駱勇鵬 劉景良 韓建平
摘要: 參數(shù)不確定性量化及傳遞分析常需假定參數(shù)的總體分布,概率分布的選取對(duì)分析結(jié)果有較大影響。自助法無(wú)需進(jìn)行分布假設(shè)即可對(duì)總體的分布特性進(jìn)行統(tǒng)計(jì)推斷,可在一定程度解決以上問(wèn)題,但是在小樣本情況下容易導(dǎo)致計(jì)算結(jié)果偏離真實(shí)分布。為此,采用信息擴(kuò)散理論對(duì)自助法進(jìn)行改進(jìn),結(jié)合響應(yīng)面理論,提出新的參數(shù)不確定性量化及傳遞分析方法。該方法首先對(duì)各個(gè)Bootstrap子樣本的概率密度函數(shù)進(jìn)行信息擴(kuò)散估計(jì),采用接受-拒絕法生成大量改進(jìn)Bootstrap子樣本,計(jì)算不確定性參數(shù)的概率統(tǒng)計(jì)特征值。其次,根據(jù)不確定性量化結(jié)果,基于響應(yīng)面模型,快速計(jì)算結(jié)構(gòu)響應(yīng)的變化區(qū)間,根據(jù)所定義的區(qū)間靈敏度指標(biāo)來(lái)判斷參數(shù)不確定性對(duì)結(jié)構(gòu)響應(yīng)的影響程度,量化響應(yīng)的不確定性。最后,通過(guò)一斜拉橋的參數(shù)不確定性量化及傳遞分析,驗(yàn)證了所提方法的可行性及可靠性。
關(guān)鍵詞: 不確定性量化和傳遞; 斜拉橋; 改進(jìn)自助法; 響應(yīng)面模型; 有限樣本; 信息擴(kuò)散
中圖分類(lèi)號(hào): TU311.4; U448.27 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2020)04-0679-09
DOI:10.16385/j.cnki.issn.1004-4523.2020.04.005
引 言
土木工程結(jié)構(gòu)的材料屬性、制造誤差、幾何特征、荷載、邊界條件及服役環(huán)境等均存在不確定性[1]。采用確定性模型與確定性方法進(jìn)行分析,將無(wú)法正確有效地估計(jì)和量化結(jié)構(gòu)參數(shù)不確定性對(duì)結(jié)構(gòu)響應(yīng)的影響,難以對(duì)結(jié)構(gòu)的實(shí)際力學(xué)特性進(jìn)行準(zhǔn)確地分析與判斷。因此,如何有效地量化參數(shù)不確定性及其對(duì)結(jié)構(gòu)響應(yīng)的影響,對(duì)于工程結(jié)構(gòu)的分析、設(shè)計(jì)和優(yōu)化等具有重要指導(dǎo)意義[2]。
目前常用的不確定性分析方法主要有區(qū)間分析、模糊理論和概率理論,即可采用區(qū)間參數(shù)、模糊參數(shù)和隨機(jī)參數(shù)來(lái)描述參數(shù)不確定性問(wèn)題。概率分析方法是三種方法中最為常用方法,而Monte Carlo法又是概率分析方法中應(yīng)用較為廣泛的。該方法根據(jù)參數(shù)的概率密度函數(shù)進(jìn)行隨機(jī)抽樣,通過(guò)多次有限元模型計(jì)算得到輸出響應(yīng)的統(tǒng)計(jì)參數(shù)[3-5]。目前該方法存在的主要困難在于如何準(zhǔn)確描述試驗(yàn)參數(shù)和響應(yīng)特征的概率統(tǒng)計(jì)分布規(guī)律。而不確定性源的描述方式直接影響不確定性分析結(jié)果的準(zhǔn)確性與真實(shí)性[6],概率模型參數(shù)的小偏差也可能引起結(jié)構(gòu)分析結(jié)果出現(xiàn)較大誤差[7]。當(dāng)試驗(yàn)樣本個(gè)數(shù)較多時(shí),可用K-S檢驗(yàn)等方法來(lái)估計(jì)不確定性參數(shù)的概率分布[8]。但是,實(shí)際工程中往往難以提供足夠的實(shí)測(cè)數(shù)據(jù),只能基于某種假設(shè)進(jìn)行。當(dāng)假設(shè)的概率分布與實(shí)際分布不符時(shí),將導(dǎo)致較大誤差。也有學(xué)者提出區(qū)間分析可用于參數(shù)概率分布未知的情況,但需要指出的是區(qū)間分析無(wú)法提供輸入引起輸出的詳細(xì)信息和概率特性[9],得出的不確定分析結(jié)果過(guò)于籠統(tǒng),不能夠有效地指導(dǎo)工程實(shí)踐。因此需要一種能夠充分利用統(tǒng)計(jì)信息,又避免因信息過(guò)少而造成量化失真的不確定分析方法[10]。
