国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

IGF-1調(diào)控RBM3表達(dá)抑制低溫應(yīng)激誘導(dǎo)牦牛卵丘細(xì)胞凋亡

2020-07-31 11:11潘陽(yáng)陽(yáng)王萌芮弦王立斌何翃閎王靖雷馬睿徐庚全崔燕樊江峰余四九
關(guān)鍵詞:卵母細(xì)胞牦牛低溫

潘陽(yáng)陽(yáng),王萌,芮弦,王立斌,何翃閎,王靖雷,馬睿,徐庚全,崔燕,樊江峰,余四九

IGF-1調(diào)控RBM3表達(dá)抑制低溫應(yīng)激誘導(dǎo)牦牛卵丘細(xì)胞凋亡

潘陽(yáng)陽(yáng)1,王萌1,芮弦2,王立斌1,何翃閎1,王靖雷1,馬睿1,徐庚全1,崔燕1,樊江峰1,余四九1

(1甘肅農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,蘭州 730070;2中牧實(shí)業(yè)股份有限公司蘭州生物藥廠,蘭州 730046)

【】探索動(dòng)物機(jī)體遭受低溫應(yīng)激及細(xì)胞冷凍過(guò)程中胰島素樣生長(zhǎng)因子1(insulin-like growth factor, IGF-1)與RNA結(jié)合基序蛋白3(RNA-binding motif protein 3, RBM3)之間的作用關(guān)系,及IGF-1參與哺乳動(dòng)物細(xì)胞抑制低溫?fù)p傷的機(jī)制。體外培養(yǎng)牦牛卵丘細(xì)胞,采用實(shí)時(shí)熒光定量 PCR(quantitative real-time PCR, qRT-PCR)、蛋白免疫印跡(Western blot, WB )和免疫熒光技術(shù)檢測(cè)不同濃度(0、50、100、200 ng·mL-1)IGF-1和低溫應(yīng)激(30℃、25℃)對(duì)RBM3表達(dá)影響。卵丘細(xì)胞經(jīng)最佳濃度IGF-1(100 ng·mL-1)和對(duì)照組(0 IGF-1)作用30 h后,低溫(30℃、25℃)應(yīng)激8 h,比較RBM3表達(dá)水平。評(píng)估在低溫應(yīng)激組、100 ng·mL-1IGF-1處理組和100 ng·mL-1IGF-1+RBM3抑制劑處理組,卵丘細(xì)胞25℃應(yīng)激8 h后凋亡水平差異,并從基因和蛋白水平檢測(cè)3組卵丘細(xì)胞中凋亡相關(guān)基因Bax和Bcl-2的表達(dá)水平。(1) IGF-1作用卵丘細(xì)胞后RBM3基因和蛋白的表達(dá)水平顯著上升 (<0.05),其在100 ng·mL-1IGF-1處理組最高,免疫熒光檢測(cè)顯示100和200 ng·mL-1IGF-1處理組卵丘細(xì)胞胞核和細(xì)胞質(zhì)均可檢測(cè)到RBM3,而0和50 ng·mL-1處理組,RBM3僅定位在細(xì)胞質(zhì)。(2) 卵丘細(xì)胞經(jīng)受低溫應(yīng)激時(shí),RBM3的表達(dá)水平顯著增加,但其在30℃和25℃應(yīng)激處理組差異不顯著;100 ng·mL-1IGF-1作用卵丘細(xì)胞30 h后,其再次接受25℃、8 h低溫應(yīng)激,卵丘細(xì)胞中RBM3的表達(dá)水平顯著高于低溫應(yīng)激前未經(jīng)IGF-1處理卵丘細(xì)胞中RBM3的表達(dá)水平,且該處理組卵丘細(xì)胞胞質(zhì)和胞核均可檢測(cè)到RBM3。(3) 25℃應(yīng)激后,100 ng·mL-1IGF-1處理組卵丘細(xì)胞的凋亡率為(15.94±2.03)%,顯著低于其在未經(jīng)IGF-1處理組和100 ng·mL-1IGF-1+RBM3抑制劑處理組中卵丘細(xì)胞的凋亡率,兩者分別為(25.86±1.09)%和(20.14±2.65)%,在100 ng·mL-1IGF-1處理組Bcl-2的表達(dá)水平顯著高于其余兩個(gè)處理組(<0.05),而B(niǎo)ax的表達(dá)水平顯著低于其余兩個(gè)處理組 (<0.05)。RBM3參與牦牛卵丘細(xì)胞低溫應(yīng)激調(diào)控,IGF-1可調(diào)控其在低溫應(yīng)激中的表達(dá)水平,從而降低低溫誘導(dǎo)的卵丘細(xì)胞凋亡。本研究為揭示IGF-1和RBM3參與動(dòng)物機(jī)體或細(xì)胞免受低溫?fù)p傷的分子機(jī)制提供了關(guān)鍵信息,為體細(xì)胞和生殖細(xì)胞冷凍技術(shù)的提高提供了理論依據(jù)。

