和企業(yè)造成巨大的經(jīng)濟(jì)損失。因此,挖掘抗穗發(fā)芽基因,培育抗穗發(fā)芽小麥品種己成為小麥育種的重要目標(biāo)?!厩叭搜芯窟M(jìn)展】穗發(fā)芽是一個(gè)復(fù)雜的、由多基因控制的數(shù)量性狀,遺傳基礎(chǔ)復(fù)雜且易受環(huán)境影響[7]。研究表明,種子休眠特性、穗部形態(tài)、籽粒性狀、穎殼內(nèi)發(fā)芽抑制物質(zhì)、α-淀粉酶活性以及光照、溫度等均不同程度影響穗發(fā)芽抗性[8]。目前,與穗發(fā)芽抗性相關(guān)的QTL已被定位到小麥21條染色體上[9-16],其中,第2、3和4同源群是穗發(fā)芽主效抗性基因的富集區(qū)域[14-15,17-21]。隨著小麥基因組測(cè)序和生物信息學(xué)的快速發(fā)展,7個(gè)與穗發(fā)芽或休眠相關(guān)的基因已被克隆,包括第2同源群上的關(guān)鍵基因,第3同源群的關(guān)鍵基因、、和,第4同源群的關(guān)鍵基因和[22-30]。【本研究切入點(diǎn)】目前,已定位的小麥穗發(fā)芽QTL數(shù)量眾多,隨著候選基因的挖掘,一些與穗發(fā)芽抗性相關(guān)的功能標(biāo)記也被開(kāi)發(fā)應(yīng)用;但不同群體、不同環(huán)境下均能有效應(yīng)用的標(biāo)記仍較少,且大多標(biāo)記為與種子休眠特性相關(guān)的標(biāo)記,從而限制了標(biāo)記檢測(cè)結(jié)果與穗發(fā)芽表型的吻合性。因此,穗發(fā)芽研究任重道遠(yuǎn),挖掘更多穗發(fā)芽抗性基因及其優(yōu)異等位變異,聚合不同效應(yīng)的抗穗發(fā)芽?jī)?yōu)異等位基因?qū)⒂兄谔岣咴耘嘈←溗氚l(fā)芽抗性。川麥42是四川省農(nóng)業(yè)科學(xué)院作物研究所利用CIMMYT人工合成六倍體小麥育成的高產(chǎn)小麥品種,具有大穗大粒、抗條銹病等優(yōu)異特性,但其對(duì)穗發(fā)芽和花期低溫敏感。為了改良其穗發(fā)芽和花期凍害特性,四川省農(nóng)業(yè)科學(xué)院小麥種質(zhì)資源創(chuàng)新團(tuán)隊(duì)對(duì)收集的資源通過(guò)系統(tǒng)評(píng)價(jià),發(fā)現(xiàn)四川農(nóng)業(yè)大學(xué)培育的小麥品種川農(nóng)16分蘗力強(qiáng)、抗白粉病、對(duì)花期低溫和穗發(fā)芽具有較強(qiáng)抗性,其重要性狀與川麥42互補(bǔ)性強(qiáng)。因此,四川省農(nóng)業(yè)科學(xué)院小麥種質(zhì)資源創(chuàng)新團(tuán)隊(duì)利用川麥42與川農(nóng)16雜交,以單粒傳的方式構(gòu)建了重組自交系群體(RILs)?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)籽粒發(fā)芽和整穗發(fā)芽試驗(yàn),利用中國(guó)科學(xué)院成都生物研究所構(gòu)建的川麥42/川農(nóng)16 RIL群體SNP遺傳連鎖圖譜,挖掘與籽粒發(fā)芽和整穗發(fā)芽相關(guān)的QTL,尋找聚合雙親抗穗發(fā)芽QTL且表現(xiàn)抗穗發(fā)芽的優(yōu)異材料。
小麥品種川麥42、川農(nóng)16及其構(gòu)建的127個(gè)重組自交系(RIL,F(xiàn)8),以及穗發(fā)芽敏感對(duì)照川麥45。川麥42和對(duì)照川麥45由四川省農(nóng)業(yè)科學(xué)院作物研究所提供,川農(nóng)16由四川農(nóng)業(yè)大學(xué)提供;川麥42和川農(nóng)16為紅粒小麥,川麥45為白粒小麥;重組自交系由四川省農(nóng)業(yè)科學(xué)院作物研究所利用川麥42與川農(nóng)16雜交,采用單粒傳法構(gòu)建而成,通過(guò)昆明、成都兩地穿梭種植穩(wěn)定成系。
川麥42、川農(nóng)16及其構(gòu)建的127個(gè)重組自交系群體,穗發(fā)芽敏感對(duì)照川麥45分別種植于廣漢和成都。2016年種植于廣漢(2016GH),每個(gè)小區(qū)種植3行,隨機(jī)區(qū)組設(shè)計(jì),3次重復(fù),行長(zhǎng)1.5 m,行距20 cm,每行15窩,采用免耕、撬窩、稻草覆蓋栽培方式;2017和2018年均種植于成都網(wǎng)室(2017CD和2018CD),試驗(yàn)設(shè)計(jì)和種植方式與廣漢相同,播種后采用細(xì)土覆蓋。田間管理與當(dāng)?shù)匦←溕a(chǎn)一致。