自助法(Bootstrap抽樣)[11]運(yùn)用模擬再抽樣技術(shù)代替理論分析,基于有限的試驗(yàn)觀測(cè)數(shù)據(jù)模擬,再抽樣出大量符合原數(shù)據(jù)特征的模擬樣本,提供足夠的樣本進(jìn)行概率統(tǒng)計(jì)分析,避免對(duì)概率分布函數(shù)假定的依賴(lài),適用于小樣本不確定性參數(shù)量化。但是,研究發(fā)現(xiàn)自助法在每次重抽樣過(guò)程中均是從原始樣本中抽取,當(dāng)原始樣本容量較小時(shí),再抽樣得到的Bootstrap子樣本可能非常相似于原樣本,導(dǎo)致計(jì)算結(jié)果偏離真實(shí)分布[12]。為此,劉健等[13]通過(guò)對(duì)自助樣本生成范圍的拓展,在一定程度上克服了自助樣本生成范圍受限的不足。胡正東等[14]提出了利用驗(yàn)前信息來(lái)彌補(bǔ)原始樣本不足的改進(jìn)自助法。黃瑋等[15]研究了用指數(shù)分布函數(shù)、Boltzmann函數(shù)和三次多項(xiàng)式函數(shù)擬合修正樣本經(jīng)驗(yàn)分布函數(shù)的可行性。Yu 等[16]綜合了無(wú)模型抽樣和自助法的優(yōu)勢(shì),提出改進(jìn)的Bootstrap抽樣方法。
本文引入信息擴(kuò)散理論對(duì)Bootstrap抽樣進(jìn)行改進(jìn),通過(guò)將單值樣本轉(zhuǎn)換成概率形式表達(dá)的模糊集值樣本,進(jìn)而對(duì)非完備樣本信息進(jìn)行有效處理,在一定程度上解決原始樣本限制的問(wèn)題。其次在改進(jìn)自助抽樣的基礎(chǔ)上,提出新的不確定性參數(shù)量化及傳遞分析方法,探討參數(shù)不確定性對(duì)結(jié)構(gòu)動(dòng)力響應(yīng)的影響程度。以數(shù)值算例和斜拉橋動(dòng)力響應(yīng)不確定性分析為例,驗(yàn)證所提方法的可行性及可靠性。
通過(guò)比較各個(gè)參數(shù)的靈敏度因子的大小判斷各個(gè)參數(shù)變異對(duì)結(jié)構(gòu)動(dòng)力響應(yīng)不確定性的影響程度。
隨后,將靈敏度因子較高的不確定性參數(shù)的B組改進(jìn)Bootstrap子樣本代入ACE響應(yīng)面中,靈敏度因子較低的參數(shù)取均值,計(jì)算B組改進(jìn)Bootstrap子樣本所對(duì)應(yīng)的B組動(dòng)力響應(yīng),進(jìn)而獲得B組響應(yīng)的統(tǒng)計(jì)特征值,如均值和標(biāo)準(zhǔn)差。用這B個(gè)統(tǒng)計(jì)量的分布去模擬結(jié)構(gòu)響應(yīng)均值和標(biāo)準(zhǔn)差的分布,從而得到響應(yīng)概率統(tǒng)計(jì)特征值的抽樣分布及分布參數(shù),達(dá)到估計(jì)多個(gè)參數(shù)變異對(duì)結(jié)構(gòu)動(dòng)力響應(yīng)變化的影響以及因隨機(jī)抽樣產(chǎn)生的結(jié)構(gòu)響應(yīng)概率統(tǒng)計(jì)特征的估計(jì)誤差。
2 數(shù)值算例
為了考察改進(jìn)Bootstrap抽樣算法的可行性及可靠性,利用一組來(lái)自已知總體的觀測(cè)樣本估計(jì)總體的分布參數(shù)。已知原始樣本X=[1.1124, 0.3679, -1.6876, -0.8223, -0.9069, -1.5200, 1.6908, -3.0461, -0.3754, -0.3704, -0.1325, 0.6321, -0.1546, 0.3655, 0.3436, 0.7355, 1.1339, -0.3106, 1.2065, -0.3256]是來(lái)自標(biāo)準(zhǔn)正態(tài)總體N(0,1)的獨(dú)立隨機(jī)觀測(cè)樣本,樣本個(gè)數(shù)n=20。
分別采用自助法、正態(tài)信息擴(kuò)散及改進(jìn)自助法3種方法對(duì)該組樣本的均值和標(biāo)準(zhǔn)差進(jìn)行估計(jì)。表1給出了幾種方法估計(jì)的均值和標(biāo)準(zhǔn)差。從表1可知:直接根據(jù)小樣本數(shù)據(jù)得到的估計(jì)結(jié)果與實(shí)際結(jié)果誤差較大,基于自助法和信息擴(kuò)散的估計(jì)結(jié)果有所改善,而本文所提的改進(jìn)自助法估計(jì)的均值與標(biāo)準(zhǔn)差最接近實(shí)際值。由此可得改進(jìn)的Bootstrap法在小樣本數(shù)據(jù)的情況下總體分布參數(shù)的估計(jì)精度高于自助法和信息擴(kuò)散理論。
(3)抽樣隨機(jī)性對(duì)結(jié)構(gòu)響應(yīng)統(tǒng)計(jì)特征值有一定的影響,在不確定性分析中應(yīng)予以量化。
參考文獻(xiàn):
[1] 侯立群, 趙雪峰, 歐進(jìn)萍, 等. 結(jié)構(gòu)損傷診斷不確定性方法研究進(jìn)展[J]. 振動(dòng)與沖擊, 2014, 33(18):50-58.