牦牛;RNA結(jié)合基序蛋白3(RBM3);胰島素樣生長(zhǎng)因子(IGF-1);低溫應(yīng)激;細(xì)胞凋亡

0 引言

【研究意義】RNA結(jié)合基序蛋白3(RNA-binding motif protein 3,RBM3)作為冷誘導(dǎo)結(jié)合蛋白(cold- inducible RNA-binding protein,CIRP)家族成員之一[1],動(dòng)物機(jī)體和細(xì)胞受到低氧、低溫應(yīng)激均可誘導(dǎo)其表達(dá)[1-2],通過(guò)促進(jìn)體內(nèi)其他蛋白的合成,維護(hù)應(yīng)激條件下細(xì)胞的正常生理功能。研究哺乳動(dòng)物細(xì)胞,尤其是高寒環(huán)境哺乳動(dòng)物細(xì)胞經(jīng)受低溫應(yīng)激時(shí)RBM3的表達(dá)變化,有助于揭示其參與動(dòng)物機(jī)體低溫適應(yīng)性的調(diào)控機(jī)制。通過(guò)生長(zhǎng)因子的作用,探索其對(duì)細(xì)胞和機(jī)體RBM3表達(dá)的影響,降低低溫應(yīng)激對(duì)細(xì)胞的損傷,對(duì)為優(yōu)化動(dòng)物體細(xì)胞和生殖細(xì)胞的冷凍技術(shù)具有重要意義。【前人研究進(jìn)展】動(dòng)物機(jī)體內(nèi)RBM3可維持AU含量較高mRNAs的穩(wěn)定性[3],通過(guò)誘導(dǎo)糖原合成激酶GSK-3β/ Wnt/β、Mark、絲氨酸/蘇氨酸激酶等信號(hào)通路維持其在細(xì)胞中的多能性,如細(xì)胞周期參與從G2到M期過(guò)渡的調(diào)節(jié),胞內(nèi)相關(guān)microRNAs的調(diào)節(jié)[3-4]。哺乳動(dòng)物的研究證實(shí),RBM3可在多種細(xì)胞內(nèi)表達(dá),但表達(dá)水平存在差異,表達(dá)水平增加時(shí)可參與細(xì)胞內(nèi)mRNAs翻譯和翻譯后的修飾的調(diào)節(jié),進(jìn)而提升細(xì)胞對(duì)不利環(huán)境刺激的耐受能力[5-6],如細(xì)胞對(duì)低溫的耐受能力[7-8]。相關(guān)研究通過(guò)RBM3抑制劑咖啡酸苯乙酯(caffeic acid phenethyl ester,CAPE)的作用證實(shí)其參與NF-κB p65信號(hào)調(diào)節(jié),保護(hù)HeLa細(xì)胞免受中低溫誘導(dǎo)的細(xì)胞凋亡[9]。胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF-1)作為細(xì)胞生長(zhǎng)調(diào)控的關(guān)鍵因子,體外可通過(guò)多種途徑調(diào)節(jié)細(xì)胞生長(zhǎng)與增殖,調(diào)控哺乳動(dòng)物卵母細(xì)胞的成熟和早期胚胎發(fā)育[10-11]。研究發(fā)現(xiàn)IGF-1通過(guò)調(diào)控B-細(xì)胞淋巴瘤/白血病-2原癌基因(B-cell lymphoma/leukemia-2,Bcl-2)和B細(xì)胞淋巴瘤/白血病基因伴隨蛋白x(B-cell lymphoma/leukemia associated x protein,Bax)的表達(dá)水平抑制多種類型細(xì)胞凋亡[12-13]?!颈狙芯壳腥朦c(diǎn)】筆者前期研究顯示IGF-1通過(guò)調(diào)控牦牛卵丘細(xì)胞HSP70、Bax和 Bcl-2表達(dá),降低細(xì)胞凋亡率[14]。在牦牛卵母細(xì)胞體外成熟過(guò)程中加入不同濃度IGF-1,可增加成熟卵母細(xì)胞CIRP的表達(dá),提升其冷凍-解凍后的發(fā)育能力[15],但I(xiàn)GF-1提高卵母細(xì)胞冷凍后發(fā)育能力與細(xì)胞凋亡是否存在相關(guān)性未見(jiàn)報(bào)道。牦牛()是我國(guó)青藏高原區(qū)域的典型家畜,長(zhǎng)期生活在年均氣溫為0℃的壞境,低溫相關(guān)蛋白對(duì)其生理調(diào)控具有重要作用[16]?!緮M解決的關(guān)鍵問(wèn)題】因此本研究以牦牛卵丘細(xì)胞為模型,分析IGF-1和溫度應(yīng)激對(duì)RBM3表達(dá)的影響,評(píng)估RBM3的變化對(duì)細(xì)胞凋亡的調(diào)控,探索牦牛適應(yīng)低溫調(diào)控的分子機(jī)制,為進(jìn)一步闡明RBM3參與動(dòng)物機(jī)體或細(xì)胞免受低溫?fù)p傷的分子機(jī)制提供了關(guān)鍵信息。

1 材料與方法

1.1 主要試劑

DMEM/F12培養(yǎng)粉、細(xì)胞培養(yǎng)級(jí)別犢牛血清、青霉素、鏈霉素購(gòu)自于美國(guó)Gibco公司;透明質(zhì)酸酶、胰蛋白酶、IGF-1、RBM3抑制劑CAPE購(gòu)自美國(guó) Sigma公司。Bax(ab32503)和Bcl-2(ab117115)抗體購(gòu)自美國(guó)Abcam公司,RBM3(bs-5902R)抗體、熒光二抗bs-0295G-FITC)和普通二抗(bs-0294D、bs-0295G)購(gòu)自北京博奧森生物公司。細(xì)胞總RNA提取試劑盒、反轉(zhuǎn)錄試劑盒、SYBR GreenⅡ熒光定量PCR試劑盒均購(gòu)自美國(guó)OMEGA生物公司,DAPI及蛋白免疫印跡(Western blot,WB)所用試劑均購(gòu)買于北京索萊寶生物公司,其他試劑均為國(guó)產(chǎn)分析純。

1.2 牦牛卵丘細(xì)胞分離培養(yǎng)

2018年10月至2019年9月,在青海西寧及甘肅臨夏家畜屠宰場(chǎng),牦牛屠宰后立即采集卵巢,置于30—35℃預(yù)熱的含有雙抗的生理鹽水中,4 h內(nèi)帶回甘肅農(nóng)業(yè)大學(xué)牛羊胚胎工程中心。取出卵巢,用37℃生理鹽水清洗2—3次,用帶有12號(hào)針頭的注射器從直徑約為8 mm的卵泡中抽取卵泡液。將其轉(zhuǎn)移到培養(yǎng)皿中,置于體式顯微鏡下用撿卵針挑取胞質(zhì)均一,含有3層以上卵丘細(xì)胞的卵丘卵母細(xì)胞復(fù)合體(cumulus- oocyte complex,COC),無(wú)血清的PBS清洗3次后,用1%的透明質(zhì)酸酶37℃消化5 min,體式顯微鏡下挑出卵母細(xì)胞,將含有卵丘細(xì)胞得懸液1 000 r/min離心5 min,用含有10% 血清的培養(yǎng)液通過(guò)離心再洗滌2次,懸浮細(xì)胞,計(jì)數(shù)后在37℃、5% CO2的條件下進(jìn)行培養(yǎng),每48 h換液一次。培養(yǎng)液為:DMEM/F12培養(yǎng)基+10%犢牛血清+100 U·mL-1鏈霉素+100 U·mL-1青霉素。