籽粒發(fā)芽:對(duì)2016年和2018年環(huán)境下的RIL群體及其親本進(jìn)行籽粒發(fā)芽測(cè)定,于生理成熟期隨機(jī)取中間一行的5個(gè)穗子,室內(nèi)陰干,7 d后-20℃保存。將保存于-20℃的5個(gè)穗子手工脫粒,用0.5%的NaClO消毒沖洗后,取100粒完整種子置于培養(yǎng)皿(培養(yǎng)皿底部置有濕潤(rùn)的濾紙)中;每個(gè)材料2次重復(fù),試驗(yàn)第2天開(kāi)始統(tǒng)計(jì)發(fā)芽種子數(shù),并將已發(fā)芽種子移除,連續(xù)計(jì)數(shù)7 d。計(jì)算發(fā)芽率(seed germination rate,GR)和發(fā)芽指數(shù)(seed germination index,GI)。GR=(發(fā)芽粒數(shù)∕總粒數(shù))×100%;GI=(7×n1+6×n2+5×n3+4×n4+3×n5+2×n6+1×n7)/(7×N)×100%,N表示籽粒總數(shù);n1、n2、…、n7分別表示第1天至第7天的發(fā)芽籽粒數(shù)。
整穗發(fā)芽:對(duì)2017年和2018年成都點(diǎn)的RIL群體及其親本進(jìn)行人工模擬降雨田間整穗發(fā)芽測(cè)定。采用田間自動(dòng)噴灌系統(tǒng)人工模擬降雨,于生理成熟期連續(xù)噴灑7 d,確保所有試驗(yàn)材料穗子一直保持濕潤(rùn),待對(duì)照穗子籽粒90%以上萌動(dòng)后,隨機(jī)收獲中間一行的10個(gè)穗子,快速烘干后手工脫粒,統(tǒng)計(jì)總粒數(shù)和發(fā)芽粒數(shù),計(jì)算整穗發(fā)芽率(seed germination rate of in each spike,SGR)。SGR=發(fā)芽粒數(shù)/總粒數(shù)×100%。
供試材料基因組DNA由中國(guó)科學(xué)院成都生物研究所采用CTAB方法提取,DNA質(zhì)檢、小麥90K SNP芯片檢測(cè)工作由北京博奧公司完成。RIL群體SNP數(shù)據(jù)分型及遺傳圖譜均由中國(guó)科學(xué)院成都生物研究所分析完成,遺傳連鎖圖譜采用IciMapping 4.1軟件完成。
利用SPSS 13.0 軟件對(duì)表型進(jìn)行統(tǒng)計(jì)分析,通過(guò)QTL分析軟件IciMapping v3.0(http://www.isbreeding. net/software.html)分別計(jì)算各環(huán)境下不同性狀的廣義遺傳力。參考前人研究以抗性品種發(fā)芽率鑒定篩選抗穗發(fā)芽材料[1,5-6,8],結(jié)合實(shí)際情況,將GI、GR和SGR值低于15%定為高抗穗發(fā)芽品種,15%—25%定為抗穗發(fā)芽品種。
利用QTL分析軟件ICIMapping v3.0對(duì)RIL群體的GI、GR和SGR進(jìn)行QTL分析。采用逐步回歸法的完備區(qū)間作圖法(inclusive composite interval mapping,ICIM),基于1 cM的步移速度進(jìn)行QTL的鑒定分析,最小QTL效應(yīng)的LOD閾值設(shè)為2.5。
2016、2017和2018年對(duì)親本川麥42、川農(nóng)16及其RIL群體進(jìn)行了穗發(fā)芽鑒定,3個(gè)指標(biāo)籽粒發(fā)芽指數(shù)(GI)、籽粒發(fā)芽率(GR)和整穗發(fā)芽率(SGR)用于分析其穗發(fā)芽抗性(表1)。結(jié)果顯示,2個(gè)環(huán)境下,親本川麥42的3個(gè)指標(biāo)值(GI、GR和SGR)均顯著高于親本川農(nóng)16,表明川農(nóng)16穗發(fā)芽抗性顯著優(yōu)于川麥42;RIL群體中穗發(fā)芽抗性呈連續(xù)分布,存在超親分離現(xiàn)象。不同環(huán)境下穗發(fā)芽抗性參數(shù)的遺傳力不同,2016年籽粒發(fā)芽率的遺傳力最高(0.82)。