Hou Liqun, Zhao Xuefeng, Ou Jinping, et al. A review of nondeterministic methods for structural damage diagnosis[J]. Journal of Vibration and Shock, 2014, 33(18):50-58.
[2] 萬(wàn)華平, 任偉新, 顏王吉. 橋梁結(jié)構(gòu)動(dòng)力特性不確定性的全局靈敏度分析的解析方法[J]. 振動(dòng)工程學(xué)報(bào), 2016, 29(3):429-435.
Wan Huaping, Ren Weixin, Yan Wangji. Analytical global sensitivity analysis for uncertainty in structural dynamic properties of bridge[J]. Journal of Vibration Engineering, 2016, 29(3):429-435.
[3] 宗周紅, 高銘霖, 夏樟華. 基于健康監(jiān)測(cè)的連續(xù)剛構(gòu)橋有限元模型確認(rèn)(II)—不確定性分析與模型精度評(píng)價(jià)[J]. 土木工程學(xué)報(bào), 2011, 44(3):85-92.
Zong Zhouhong, Gao Minglin, Xia Zhanghua. Finite element model validation of the continuous rigid frame bridge based on structural health monitoring-Part II: Uncertainty analysis and evaluation of model accuracy[J]. China Civil Engineering Journal, 2011, 44(3):85-92.
[4] Sgambi L, Garavaglia E, Basso N, et al. Monte Carlo simulation for seismic analysis of a long span suspension bridge [J] Engineering Structures, 2014, 78:100-111.
[5] Wan H P, Mao Z, Todd M D, et al. Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel[J]. Engineering Structures, 2014, 75: 577- 589.
[6] 王曉軍, 王 磊, 邱志平. 結(jié)構(gòu)可靠性分析與優(yōu)化設(shè)計(jì)的非概率集合理論[M]. 北京: 科學(xué)出版社, 2016.
Wang Xiaojun, Wang Lei, Qiu Zhiping. A Non-probabilistic Set Theory for Structural Reliability Analysis and Optimization Design [M]. Beijing: Science Press, 2016.
[7] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14 (4):227-245.
[8] 陳立宏, 陳祖煜, 劉金梅. 土體抗剪強(qiáng)度指標(biāo)的概率分布類(lèi)型研究[J]. 巖土力學(xué), 2005, 26(1): 37-40.
Chen Lihong, Chen Zuyu, Liu Jinmei. Probability distribution of soil strength[J]. Rock and Soil Mechanics, 2005, 26(1): 37-40.
[9] Qiu Z P, Chen S H, Elishakoff I. Natural frequencies of structures with uncertain but nonrandom parameters[J]. Journal of Optimization Theory and Applications, 1995, 86(3):669-683.
[10] 李大偉, 唐和生, 姚 雯, 等. 結(jié)構(gòu)固有頻率不確定分析的證據(jù)理論方法[J]. 振動(dòng)工程學(xué)報(bào), 2017, 30(06) : 904-912.
Li Dawei, Tang Hesheng, Yao Wen, et al. Uncertainty quantification of structural natural frequency using evidence theory[J]. Journal of Vibration Engineering, 2017, 30(06) : 904-912.