1.3 IGF-1和低溫應(yīng)激分別處理卵丘細(xì)胞

卵丘細(xì)胞培養(yǎng)至第2代對(duì)數(shù)生長(zhǎng)期時(shí),加入含有0.05%的胰蛋白酶進(jìn)行消化,在培養(yǎng)液中調(diào)整細(xì)胞數(shù)至4×105個(gè)/mL,傳代到6孔板,每孔含有2 mL細(xì)胞懸液,培養(yǎng)24h后根據(jù)試驗(yàn)設(shè)計(jì)做以下處理(1)IGF-1及CAPE處理組:對(duì)其進(jìn)行換液,分別加入0、50、100、200 ng·mL-1IGF-1、25 μg·mL-1CAPE和100 ng·mL-1IGF-1+25 μg·mL-1CAPE 到細(xì)胞培養(yǎng)液,每個(gè)處理組24個(gè)重復(fù),培養(yǎng)30 h后,收集部分細(xì)胞用于RBM3 mRNA和蛋白的檢測(cè);(2)依據(jù)(1)的結(jié)果,取0和100 ng·mL-1處理組各6個(gè)重復(fù)分別置于30℃和25℃條件下應(yīng)激8 h,收集細(xì)胞,并以37℃為對(duì)照組,進(jìn)行后續(xù)RBM3 mRNA和蛋白檢測(cè)實(shí)驗(yàn),并分析IGF-1作用對(duì)卵丘細(xì)胞低溫應(yīng)激RBM3表達(dá)的影響;(3)檢測(cè)(1)中,0、100 ng·mL-1IGF-1和100 ng·mL-1IGF-1+25 μg·mL-1CAPE處理組卵丘細(xì)胞,25℃條件下應(yīng)激8 h的后Bax和Bcl-2的表達(dá)水平。IGF-1處理卵丘細(xì)胞時(shí)間及低溫應(yīng)激時(shí)間根據(jù)預(yù)實(shí)驗(yàn)確定。

1.4 不同處理組卵丘細(xì)胞凋亡率的檢測(cè)

將細(xì)胞培養(yǎng)板中0、100 ng·mL-1IGF-1和100 ng·mL-1IGF-1+25 μg·mL-1CAPE處理組細(xì)胞,用無(wú)血清PBS清洗3遍后,37℃,用0.05%胰蛋白酶消化3—5 min,加入含血清培養(yǎng)液終止消化,溫柔吹打使細(xì)胞懸浮,移入1.5 mL 離心管中。經(jīng) 1 000 r/min 離心 10 min,用PBS重懸細(xì)胞,并使其濃度達(dá)到1×107個(gè)/mL。用 1.5 mL 細(xì)胞固定液 4℃固定卵丘細(xì)胞 30 min,離心清洗固定液,參照 Annexin VFITC 細(xì)胞凋亡檢測(cè)試劑盒說(shuō)明標(biāo)記細(xì)胞。用流式細(xì)胞儀以每 10 000 個(gè)細(xì)胞為單位,分析細(xì)胞凋亡率。

1.5 RBM3、Bax、Bcl-2 mRNA表達(dá)檢測(cè)

1.5.1 細(xì)胞總RNA提取與cDNA合成 每個(gè)試驗(yàn)組3個(gè)重復(fù),將作用后卵丘細(xì)胞用PBS清洗3遍,參照貼壁細(xì)胞總RNA提取試劑盒說(shuō)明書提取細(xì)胞總RNA,并參照反轉(zhuǎn)錄試劑盒合成第一鏈cDNA,置于-20℃保存、備用。

1.5.2 Real-time PCR檢測(cè)RBM3、Bax、Bcl-2的表達(dá) 根據(jù)GenBank公布的牦牛的RBM3 mRNA序列設(shè)計(jì)RBM3檢測(cè)引物,Bax和Bcl-2 mRNA檢測(cè)引物參照筆者前期研究所用的引物序列[13, 17],具體信息及反應(yīng)條件見(jiàn)表1。反應(yīng)體系主要包含1 μL cDNA模板,終濃度為0.25 μmol·mL-1的上下游引物各0.8 μL,2×SYBR GreenⅡ PCR mix 10 μL,加ddH2O使終體積達(dá)到20 μL。反應(yīng)條件:94℃預(yù)變性15 s,94℃預(yù)變性10 s,退火10 s(具體溫度見(jiàn)表1)、72℃延伸10 s,共35個(gè)循環(huán),所有熒光定量PCR儀為Roche 480。內(nèi)參基因?yàn)?,重?fù)至少3次。采用相對(duì)定量分析法評(píng)估基因表達(dá)水平[18]。

表1 Real-time PCR引物信息

1.6 RBM3、Bax、Bcl-2蛋白表達(dá)Western blot檢測(cè)

不同處理組卵丘細(xì)胞經(jīng)預(yù)冷PBS清洗3次,置于冰盒中,用蛋白裂解液裂解細(xì)胞4 h,低溫下10 000×g 離心15 min,收集上清,BCA試劑盒檢測(cè)蛋白濃度并進(jìn)行平衡,分裝置于-80℃?zhèn)溆谩z測(cè)蛋白在離心管中與5×SDS上樣緩沖液混勻,沸水中變性10 min,以 20 μg蛋白/泳道上樣,經(jīng)十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)電泳后,電轉(zhuǎn)膜至聚偏二氟乙烯膜(polyvinylidene fluoride,PVDF),室溫振蕩封閉2 h,分別加入檢測(cè)目標(biāo)一抗,37℃搖床孵育2 h,DPBS振蕩清洗3次,每次5 min,加辣根過(guò)氧化物酶(horse radish peroxidase,HRP)標(biāo)記的二抗,37℃搖床孵育1 h,DPBS洗滌3次,電化學(xué)發(fā)光(electrochemiluminescence,ECL)試劑盒進(jìn)行曝光約 2—5 min,待蛋白條帶顯色清晰時(shí),立刻拍攝照片,記錄試驗(yàn)結(jié)果,根據(jù)光密度分析蛋白表達(dá)水平。