相關(guān)性分析表明(表2),所有穗發(fā)芽參數(shù)間均表現(xiàn)正相關(guān);單環(huán)境下,GI、GR和SGR之間表現(xiàn)為顯著或極顯著正相關(guān),GI與GR相關(guān)系數(shù)較大,而GI、GR分別與SGR間的相關(guān)系數(shù)較?。徊煌h(huán)境下籽粒發(fā)芽參數(shù)相關(guān)性不顯著。SGR在2個(gè)環(huán)境下極顯著正相關(guān),但相關(guān)系數(shù)小于0.5。結(jié)果表明,小麥穗發(fā)芽抗性易受環(huán)境影響,但在不同年份間,SGR表現(xiàn)出相對(duì)穩(wěn)定的趨勢(shì)。
表1 RIL群體及其親本穗發(fā)芽性狀參數(shù)統(tǒng)計(jì)
GI:籽粒發(fā)芽指數(shù);GR:籽粒發(fā)芽率;SGR:整穗發(fā)芽率;GH:廣漢;CD:成都。**表示川麥42和川農(nóng)16在0.01水平差異極顯著。下同
GI: Seed germination index; GR: Seed germination rate; SGR: Seed germination rate of in each spike; GH: Guanghan; CD: Chengdu. ** Indicate significant difference at<0.01 between Chuanmai 42 and Chuannong 16. The same as below
表2 RIL群體中穗發(fā)芽性狀間的相關(guān)性
*表示在0.05水平上差異顯著* represent significance at 0.05
利用RIL群體在不同環(huán)境下穗發(fā)芽相關(guān)性狀的表型數(shù)據(jù),結(jié)合SNP芯片數(shù)據(jù)對(duì)穗發(fā)芽相關(guān)QTL進(jìn)行分析。共檢測(cè)到11個(gè)與穗發(fā)芽抗性有關(guān)的QTL(表3和圖1),貢獻(xiàn)率為4.28%—29.03%,主要分布在2B、2D、3A、3D、4A、5A、5B和6B染色體上;除4A和6B染色體上的3個(gè)QTL增加穗發(fā)芽抗性的等位變異來(lái)自川麥42外,其余8個(gè)QTL增加穗發(fā)芽抗性的等位變異均來(lái)自親本川農(nóng)16。5B染色體上—區(qū)段檢測(cè)到的與整穗發(fā)芽相關(guān)的QTL()貢獻(xiàn)率最大(29.03%),但僅在單個(gè)環(huán)境中表達(dá)。2017和2018年2個(gè)環(huán)境下,在2D和3A染色體上均檢測(cè)到SGR的QTL,不同環(huán)境下的QTL貢獻(xiàn)率差異明顯,最高為10.86%。5A染色體上—區(qū)段檢測(cè)到與休眠相關(guān)的GI和GR的QTL,均能在2個(gè)環(huán)境下表達(dá),貢獻(xiàn)率最高為18.80%。2B和4A染色體上僅檢測(cè)到在單個(gè)環(huán)境表達(dá)的與休眠相關(guān)的微效QTL,其貢獻(xiàn)率均較小。
表3 川麥42/川農(nóng)16重組自交系群體中檢測(cè)到的穗發(fā)芽相關(guān)性狀QTL
a:加性效應(yīng)正值表示增強(qiáng)穗發(fā)芽抗性的等位變異來(lái)自親本川農(nóng)16,負(fù)值表示增強(qiáng)穗發(fā)芽抗性的等位變異來(lái)自親本川麥42
a: Positive values of additive effect indicate that alleles from Chuannong 16 increase the resistance to PHS, and negative values indicate that alleles from Chuanmai 42 increase the resistance
基因型分析發(fā)現(xiàn),在RIL群體中,普遍存在穗發(fā)芽抗性QTL聚合現(xiàn)象,聚合的QTL數(shù)量變幅在1—9個(gè),其中,聚合4個(gè)抗性QTL的株系數(shù)最多(圖2)。根據(jù)3個(gè)環(huán)境下穗發(fā)芽表型數(shù)據(jù),發(fā)現(xiàn)RIL群體中GI、GR和SGR值低于15%的株系分別為13、12和14個(gè),GI、GR和SGR值在15%—25%的株系分別為31、32和36個(gè);其中6個(gè)株系的GI、GR和SGR值均低于15%,表現(xiàn)為高抗穗發(fā)芽(表4)。分析其基因型,發(fā)現(xiàn)抗穗發(fā)芽的株系攜帶4—9個(gè)穗發(fā)芽相關(guān)性狀的抗性QTL;6個(gè)優(yōu)異株系攜帶7或8個(gè)抗性QTL,編號(hào)為12和74的株系攜帶QTL數(shù)最多(8個(gè))。6個(gè)高抗株系同時(shí)聚合了川麥42在4A染色體上的微效QTL,以及川農(nóng)16在2D和5B染色體上的主效QTL。株系12、74和125在2個(gè)環(huán)境下SGR值均小于10%,均攜帶2D、3D和5B染色體上的SGR抗性QTL。高抗穗發(fā)芽的株系104已于2012年同時(shí)通過(guò)國(guó)家和四川省審定,定名為川麥104;株系125于2013年通過(guò)四川省審定,定名為川麥64。