[11] Efron B, Tibshirani R. An Introduction to Bootstrap[M]. New York: Chapman & Hall Ltd., 1993.
[12] Zhang Minghui, Liu Xintian, Wang Yansong, et al. Parameter distribution characteristics of material fatigue life using improved Bootstrap method[J]. International Journal of Damage Mechanics, 2019, 28(5): 772-793.
[13] 劉 建, 吳 翊, 譚 璐. 對(duì)Bootstrap方法的自助抽樣的改進(jìn)[J]. 數(shù)學(xué)理論與應(yīng)用, 2006, 26(1):69-72.
Liu Jian, Wu Yi, Tan Lu. Improvement to the resampling procedure of Bootstrap method[J]. Mathematical Theory and Applications, 2006, 26(1):69-72.
[14] 胡正東, 曹 淵, 張士峰, 等. 特小子樣試驗(yàn)下導(dǎo)彈精度評(píng)定的Bootstrap方法[J]. 系統(tǒng)工程與電子技術(shù), 2008, 30(8):1493-1497.
Hu Zhengdong, Cao Yuan, Zhang Shifeng, et al. Bootstrap method for missile precision evaluation under extreme small sample test[J]. Systems Engineering and Electronics, 2008, 30(8):1493-1497.
[15] 黃 瑋, 馮蘊(yùn)雯, 呂震宙. 基于Bootstrap方法的小子樣試驗(yàn)評(píng)估方法研究[J]. 機(jī)械科學(xué)與技術(shù), 2006, 25(1):31-35.
Huang Wei, Feng Yunwen, Lü Zhenzhou. Study on small scale sample test estimation method based on Bootstrap method[J]. Mechanical Science and Technology, 2006, 25(1): 31-35.
[16] Yu Xinhui, Yang Zhaohui, Song Kunling, et al. An improved model-free sampling technique based on Bootstrap method[C]. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016.
[17] 黃崇福, 王家鼎. 模糊信息優(yōu)化處理技術(shù)及其應(yīng)用[M]. 北京:北京航空航天大學(xué)出版社, 1995.
Huang Chongfu, Wang Jiading. Technology of Fuzzy Information Optimization and Its Application[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1995.
[18] Huang C F. Information diffusion technique and small sample problem[J]. Information Technology and Decision Making, 2002, 1(2):229-249.
[19] 王新洲, 游楊聲, 湯永凈. 最優(yōu)信息擴(kuò)散估計(jì)理論及其應(yīng)用[J]. 地理空間信息, 2003, 1(1):10-17.
Wang Xinzhou, You Yangsheng, Tang Yongjing. The theory of optimal information diffusion estimation and its application[J]. Geospatial Information, 2003, 1(1): 10-17.
[20] 李曙雄, 楊振海. 舍選法的幾何解釋及其應(yīng)用[J].數(shù)理統(tǒng)計(jì)與管理, 2002,21(7):40-43.
Li Shuxiong, Yang Zhenhai. Geometric sense of acceptance-rejection method and its applications to generate random variables[J]. Journal of Applied Statistics and Management, 2002, 21(7):40-43.
[21] Breiman L, Friedman J H. Estimating optimal transformations for multiple regression and correlation[J]. Journal of the American Statistical Association, 1985, 80:580-598.
Abstract: The population distributions of the measured data or parameters are usually assumed during uncertainty analysis in structure parameter uncertainty quantification and propagation. In fact, the different probability distributions can bring different uncertain results, which will have impact on judgments of the structure. The overall distribution characteristics can be statistically inferred without the assumption of distribution based on Bootstrap method. However, this method limits the generating range of the self-help sample, which causes the self-help sample being similar to the original sample, and the non-self-help probability distribution disagreeing with the genuine distribution. Therefore, a new method for structure parameter uncertainty quantification and propagation based on improved Bootstrap method and response surface model (RSM) is proposed. Firstly, the information diffuse theory is introduced to estimate the probability density function of the limited measured data, which can be regarded as a surrogate function of the empirical distribution function and used to establish random samples. Secondly, the random samples of uncertain parameters are put into the RSM to calculate the response. A new sensitivity index is defined to judge the influence of the uncertainty parameters on the response. Finally, the dynamic characteristic uncertainty analysis of a cable-stayed bridge is presented to investigate the feasibility and effectiveness of the proposed method.
Key words: uncertainty quantification and propagation; cable-stayed bridge; improved Bootstrap method; response surface model; limited data; information diffuse