1.7 RBM3蛋白定位檢測(cè)

用PBS清洗不同處理組卵丘細(xì)胞3次,加入含有0.1% TritonX-100的固定液常溫固定細(xì)胞1 h,免疫染色洗滌液清洗3遍后進(jìn)行2 h室溫封閉,加入RBM3抗體(1﹕500)37℃搖床孵育2 h,清洗3遍,用FITC標(biāo)記的二抗孵育1 h,清洗3遍后用5 ng·mL-1DAPI室溫作用3—5 min,清洗3遍后熒光顯微鏡觀察并成像。

1.8 數(shù)據(jù)分析

采用SPSS19.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析,每組至少重復(fù)3次。<0.05表示差異顯著,所有結(jié)果以“X±SE”表示。

2 結(jié)果

2.1 IGF-1及CAPE對(duì)牦牛卵丘細(xì)胞RBM3表達(dá)的調(diào)節(jié)

用不同濃度IGF-1作用培養(yǎng)至第三代的牦牛卵丘細(xì)胞,作用12 h檢測(cè)發(fā)現(xiàn),IGF-1可顯著改變牦牛卵丘細(xì)胞RBM3的表達(dá)水平,其中IGF-1濃度為100 ng·mL-1處理組RBM3 mRNA和蛋白的表達(dá)水平均顯著高于其他處理組(圖1);50 和200 ng·mL-1IGF-1處理組中RBM3 mRNA和蛋白的表達(dá)水平動(dòng)態(tài)不一致,其中RBM3 mRNA水平在50 ng·mL-1處理組高于其在200 ng·mL-1處理組的表達(dá),但蛋白水平在50 ng·mL-1處理組低于200 ng·mL-1處理組,但兩組中RBM3 mRNA和蛋白的表達(dá)水平均顯著低于100 ng·mL-1IGF-1處理組,卻又顯著高于對(duì)照組(0 ng·mL-1IGF-1,圖1)。25 μg·mL-1CAPE處理組中RBM3 mRNA和蛋白水平均顯著低于對(duì)照組(圖1)。

2.2 低溫應(yīng)激對(duì)不同處理組牦牛卵丘細(xì)胞RBM3表達(dá)的調(diào)節(jié)

將培養(yǎng)至第三代的牦牛卵丘細(xì)胞分別置于37、30和25℃的添加下繼續(xù)培養(yǎng)8 h后,檢測(cè)RBM3的表達(dá)水平。如圖2所示,在30和25℃低溫應(yīng)激下,牦牛卵丘細(xì)胞RBM3的表達(dá)水平顯著增高,其mRNA和蛋白的水平均顯著高于對(duì)照組(37℃),但在30和25℃兩組之間RBM3的蛋白和mRNA表達(dá)水平差異不顯著;

將100 ng·mL-1IGF-處理組的卵丘細(xì)胞不同溫度低溫應(yīng)激培養(yǎng)8 h后,檢測(cè)RBM3的表達(dá)水平如圖3所示,其在30和25℃低溫應(yīng)激處理兩組中的水平均顯著高于對(duì)照組(37℃),但低溫應(yīng)激處理的兩組中RBM3的表達(dá)水平差異并不顯著;將6組卵丘細(xì)胞RBM3的表達(dá)水平進(jìn)行對(duì)比,如圖4所示,以未經(jīng)IGF-1處理組37℃培養(yǎng)的細(xì)胞為對(duì)照組,發(fā)現(xiàn)經(jīng)100 ng·mL-1IGF-處理組的卵丘細(xì)胞低溫應(yīng)激后,細(xì)胞中RBM3 mRNA和蛋白表達(dá)水平均顯著高于其中未經(jīng)IGF-處理而經(jīng)受低溫應(yīng)激的卵丘細(xì)胞中的表達(dá)水平。

A:不同濃度IGF-1和CAPE對(duì)牦牛卵丘細(xì)胞RBM mRNA表達(dá)的影響;B:不同濃度IGF-1和CAPE處理組牦牛卵丘細(xì)胞RBM3蛋白檢測(cè);C:不同濃度IGF-1和CAPE對(duì)牦牛卵丘細(xì)胞RBM 蛋白表達(dá)的影響;不同字母表示差異顯著(P<0.05)。下同

A:不同溫度低溫應(yīng)激處理對(duì)牦牛卵丘細(xì)胞RBM mRNA表達(dá)的影響;B:不同溫度低溫應(yīng)激處理組牦牛卵丘細(xì)胞RBM3蛋白檢測(cè);C:不同溫度低溫應(yīng)激處理對(duì)牦牛卵丘細(xì)胞RBM 蛋白表達(dá)的影響;不同字母表示差異顯著(P<0.05)

檢測(cè)6個(gè)處理組卵丘細(xì)胞RBM3的表達(dá)水平如圖4所示,以未經(jīng)IGF-1處理組37℃培養(yǎng)的細(xì)胞為對(duì)照組,發(fā)現(xiàn)經(jīng)100 ng·mL-1IGF-處理組的卵丘細(xì)胞低溫應(yīng)激后,細(xì)胞中RBM3 mRNA和蛋白表達(dá)水平均顯著高于其在未經(jīng)IGF-處理而經(jīng)受低溫應(yīng)激卵丘細(xì)胞中的表達(dá)水平。