表4 6個(gè)高抗穗發(fā)芽株系攜帶的抗性QTL
三角形表示峰值所在位置。無(wú)填充的三角形表示2016年的QTL,斜線填充的三角形表示2017年的QTL,黑色填充的三角形表示2018年的QTL
The triangle indicates the position of QTL peak. The unfilled triangles represent QTLs for PHS in 2016, the diagonal filled triangles represent QTLs for PHS in 2017, and the black triangles represent QTLs for PHS in 2018
圖1 穗發(fā)芽相關(guān)性狀QTL在8條染色體上的分布
Fig. 1 QTLs for PHS related traits on 8 chromosomes
小麥穗發(fā)芽的鑒定方法有很多,如整穗發(fā)芽、籽粒發(fā)芽、α-淀粉酶活性鑒定、田間穗發(fā)芽鑒定、沉降值測(cè)量等,常用的主要是籽粒發(fā)芽、整穗發(fā)芽法和田間發(fā)芽鑒定[1,8]。籽粒發(fā)芽法為簡(jiǎn)化的穗發(fā)芽鑒定方法,是生產(chǎn)上大規(guī)模鑒定評(píng)價(jià)的最普遍的方法,但其只能檢測(cè)種子的休眠特性;整穗發(fā)芽法和田間發(fā)芽鑒定法既能檢測(cè)種子的休眠性,又能從穗部形狀、穎殼特性、外源抑制物質(zhì)等方面全面直觀地反映品種的抗穗發(fā)芽特性,是最符合生產(chǎn)實(shí)際的遺傳研究方法。本研究同時(shí)利用籽粒發(fā)芽法和整穗發(fā)芽法鑒定評(píng)價(jià)川麥42/川農(nóng)16重組自交系群體及其親本穗發(fā)芽發(fā)生程度,更能全面地挖掘抗穗發(fā)芽QTL,鑒定出更適合大田生產(chǎn)需要的育種材料。本研究同一材料整穗發(fā)芽率普遍比籽粒發(fā)芽率和發(fā)芽指數(shù)低,這與前人研究結(jié)果一致[31];相關(guān)性分析表明,穗發(fā)芽抗性易受環(huán)境影響,但在不同年份間,SGR表現(xiàn)出相對(duì)穩(wěn)定的趨勢(shì)。因此,人工模擬降雨整穗發(fā)芽法也能較準(zhǔn)確地評(píng)價(jià)穗發(fā)芽抗性,通過(guò)2種鑒定方法評(píng)價(jià)篩選抗穗發(fā)芽材料,更能優(yōu)選出適合大田生產(chǎn)實(shí)際的資源。
圖2 川麥42/川農(nóng)16 RILs中穗發(fā)芽抗性QTL聚合頻率分布
前人利用不同研究群體已將小麥穗發(fā)芽和種子休眠相關(guān)QTL定位在所有染色體上,其中,第2、3和4同源群上的穗發(fā)芽相關(guān)基因在不同研究中均被重復(fù)定位到[9-16,32-35]。本研究利用中國(guó)科學(xué)院成都生物研究所構(gòu)建的SNP遺傳連鎖圖譜,根據(jù)穗發(fā)芽相關(guān)的表型數(shù)據(jù),在2B、2D、3A、3D、4A、5A、5B和6B染色體上檢測(cè)到11個(gè)與穗發(fā)芽抗性相關(guān)的QTL,其中,2D、3A和5A上檢測(cè)到的主效QTL在2個(gè)環(huán)境下均能穩(wěn)定表達(dá)。前人利用染色體代換系、DH群體等研究也發(fā)現(xiàn)位于2D、3A、4A和5A染色體上與穗發(fā)芽相關(guān)的主效QTL[7,21,36-41],但由于這些研究所用標(biāo)記方法與本研究不同,不能直接比較,因此,無(wú)法確定本研究在2D、3A、4A和5A染色體上檢測(cè)到的QTL是否與前人定位的一致。Lin等[42]利用SSR和GBS-SNP技術(shù)在5A染色體上發(fā)現(xiàn)一個(gè)與種子休眠相關(guān)的QTL,與SSR標(biāo)記距離最近;Kumar等[37]通過(guò)籽粒發(fā)芽的方法將與籽粒休眠相關(guān)的QTL定位在5A染色體上SSR標(biāo)記—;Groos等[36]通過(guò)整穗發(fā)芽的方法也將穗發(fā)芽QTL定位到與Kumar等[37]發(fā)現(xiàn)的5A染色體上同一區(qū)域。