王漢進
【摘 要】 建立模型是解決高中數(shù)學問題的重要方法,也是提高學生解決數(shù)學問題能力的重要途徑,因此,高中數(shù)學教師要重視培養(yǎng)學生的建模素養(yǎng),提高學生的建模能力,這不僅有利于學生對數(shù)學科目的學習,還可以提高學生的綜合素養(yǎng)。本文主要針對高中數(shù)學課堂培養(yǎng)學生建模素養(yǎng)的方法進行分析。
【關鍵詞】 高中數(shù)學;學生培養(yǎng);建模素養(yǎng)
隨著教育理念的進步,高中數(shù)學科目的教學也更重視提升學生的綜合能力,倡導學生全面發(fā)展。高中數(shù)學教師在教學的過程中要重視培養(yǎng)學生各方面的能力,其中,培養(yǎng)學生的建模素養(yǎng)就是一項非常重要的教學任務,所有高中數(shù)學教師都要對這項教學任務給予足夠的重視。
一、設計問題培養(yǎng)學生建模思想
模型的建立通常是為了解決某個數(shù)學問題,無論是新定理的提出還是某個命題的證明,其實質都是解決某個問題。為了能夠使學生充分認識到模型建立在數(shù)學學習中的重要作用,培養(yǎng)學生的建模能力,高中數(shù)學教師在備課過程中就應該對課堂中要提出的問題進行科學合理的設計,確保問題本身能夠引發(fā)學生對于建模的興趣,這樣高中數(shù)學教師才可以順利地引出建模思想在數(shù)學解題中的應用。除此之外,數(shù)學教師還需要注意的是,在課堂中提出的問題要具有啟發(fā)性,為此,教師需要站在學生的角度充分了解學生在學習過程中的“最近發(fā)展區(qū)”,這樣提出的問題才可以有效強化學生的發(fā)散思維。
比如,在進行“概率與統(tǒng)計”這一章的教學時,許多問題都可以通過建立數(shù)學模型的方式來解決。如“擲骰子”模型:投擲一枚質地均勻的骰子,某一面朝上的概率為。高中數(shù)學教師引導學生建立了“擲骰子”模型之后,就可以提出問題:同時擲兩枚質地均勻的骰子,朝上的數(shù)字相同的概率為多少?這個問題需要在“擲骰子”模型的基礎上來完成。以上模型與問題都是以現(xiàn)實生活為基礎的,因此能夠激發(fā)學生的好奇心,同時還可以強化學生對于“擲骰子”模型的掌握和應用。
二、組織活動豐富學生建模經驗
解決問題是數(shù)學建模的最終目的,為了豐富學生的建模經驗,使學生對數(shù)學建模的方法和過程能夠有更加深刻的理解和掌握,高中數(shù)學教師還要盡可能地安排固定的時間甚至地點開展建?;顒?。具體來講,數(shù)學教師可以利用習題課的時間,將學生分成不同的小組,提出不同的數(shù)學問題后,讓每兩個小組通過建模解決同一個問題,然后再讓學生在班級中分享自己小組在解決問題過程中的建模思想和建模方法,如果解決同一個問題的兩個小組的建模方法有所不同,教師要對每一種方法進行評價,并對不足之處進行補充,這樣學生就可以掌握不同的建模思想。定期開展這樣的數(shù)學建?;顒?,學生就可以實現(xiàn)數(shù)學模型積累,這對于學習數(shù)學知識來說是十分有利的。
比如,在進行“指數(shù)函數(shù)”的教學時,就可以引導學生嘗試建立細胞增長模型,然后以細胞增長模型為基礎向學生提出問題:細胞增長模型是否可用于人口增長數(shù)量的計算和分析?細胞增長模型能否對傳染病人數(shù)增長的數(shù)量進行計算和分析?這個過程中,教師可以把學生分成四個不同的小組,每兩個小組思考同樣的問題,學生得到結果之后要分小組在班級中進行分享,然后再由教師對結果進行評價和補充,這樣不僅可以提升學生對于基礎模型的應用能力,還可以豐富學生的建模經驗并提高他們的建模素養(yǎng)。
三、模型檢驗提高學生建模能力
利用數(shù)學建模方式解決數(shù)學問題的過程中,最后的模型檢驗也是一個必不可少的環(huán)節(jié),模型檢驗能夠確定所建立的數(shù)學模型能否真正被用于解決實際問題,能否準確地計算數(shù)學問題的結果,因此,高中數(shù)學教師在教學的過程中不能忽略模型檢驗這個環(huán)節(jié)。無論是教師引導學生建立模型,還是教師提出問題讓學生自行建立模型,最后教師都應該與學生一起對模型的應用效果進行檢驗,這樣不僅可以更進一步地提高學生的建模能力,而且可以讓學生不斷地對自己建立的數(shù)學模型進行反思和總結,從而提高學生的思考能力和解決實際問題的能力,這對于學生之后的學習是非常有幫助的??傊?,高中數(shù)學教師要通過培養(yǎng)學生的建模意識來提升學生各方面的綜合能力,為學生以后的發(fā)展奠定良好的基礎。
比如,銀行存款利息的問題是高中數(shù)學中經常會遇到的數(shù)學模型,不同利息模式下的數(shù)學模型也存在著普遍差異,如單利、復利以及國債券等,這些利息模式對應著不同的收益。高中數(shù)學教師引導學生分別建立不同利益模式下的數(shù)學模型時,要以實際的本息數(shù)據(jù)為基礎分別對這些模型進行檢驗,確保建立的模型能夠進行實際應用。利用貼近生活的數(shù)學問題來完成數(shù)學模型的檢驗工作,不僅可以激發(fā)學生的探求興趣,還可以使學生認識到數(shù)學科目的嚴謹性,從而投入更多的精力來進行數(shù)學科目的學習。
為了培養(yǎng)學生的建模素養(yǎng),高中數(shù)學教師要設計問題培養(yǎng)學生的建模思想,組織活動豐富學生的建模經驗,通過模型檢驗提高學生的建模能力。作為數(shù)學教師,要根據(jù)實際情況選擇最為合適的教學方法,盡可能地提高學生的建模水平,同時提升課堂教學質量和效率。
【參考文獻】
[1]陳麗.高中數(shù)學核心素養(yǎng)之數(shù)學建模能力培養(yǎng)的研究[J].科學大眾(科學教育),2020(02):21.
[2]王雪飛.數(shù)學建模在高中數(shù)學課堂的教學策略分析[J].才智,2020(01):87.