2.3 RBM3蛋白在不同處理組卵丘細(xì)胞分布的檢測(cè)

對(duì)IGF-1不同處理組卵丘細(xì)胞用RBM3蛋白進(jìn)行免疫標(biāo)記,如圖5所示,熒光檢測(cè)顯示未經(jīng)IGF-1處理組,RBM3主要在牦牛卵丘細(xì)胞的細(xì)胞質(zhì)表達(dá)(圖5-A),50 ng·mL-1IGF-1處理組RBM 3蛋白也主要表達(dá)于細(xì)胞質(zhì)(圖5-B),但其熒光強(qiáng)度高于對(duì)照組(0 IGF-1)。100和200 ng·mL-1IGF-1處理組中,卵丘細(xì)胞的胞質(zhì)核細(xì)胞核均可強(qiáng)表達(dá)RBM蛋白(圖5-C,D)。

對(duì)照組和100 ng·mL-1IGF-1處理組卵丘細(xì)胞經(jīng)25℃低溫應(yīng)激8 h后檢測(cè)后,用免疫熒光技術(shù)檢測(cè)RBM3蛋白,結(jié)果如圖6所示,低溫應(yīng)激后對(duì)照組卵丘細(xì)胞胞質(zhì)和胞核均可檢測(cè)到RBM3蛋白(圖6-A),熒光強(qiáng)度高于未經(jīng)低溫應(yīng)激處理的對(duì)照組(圖6-B)。100 ng·mL-1IGF-1處理組卵丘細(xì)胞25℃低溫應(yīng)激前后胞質(zhì)和胞核均可檢測(cè)到RBM3蛋白(圖6-C),低溫應(yīng)激前經(jīng)受100 ng·mL-1IGF-1處理組的卵丘細(xì)胞中RBM3蛋白熒光強(qiáng)度高于未經(jīng)IGF-1處理的低溫應(yīng)激卵丘細(xì)胞。

2.4 不同處理組后卵丘細(xì)胞凋亡率的檢測(cè)

利用流行細(xì)胞儀對(duì)不同處理組的細(xì)胞進(jìn)行凋亡檢測(cè),如圖 7、表 2所示,30和25℃低溫應(yīng)激卵丘細(xì)胞8 h均可增加其凋亡率,分別為(16.23±2.81)%和(25.86±1.09)%,100 ng·mL-1IGF-1處理后的卵丘細(xì)胞,其在25℃低溫應(yīng)激8 h凋亡率呈顯著降低趨勢(shì),凋亡率為(15.94±2.03)%,100 ng·mL-1IGF-1+ CAPE處理組中卵丘細(xì)胞25℃低溫應(yīng)激8 h的凋亡率為(20.14±2.65)%,均顯著高于對(duì)照組中的細(xì)胞凋亡率(7.36±0.65)%。

A:不同溫度低溫應(yīng)激處理對(duì)100 ng·mL-1 IGF-1處理組牦牛卵丘細(xì)胞RBM mRNA表達(dá)的影響;B:不同溫度低溫應(yīng)激處理組牦牛卵丘細(xì)胞RBM3蛋白檢測(cè);C:不同溫度低溫應(yīng)激處理對(duì)100 ng·mL-1 IGF-1處理組牦牛卵丘細(xì)胞RBM 蛋白表達(dá)的影響

A:不同處理組卵丘細(xì)胞低溫應(yīng)激后RBM mRNA表達(dá)比較;B:不同處理組卵丘細(xì)胞低溫應(yīng)激后RBM蛋白表達(dá)的檢測(cè);C:不同處理組卵丘細(xì)胞低溫應(yīng)激后RBM蛋白表達(dá)比較

綠色熒光為RBM3蛋白;藍(lán)色熒光為標(biāo)記細(xì)胞核的DAPI

綠色熒光為RBM3蛋白;藍(lán)色熒光為標(biāo)記細(xì)胞核的DAPI

2.5 不同處理組卵丘細(xì)胞低溫應(yīng)激后Bax和Bcl-2表達(dá)的變化

比較對(duì)照組、100 ng·mL-1IGF-1和100 ng·mL-1IGF-1+CAPE處理組卵丘細(xì)胞經(jīng)25℃低溫應(yīng)激8 h后細(xì)胞凋亡相關(guān)基因Bax和Bcl-2的表達(dá)水平顯示,100 ng·mL-1IGF-1處理組卵丘細(xì)胞Bcl-2 mRNA和蛋白的表達(dá)水平最高,100 ng·mL-1IGF-1+CAPE處理組顯表達(dá)水平次之,對(duì)照組(0 IGF-1)表達(dá)水平最低(圖8-A、9-A和B);而B(niǎo)ax mRNA和蛋白的表達(dá)水平在100 ng·mL-1IGF-1處理組中最低,對(duì)照組中最高,100 ng·mL-1IGF-1+CAPE處理組中Bax mRNA和蛋白的表達(dá)處于中間水平(圖8-B、9-A和8-C);經(jīng)100 ng·mL-1IGF-1處理后,低溫應(yīng)激卵丘細(xì)胞中Bcl-2/Bax的比值顯著高于其在對(duì)照組和100 ng·mL-1IGF-1+CAPE處理組中的比值,且IGF-1+ CAPE處理組中的比值高于對(duì)照組。

A: 37℃卵丘細(xì)胞; B: 30℃應(yīng)激8h卵丘細(xì)胞; C: 25℃應(yīng)激8h卵丘細(xì)胞; D: 100 ng·mL-1 IGF-1處理組牦牛卵丘細(xì)胞25℃應(yīng)激8h; E: 100 ng·mL-1 IGF-1+CAPE處理組牦牛卵丘細(xì)胞25℃應(yīng)激8h

A:Bcl-2 mRNA的表達(dá)水平;B:Bax mRNA的表達(dá)水平;C:Bcl-2和Bax mRNA表達(dá)水平的比率

A:Bcl-2和Bax蛋白表達(dá)Western blot檢測(cè);B:Bcl-2 蛋白的表達(dá)水平;C:Bax 蛋白的表達(dá)水平;D:Bcl-2和Bax蛋白表達(dá)水平的比率

表2 不同處理組牦牛卵丘細(xì)胞凋亡率

同一列中不同字母表示組間差異極顯著(<0.01)

The different letters in the same column mean significant difference between the groups (<0.01)