本研究在5A染色體上檢測(cè)到的與種子休眠相關(guān)的QTL在2個(gè)環(huán)境下均表達(dá),貢獻(xiàn)率為4.87%—18.8%,但是否與前人研究結(jié)果位于同一區(qū)域還需進(jìn)一步增加SSR標(biāo)記掃描驗(yàn)證。Zhang等[25-26]利用比較基因組學(xué)法,在小麥中對(duì)水稻休眠基因進(jìn)行同源克隆,獲得休眠基因,并開(kāi)發(fā)了和的分子標(biāo)記;周勇[43]在3A染色體上發(fā)現(xiàn)地方品種中休眠相關(guān)QTL與SNP標(biāo)記-連鎖,毗鄰籽粒顏色相關(guān)的轉(zhuǎn)錄因子基因。目前,2D、3A和4A染色體上與穗發(fā)芽相關(guān)基因/QTL多次被報(bào)道,其關(guān)鍵基因已經(jīng)被克隆[3,7,17-19,21,29,38-39,41,44-46],位于第3和第4同源群的、、和是目前最有效的小麥穗發(fā)芽相關(guān)基因[47];本研究在2D、3A和4A染色體上檢測(cè)到的穗發(fā)芽相關(guān)主效QTL是否是克隆的基因或鄰近已知基因,還需利用有效標(biāo)記檢測(cè)及SNP序列比較分析進(jìn)一步驗(yàn)證。
本研究利用雙親染色體重組篩選出一批抗穗發(fā)芽材料,聚合了多個(gè)穗發(fā)芽抗性QTL。其中,株系104于2012年同時(shí)通過(guò)國(guó)家和四川省審定,定名為川麥104;川麥104國(guó)家區(qū)試平均產(chǎn)量6 130.5 kg·hm-2,比對(duì)照川麥42增產(chǎn)8.42%;四川省區(qū)試平均產(chǎn)量6 116.1 kg·hm-2,比對(duì)照綿麥37增產(chǎn)14.12%?;蛐头治霭l(fā)現(xiàn),川麥104聚合了雙親7個(gè)正向穗發(fā)芽QTL,具有較強(qiáng)的抗穗發(fā)芽能力;李式昭等[48]利用穗發(fā)芽抗性等位基因分子標(biāo)記,對(duì)2000年以來(lái)四川育成的105份小麥品種進(jìn)行鑒定,發(fā)現(xiàn)川麥104同時(shí)含抗穗發(fā)芽基因。Tang等[49]控制性試驗(yàn)表明,生理成熟期川麥104的籽粒發(fā)芽指數(shù)在所有參試品種中最低,成熟后延遲1—2周收獲,其降落值降低幅度小,仍接近優(yōu)質(zhì)小麥標(biāo)準(zhǔn)(300s),顯著高于其他多數(shù)參試品種。2018年小麥成熟后持續(xù)淋雨3 d,30個(gè)參試品種平均籽粒發(fā)芽率20.8%,最高68.9%,而川麥104籽粒發(fā)芽率僅2.3%;2019年成熟期遭遇持續(xù)降雨,各地調(diào)查川麥104基本未出現(xiàn)發(fā)芽,而大多數(shù)品種穗發(fā)芽嚴(yán)重。由于川麥104產(chǎn)量、品質(zhì)、抗病及抗穗發(fā)芽等優(yōu)良性狀突出,其已成為西南麥區(qū)小麥育種的核心親本,近年來(lái),已育成小麥品種(系)18個(gè)。因此,雙親抗穗發(fā)芽QTL聚合可以提高穗發(fā)芽抗性,本研究鑒定出的抗穗發(fā)芽?jī)?yōu)異株系是小麥穗發(fā)芽育種改良的重要基因資源。
共檢測(cè)到11個(gè)與穗發(fā)芽抗性相關(guān)的QTL,其中3個(gè)來(lái)源于川麥42,8個(gè)來(lái)源于川農(nóng)16。2D、3A和5A染色體上檢測(cè)到的穗發(fā)芽主效QTL,在2個(gè)環(huán)境下均能表達(dá),其抗穗發(fā)芽等位變異均來(lái)源于川農(nóng)16。在RIL群體中,抗穗發(fā)芽的株系均攜帶4—9個(gè)與穗發(fā)芽相關(guān)的QTL,6個(gè)優(yōu)異株系聚合了7或8個(gè)抗性QTL;編號(hào)為104和125的優(yōu)異株系(國(guó)家、四川省審定,定名為川麥104和川麥64)聚合了7個(gè)正向穗發(fā)芽QTL,包括4個(gè)來(lái)源于川農(nóng)16的抗性QTL和3個(gè)來(lái)源于川麥42的QTL。
[1] 肖世和, 閆長(zhǎng)生, 張海萍, 孫果忠. 小麥穗發(fā)芽研究. 北京: 中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2002.