3 討論

RBM3和CIRP結(jié)合在一起,作為應(yīng)激調(diào)節(jié)基因,在正常生理溫度下保護(hù)體內(nèi)細(xì)胞免受內(nèi)在刺激造成的損傷外[19],機(jī)體遭受低溫應(yīng)激刺激也可誘導(dǎo)其表達(dá)[20]。相關(guān)學(xué)者研究發(fā)現(xiàn),由于哺乳動(dòng)物睪丸組織位于體表,溫度往往低于體內(nèi)核心器官,該器官組織可高水平表達(dá)RBM3和CIRP蛋白,其中RBM的表達(dá)主要位于睪丸支持細(xì)胞,有助于動(dòng)物精子生成[21]。CIRP和RBM3在體外的生理學(xué)功能較為相似,主要為參與細(xì)胞或其他器官組織冷凍,尤其是卵母細(xì)胞和胚胎的冷凍[22]。因此研究細(xì)胞低溫應(yīng)激過(guò)程中CIRP和RBM3表達(dá)的變化,對(duì)細(xì)胞冷凍技術(shù)的改良尤為重要。卵丘細(xì)胞與卵母細(xì)胞緊密結(jié)合在一起,兩者之間可進(jìn)行信息傳導(dǎo)和物質(zhì)交互,在體外和體內(nèi)均可促進(jìn)卵母細(xì)胞的成熟。本研究以卵丘細(xì)胞為模型,探索其遭受低溫應(yīng)激過(guò)程中RBM3表達(dá)水平的變化,發(fā)現(xiàn)在30℃和25℃中低溫溫度應(yīng)激時(shí),RBM3水平增加,雖在25℃中呈現(xiàn)下降趨勢(shì),但差異并不顯著,此結(jié)果更進(jìn)一步證實(shí)25—34℃溫度范圍是誘導(dǎo)RBM3表達(dá)的最佳低溫誘導(dǎo)溫度[23-24]。卵丘細(xì)胞經(jīng)受低溫誘導(dǎo)高水平表達(dá)RBM3也為卵母細(xì)胞冷凍技術(shù)的優(yōu)化提供了新的突破點(diǎn)。

IGF-1作用動(dòng)物卵母細(xì)胞成熟關(guān)鍵因子,可調(diào)控細(xì)胞凋亡、增殖與分化等多種信號(hào)通路[25]。本研究在卵母細(xì)胞體外培養(yǎng)過(guò)程中加入不同濃度IGF-1,檢測(cè)RBM3的水平發(fā)現(xiàn),100 ng·mL-1IGF-1可顯著提高卵丘細(xì)胞RBM3的表達(dá),此作用濃度與課題組前提研究結(jié)果一致[14],進(jìn)一步確定IGF-1對(duì)牦牛生殖相關(guān)細(xì)胞體外培養(yǎng)的最佳作用濃度,也與100 ng·mL-1IGF-1可顯著提高卵母細(xì)胞CIRP表達(dá)的結(jié)果相似[15]。為了進(jìn)一步探索IGF-1對(duì)RBM3的提高與溫度應(yīng)激是否存在關(guān)聯(lián),本研究比較了0和100 ng·mL-1IGF-1作用的卵丘細(xì)胞經(jīng)受應(yīng)激后RBM3的表達(dá)水平,結(jié)果發(fā)現(xiàn)IGF-1更進(jìn)一步提高了卵丘細(xì)胞低溫應(yīng)激時(shí)RBM3的表達(dá)水平,但在IGF-1作用時(shí)抑制RBM3的表達(dá),卵丘細(xì)胞凋亡水平增高,揭示IGF-1可通過(guò)上調(diào)牦牛卵丘RBM3的表達(dá)提升其對(duì)低溫應(yīng)激的適應(yīng)性,但其在其他細(xì)胞中是否具有相似的生物學(xué)作用仍需證實(shí)。研究同時(shí)發(fā)現(xiàn),在IGF-1+CAPE處理組中,卵丘細(xì)胞的凋亡水平顯著低于對(duì)照組,表明除上調(diào)RBM3外,IGF-1也可以通過(guò)其他信號(hào)通路降低低溫應(yīng)激誘導(dǎo)的細(xì)胞凋亡。

免疫熒光檢測(cè)顯示,正常條件下RBM3蛋白的表達(dá)主要位于牦牛卵丘細(xì)胞的細(xì)胞質(zhì),低濃度IGF-1并不影響RBM3蛋白表達(dá)部位的改變。高濃度IGF-1和低溫應(yīng)激條件下卵丘細(xì)胞的胞質(zhì)和胞核均可表達(dá)IGF-1,表明RBM3蛋白表達(dá)部位發(fā)生改變,且IGF-1最佳濃度作用組熒光強(qiáng)度更強(qiáng),這種變化可能與IGF-1聯(lián)合RBM3發(fā)揮其他生理學(xué)功能有關(guān),如兩者均可調(diào)控細(xì)胞生長(zhǎng)、分化、胞內(nèi)其他mRNA的轉(zhuǎn)錄和翻譯等[5-6, 26]。人的骨髓瘤細(xì)胞中,IGF-1可聯(lián)合AKT激酶細(xì)胞通路抑制細(xì)胞凋亡[27],本研究中高濃度IGF-1作用后,RBM3蛋白表達(dá)部位發(fā)生改變可能是由于IGF-1激活A(yù)KT激酶,從而改變RBM3磷酸化修飾,影響蛋白質(zhì)的定位,但其具體機(jī)制仍需研究證實(shí)。除此之外,也可能與RBM3啟動(dòng)卵丘細(xì)胞適應(yīng)低溫應(yīng)激分子信號(hào)有關(guān)。