XIAO S H, YAN C S, ZHANG H P, SUN G Z..Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[2] DERERA N F, BHATT G M, MCMASTER G J. On the problem of preharvest sprouting of wheat., 1977, 26(2): 299.
[3] OGBONNAYA F C, IMTIAZ M, YE G, HEARNDEN P R, HERNANDEZ E, EASTWOOD R F, GINKEL M V, SHORTER S C, WINCHESTER J M. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955., 2008, 116(7): 891-902.
[4] XIAO S H, ZHANG X Y, YAN C S, LIN H. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy., 2002, 126(1): 35-38.
[5] 原亞萍, 陳孝, 肖世和. 小麥穗發(fā)芽的研究進(jìn)展. 麥類(lèi)作物學(xué)報(bào), 2003, 23(3): 136-139.
YUAN Y P, CHEN X, XIAO S H. Advances in the study on wheat pre-harvest sprouting., 2003, 23(3): 136-139. (in Chinese)
[6] 閆長(zhǎng)生, 張海萍, 海林, 張秀英, 胡琳, 胡漢橋, 蒲宗君, 肖世和. 中國(guó)小麥品種穗發(fā)芽抗性差異的研究. 作物學(xué)報(bào), 2006, 32(4): 580-587.
YAN C S, ZHANG H P, HAI L, ZHANG X Y, HU L, HU H Q, PU Z J, XIAO S H. Differences of preharvest sprouting resistance among chinese wheat cultivars., 2006, 32(4): 580-587. (in Chinese)
[7] IMTIAZ M, OGBONNAYA F C, OMAN J, GINKEL M V. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines., 2008, 178(3): 1725-1736.
[8] 劉莉, 王慶海, 陳國(guó)志. 小麥穗發(fā)芽研究進(jìn)展. 作物雜志, 2013(4): 6-11.
LIU L, WANG Q H, CHEN G Z. Advances on resistance to pre-harvest sprouting in wheat., 2013(4): 6-11. (in Chinese)
[9] ANDERSON J A, SORRELLS M E, TANKSLEY S D. RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat., 1993, 33(3): 453-459.
[10] ROY J K, PRASAD M, VARSHNEY R K, BALYAN H S, BLAKE T K, DHALIWAL H S, EDWARDS K J, GUPTA P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance., 1999, 99(1): 336-340.
[11] ARIF M R, NEUMANN K, NAGEL M, KOBILJSKI B, LOHWASSER U, B?RNER A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat., 2012, 188: 409-417.
[12] FLINTHAM J, ADLAM R, BASSOI M, HOLDSWORTH M, GALE M. Mapping genes for resistance to sprouting damage in wheat., 2002, 126: 39-45.
[13] JAISWAL V, MIR R R, MOHAN A, BALYAN H S, GUPTA P K. Association mapping for pre-harvest sprouting tolerance in common wheat (L.)., 2012, 188: 89-102.
[14] KULWAL P L, SINGH R, BALYAN H S, GUPTA P K. Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat., 2004, 4(2): 94-101.
[15] MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat (L.)., 2009, 168(3): 311-318.
[16] SINGH A K, KNOX R E, CLARKE J M, CLARKE F R, SINGH A, DEPAUW R M, CUTHBERT R D. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes., 2014, 33(4): 919-929.
[17] REN X B, LAN X J, LIU D C, WANG J L. LIANG Z Y. Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat × common wheat cross., 2008, 49(4): 333-341.
[18] ZHANG X Q, LI C D, TAY A, LANCE R, MARES D, CHEONG J, CAKIR M, MA J H, APPELS R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (L.)., 2008, 22(2): 227-236.
[19] CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace., 2008, 21(3): 351-358.
[20] SOMYONG S, ISHIKAWA G, MUNKVOLD J D, TANAKA J, BENSCHER D, CHO Y G, SORRELS M E. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat., 2014, 127(8): 1843-1855.
[21] WANG X Y, LIU H, MIA M S, SIDDIQUE K H M, YAN G J. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat., 2018, 69(9): 864-872.
[22] WANG J R, LIU Y X, WANG Y, CHEN Z H, DAI S, CAO W G, FEDAK G, LAN X J, WEI Y M, LIU D C, ZHENG Y L. Genetic variation of, 2011, 33(2): 139-146.
[23] NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONO K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT and TFL1 acts in the regulation of germination., 2011, 23(9): 3215-3229.
[24] LIU S B, SEHGAL S K, LI J R, LIN M, TRICK H N, YU J M, GILL B S, BAI G H. Cloning and characterization of a critical regulator for preharvest sprouting in wheat., 2013, 195(1): 263-273.
[25] ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes () associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker., 2014, 127(4): 855-866.
[26] ZHANG Y J, XIA X C, HE Z H. The seed dormancy alleleassociated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces., 2016, 130(1): 81-89.
[27] ZHOU S H, FU L, WU Q H, CHEN J J, CHEN Y X, XIE J Z, WANG Z Z, WANG G X, ZHANG D Y, LIANG Y, ZHANG Y, YOU M S, LIANG R Q, HAN J, LIU Z Y. QTL mapping revealedconferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6., 2017, 16(2): 435-444.
[28] DONG Z D, CHEN J, LI T CHEN F, CUI D Q. Molecular survey ofgenes and their association with grain color and germinability in Chinese wheat and., 2015, 94(3): 453-459.
[29] BARRERO J M, CAVANAGH C, VERBYLA K L, TIBBITS J F G, VERBYLA A P, HUANG B. E, ROSEWARNE G M, STEPHEN S, WANG P, WHAN A, RIGAULT P, HAYDEN M J, GUBLER F. Transcriptomic analysis of wheat near-isogenic lines identifiesandas candidates for a major dormancy QTL., 2015, 16: 93.
[30] TORADA A, KOIKE M, OGAWA T, TAKENOUCHI Y, TADAMURA K, WU J Z, MATSUMOTO T, KAWAURA K, OGIHARA Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase., 2016, 26(6): 782-287.
[31] 李玉營(yíng), 馬東方, 王曉玲, 方正武. 小麥穗發(fā)芽鑒定方法的比較與分析. 廣西植物, 2016, 36(3): 261-266.
LI Y Y, MA D F, WANG X L, FANG Z W, Comparison and analysis of wheat pre-harvest sprouting screening methods., 2016, 36(3): 261-266. (in Chinese)
[32] KULWAL P L, KUMAR N, GAUR A, KHURANA P, KHURANA J P, TYAGI A K, BALYAN H S, GUPTA P K. Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat., 2005, 111(6): 1052-1059.
[33] JIANG Y F, WANG J R, LUO W, WEI Y M, QI P F, LIU Y X, JIANG Q T, PENG Y Y, CHEN G Y, DAI S F, ZHENG Y L, LAN X J. Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat (ssp.Shao)., 2015, 203(3): 557-567.
[34] LIN M, ZHANG D D, LIU S B, ZHANG G R, YU J M, FRITZ A K, BAI G H. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat., 2016, 17(1): 794-810.
[35] MOHAN A, KULWAL P, SINGH R, KUMAR V, MIR R R, KUMA J, PRASAD M, BALYAN H S, GUPTA P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat., 2009, 168(3): 319-329.
[36] GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross., 2002, 104(1): 39-47.
[37] KUMAR S, KNOX R E, CLARKE F R, POZNIAK C J DEPAUW RM, CUTHBERT R D, FOX S. Maximizing the identification of QTL for pre-harvest sprouting resistance using seed dormancy measures in a white-grained hexaploid wheat population., 2015, 205(1): 287-309.
[38] MARES D J, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin., 2005, 111(7): 1357-1364.
[39] TAN M K, SHARP P J, LU M Q, HOWES N. Genetics of grain dormancy in a white wheat., 2006, 57: 1157-1165.
[40] MUNKVOLD J D, TANAKA J, BENSCHER D, SORRELLS M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat., 2009, 119(7): 1223-1235.
[41] LIU S B, BAI G H, CAI S B, CHEN C X. Dissection of genetic components of preharvest sprouting resistance in white wheat., 2011, 27(4): 511-523.
[42] LIN M, CAI S, WANG S, LIU S B, ZHANG G R, BAI G H. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance., 2015, 128(7): 1385-1395.
[43] 周勇. 中國(guó)小麥地方品種穗發(fā)芽抗性評(píng)價(jià)及全基因組關(guān)聯(lián)分析[D]. 成都: 四川農(nóng)業(yè)大學(xué), 2017.
ZHOU Y. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces [D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese)
[44] SINGH R, MATUS-CáDIZ M, B?GA M, HUCL P, CHIBBAR R N. Identification of genomic regions associated with seed dormancy in white-grained wheat., 2010, 174(3): 391-408.
[45] CABRAL A L, JORDAN M C, MCCARTNEY C A, YOU F M, HUMPHREYS D G, MACLACHLAN R, POZNIAK C J. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (L.)., 2014, 14(1): 340.
[46] KATO K, NAKAMURA W, TABIKI T, MIURA H, SAWADA S. Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes., 2001, 102(6/7): 980-985.
[47] Justin M V, Robert N S,John M M,Michael J G. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (L.)., 2019, 281: 180-185.