RBM3和CIRP可通過(guò)多種信號(hào)通路抑制細(xì)胞凋亡的發(fā)生,如誘導(dǎo)Bcl-2的表達(dá),抑制caspase的活性[28]。低溫應(yīng)激過(guò)程中RBM3和CIRP的高水平表達(dá)可增加細(xì)胞的生長(zhǎng)能力,減少低溫誘導(dǎo)對(duì)其的損害,該生物學(xué)功能與細(xì)胞凋亡水平減低存在一定關(guān)聯(lián)[29-30]。研究發(fā)現(xiàn),在IGF-1處理組卵丘細(xì)胞經(jīng)低溫誘導(dǎo)RBM3表達(dá)增加,細(xì)胞凋亡率也顯著降低,且細(xì)胞中抗凋亡基因Bcl-2的表達(dá)水平顯著高于對(duì)照組,Bax水平降低,該結(jié)果與IGF-1正常溫度條件下可調(diào)控牦牛卵丘細(xì)胞Bax和Bcl-2表達(dá)降低細(xì)胞凋亡的結(jié)論相似[14]。表明IGF-1降低低溫誘導(dǎo)卵丘細(xì)胞凋亡的水平與其調(diào)控RBM3的表達(dá)相關(guān),也為探索IGF-1調(diào)控低溫誘導(dǎo)相關(guān)因子RBM3和CIRP提高冷凍-解凍后細(xì)胞的發(fā)育能力提供了重要理論依據(jù)。

4 結(jié)論

牦牛卵丘細(xì)胞體外培養(yǎng)過(guò)程中100 ng·mL-1胰島素樣生長(zhǎng)因子1和中低溫誘導(dǎo)均可誘導(dǎo)RNA結(jié)合基序蛋白3的表達(dá),且胰島素樣生長(zhǎng)因子1可通過(guò)調(diào)控RNA結(jié)合基序蛋白3抑制低溫誘導(dǎo)卵丘細(xì)胞中B細(xì)胞淋巴瘤/白血病基因伴隨蛋白x和B細(xì)胞淋巴瘤/白血病-2原癌基因的表達(dá),降低細(xì)胞凋亡水平。研究結(jié)果為揭示胰島素樣生長(zhǎng)因子1和RNA結(jié)合基序蛋白3參與動(dòng)物機(jī)體或細(xì)胞免受低溫?fù)p傷的分子機(jī)制提供了關(guān)鍵信息。有助于通過(guò)相關(guān)生長(zhǎng)因子的改善哺乳動(dòng)物細(xì)胞和胚胎冷凍技術(shù)、提高冷凍-解凍后細(xì)胞的發(fā)育能力。

[1] JACKSON T C, MANOLE M D, KOTERMANSKI S E, JSCKSON E K, CLARK R S, KOCHANEK P M. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons., 2015, 305(12): 268-278.

[2] KIM D Y, KIM K M, KIM E J, JANG W G. Hypothermia-induced RNA-binding motif protein 3 (RBM3) stimulates osteoblast differentiation via the ERK signaling pathway., 2018, 498(3): 459-465.

[3] WONG J J, AU A Y, GAO D, PINELLO N, KWOK C T, THOENG A, LAU K A, GORDON J E, SCHMITZ U, FENG Y, NGUYEN T V, MIDDLETON R, BAILEY C G, HOLST J, RASKO J E, RITCHIE W. RBM3 regulates temperature sensitive miR-142-5p and miR-143 (thermomiRs), which target immune genes and control fever., 2016, 44(6): 2888-2897.

[4] VENUGOPAL A, SUBRAMANIAN D, BALMACEDA J, ROY B, DIXON D A, UMAR S, WEIR S J, ANANT S. RNA binding protein RBM3 increases beta-catenin signaling to increase stem cell characteristics in colorectal cancer cells., 2016, 55(11): 1503-1516.

[5] SHI H Z, YAO R Z, LIAN S, LIU P, LIU Y, YANG Y Y, YANG H M, LI S H. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure., 2019, 22(3):366-376.

[6] DANNO S, NISHIYAMA H, HIGASHITSUJI H, YOKOI H, XUE J H, ITOH K, MATSUDA T, FUJITA J. Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress., 1997, 236(3): 804-807.

[7] YANG H J, JU F, GUO X X, MA S P, WANG L, CHENG B F, ZHUANG R J, ZHANG B B, SHI X, FENG Z W, WANG M. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143., 2017, 7(1): 41738.

[8] 李云龍, 李儉, 李昌盛, 李靜輝, 孟宇, 楊煥民, 李士澤. 冷應(yīng)激條件下豬睪丸細(xì)胞中RNA結(jié)合基序蛋白3過(guò)表達(dá)對(duì)Caspase3表達(dá)的影響. 中國(guó)應(yīng)用生理學(xué)雜志, 2016, 32(2): 102-105.

LI Y L, LI J, LI C S, LI J F, MENG Y, YANG H M, LI S Z. Effects of RNA binding motif protein 3 overexpression on caspase 3 expression in swine testicular cell under cold exposure., 2016, 32(2): 102-105. (in Chinese)

[9] USHIO A, ETO K. RBM3 expression is upregulated by NF-kappaB p65 activity, protecting cells from apoptosis, during mild hypothermia., 2018, 119(7):5734-5749.

[10] ADASHI E Y, RESNICK C E, D'ERCOLE A J, SVOBODA M E, VAN J J. Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function., 1985, 6(3): 400-420.

[11] BYRNE A T, SOUTHGATE J, BRISON D R, LEESE H J. Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily., 2002, 62(4): 489-495.

[12] PERUZZI F, PRISCO M, DEWS M, SALOMONI P, GRASSILLI E, ROMANO G, CALABRETTA B, BASERGA R. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis., 1999, 19(10): 7203-7215.

[13] LEIBOWITZ B, YU J. Mitochondrial signaling in cell death via the Bcl-2 family., 2010, 9(6): 417-422.

[14] 潘陽(yáng)陽(yáng), 崔燕, 樊江峰, 李谷月, 余四九. 胰島素樣生長(zhǎng)因子-1(IGF-1)對(duì)牦牛卵丘細(xì)胞熱休克蛋白70(HSP70)表達(dá)的影響及其與細(xì)胞凋亡的關(guān)聯(lián)性分析. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2015, 23(9): 1208-1216.