[48] 李式昭, 鄭建敏, 伍玲, 李俊, 萬(wàn)洪深, 楊漫宇, 羅江陶, 劉廷輝, 楊開(kāi)俊, 蒲宗君. 四川小麥品種籽粒硬度和穗發(fā)芽抗性相關(guān)基因的分子標(biāo)記鑒定. 西南農(nóng)業(yè)學(xué)報(bào), 2018, 31(4): 641-645.
LI S Z, ZHENG J M, WU L, LI J, WAN H S, YANG M Y, LUO J T, LIU T H, YANG K J, PU Z J. Identification of grain hardness and resistance to pre-harvest sprouting in Sichuan wheat cultivars with molecular markers., 2018, 31(4): 641-645. (in Chinese)
[49] TANG Y L, LI C S, YANG W Y, WU Y Q, WU X L, WU C, MA X L, LI S Z, ROSEWARNE G M. Quality potential of synthetic-derived commercial wheat cultivars in south-western China., 2016, 67(6): 583-593.
Identification and pyramiding of QTLs for traits associated with Pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16
WANG Qin1,2, LIU ZeHou1,2, WAN HongShen1,2, WEI HuiTing2,3, LONG Hai4, LI Tao4, DENG GuangBing4, LI Jun1,2, YANG WuYun1,2
(1Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066;2Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu 610066;3Plant Protection Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066;4Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041)
【】 Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, which significantly reduces grain yield and end-use quality, especially in rainy or high humidity regions. The objective of this study is to identify and aggregate quantitative trait loci (QTLs) for traits associated with PHS resistance, which will provide a theoretical basis for improving PHS resistance in Sichuan wheat cultivars.【】A recombinant inbred line (RIL) population derived from Chuanmai 42 and Chuannong 16 was used to detect QTL and assess the new germplasm resources for PHS resistance. 127 lines in RIL population were analyzed by phenotypic and genetic identification for PHS-related traits. Seed germination index (GI), seed germination rate (GR) and seed germination rate of in each spike (SGR) in two different environments were used to evaluate PHS resistance. All QTLs for PHS resistance were mapped by an available high-density single nucleotide polymorphism (SNP, 90K). The pyramiding of the resistant QTL was also analyzed according to the genotype of every line in RILs. 【】There were significant difference in GI, GR and SGR between two parents. PHS resistance of Chuannong 16 was superior than that of Chuanmai 42. A total of 11 QTLs for PHS were detected on chromosomes 2B, 2D, 3A, 3D, 4A, 5A, 5B and 6B.was significantly associated with PHS resistance in single environment and explained 29.03% phenotypic variation.,,andcould express stably in two environments, and the alleles of enhancing PHS resistance were from Chuannong 16. The results of genotype analysis showed that the number of resistant QTL in different lines ranged from one to nine. Six excellent lines in RILs with high resistance carried seven or eight additive QTLs for PHS resistance. These additive QTLs included the minor QTLs on chromosome 4A from Chuanmai 42 and the major QTLs on chromosomes 2D and 5B from Chuannong 16. No. 104 and No. 125 in RIL population were released in China or Sichuan province because of its high yield and PHS resistance, and were named Chuanmai 104 and Chuanmai 64, respectively. Chuanmai 104 showed high yield and good resistance for stripe rust, powdery mildew and PHS in the Sichuan provincial trials and the national trails for Upper and Middle Yangtze River region in 2010 and 2012. The QTL analysis for PHS resistance revealed that Chuanmai 104 carried seven QTLs, including four QTLs on chromosomes 2B, 2D and 5B from Chuannong 16 and three QTLs on chromosomes 4A and 6B from another parent Chuanmai 42. The pyramiding of these additive QTL alleles from each parent led directly to the character of high PHS resistance in Chuanmai 104. In recent years, Chuanmai 104 was widely used to wheat improvement in Southwest China, and 18 wheat varieties (lines) have been bred. 【】Eleven QTLs for PHS resistance, including three QTLs from Chuanmai 42 and eight QTLs from chuannong16, were detected in this study. Four to nine resistant QTLs were generally carried by the resistant lines in RIL population. Two pyramiding lines (Chuanmai 104 and Chuanmai 64) with high PHS resistance carried seven resistant QTLs.
wheat; pre-harvest sprouting (PHS); QTL mapping; QTL pyramiding; pyramiding effect
10.3864/j.issn.0578-1752.2020.17.001
2019-10-21;
2020-02-08
國(guó)家小麥產(chǎn)業(yè)技術(shù)體系(CARS-03)、四川省科技計(jì)劃(2016NYZ0049)、四川省財(cái)政創(chuàng)新能力提升工程(2016ZYPZ-016)
王琴,E-mail:wq860728@163.com。通信作者李俊,E-mail:lijunchd@126.com。通信作者楊武云,E-mail:yangwuyun@126.com
(責(zé)任編輯 李莉)