PAN Y Y, CUI Y, FAN J F, LI G Y, YU S J. The effect of IGF-1 on HSP70 expression of yak cumulus cells and its relation with apoptosis.2015, 23(9): 1208-1216. (in Chinese)

[15] PAN Y, CUI Y, HE H, BALOCH A R, FAN J, XU G, HE J, YANG K, LI G, YU S. Developmental competence of mature yak vitrified- warmed oocytes is enhanced by IGF-I via modulation of CIRP during in vitro maturation., 2015, 71(3): 493-498.

[16] YANG K, ZHANG Q, WEN Z, PAN Y, YU S, HE J, YANG X, LIU P, CUI Y. Cloning and expression of cold-inducible RNA binding protein in domestic yak ()., 2016, 75(4): 460-466.

[17] 潘陽(yáng)陽(yáng), 王萌, 余四九, 崔燕, 何俊峰. EGF對(duì)牦牛凍精運(yùn)動(dòng)性能、細(xì)胞凋亡和IVF胚胎發(fā)育潛力的影響. 畜牧獸醫(yī)學(xué)報(bào), 2017, 48(5): 854-862.

PAN Y Y, WANG M, YU S J, CUI Y, HE J F. The effects of EGF on yak frozen sperm motility, apoptosis and the development competence of embryos after IVF.2017, 48(5): 854-862. (in Chinese)

[18] PFAFFL M W, HORGAN G W, DEMPFLE L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR., 2002, 30(9): e36.

[19] LLEONART M E. A new generation of proto-oncogenes: cold- inducible RNA binding proteins., 2010, 1805(1): 43-52.

[20] WANG X, CHE H, ZHANG W, WANG J, KE T, CAO R, MENG S, LI D, WEI O, CHEN J, LUO W. Effects of mild chronic intermittent cold exposure on rat organs.,2015, 11(10): 1171-1180.

[21] DANNO S, ITOH K, MATSUDA T, FUJITA J. Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis., 2000, 156(5): 1685-1692.

[22] JO J W, JEE B C, SUH C S, KIM S H. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes., 2012, 7(5): e37043.

[23] NISHIYAMA H, ITOH K, KANEKO Y, KISHISHITA M, YOSHIDA O, FUJITA J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth., 1997, 137(4): 899-908.

[24] ZHU X, BUHRER C, WELLMANN S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold., 2016, 73(20): 3839-3859.

[25] KENCHAPPA P, YADAV A, SINGH G, NANDANA S, BANERJEE K. Rescue of TNFalpha-inhibited neuronal cells by IGF-1 involves Akt and c-Jun N-terminal kinases., 2004, 76(4): 466-474.

[26] MITSIADES C S, MITSIADES N, POULAKI V, SCHLOSSMAN R, AKIYAMA M, CHAUHAN D, HIDESHIMA T, TREON S P, MUNSH N C, RICHARDSON P G, Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications., 2002, 21(37):5673-5683.

[27] MARTINEZ L, AGUILERA A, PEREZ P, PIGNATELLI J, FERNANDEZ A M, TORRES I. Cell-specific expression of insulin/insulin-like growth factor-I receptor hybrids in the mouse brain., 2019, 45:25-30.

[28] FERRY A L, VANDERKLISH P W, DUPONT E E. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3., 2011, 301(2): 392-402.

[29] VAND W, CONFIDES A L, JUDGE A R, VANDERKLISH P W, DUPONT E E. Cold shock protein RBM3 attenuates atrophy and induces hypertrophy in skeletal muscle., 2018, 39(1/2): 35-40.

[30] FUJITA T, HIGASHITSUJI H, LIU Y, ITOH K, SAKURAI T, KOJIMA T, KANDORI S, NISHIYAMA H, FUKUMOTO M, SHIBASAKI K, FUJITA J. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3., 2017, 7(1): 2295.

RNA-binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-like Growth Factor (IGF-1) for Protecting Yak () Cumulus Cells from Apoptosis during Hypothermia Stress

PAN YangYang1, WANG Meng1, RUI Xian2, WANG LiBin1,HE HongHong1, WANG JingLei1, MA Rui1, XU GengQuan1, CUI Yan1, FAN JiangFeng1, YU SiJiu1

(1College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070;2Lanzhou Biological Pharmaceutical Factory, China animal Husbandry Industry Co., LTD, Lanzhou 730046)

【】The aim of this study was to verify the relationship between insulin-like growth factor 1 (insulin-like growth factor, IGF-1) and RNA binding motif protein 3 (RBM3) during hypothermia stress and cell freezing in animals, and to investigate the mechanism of IGF-1 involved in inhibiting hypothermia injury of mammalian cells.【】Yak () cumulus cells were cultured, the effects of different concentrations (0, 50, 100 and 200 ng·mL-1) IGF-1 and hypothermia stress (25℃ and 30℃) on RBM3 expression in yak cumulus cells were detected by the methods of real-time fluorescence quantitative PCR (qRT-PCR), Western blot (WB) and immunofluorescence. The expression of RBM3 was compared when the cumulus cells treated with 100 ng·mL-1and 0 IGF-1 for 30 h and then stressed at low temperature (25℃ and 30℃) for 8 h. The difference of apoptosis level of cumulus cells was evaluated from the groups that treated with 0 ng·mL-1IGF-1, 100 ng·mL-1IGF-1, 100 ng·mL-1IGF-1+RBM3 inhibitor for 30 h and then stressed at 25℃ for 8 h. The expression of apoptosis-related genes (Bax and Bcl-2) in cumulus cells from three groups was also detected at mRNA and protein levels.【】(1) The expression level of RBM3 in cumulus cells treated with IGF-1 was significantly higher than that in control group (0 ng·mL-1), which was the highest in cumulus cells from 100 ng·mL-1IGF-1 group. The RBM3 protein could be detected in nucleus and cytoplasm of cumulus cells, which only expressed in cytoplasm under 0 and 50 ng·mL-1treatment groups. (2) The levels of RBM3 could be increased by hypothermia stress, and which also could be enhanced when 100 ng·mL-1IGF-1 was added before cold stress. The RBM3 protein could be detected in nucleus and cytoplasm of cumulus cells after hypothermia stress and treated with IGF-1. (3) After stress at 25℃ for 8 h, the apoptosis rate of cumulus cells treated with 100 ng·mL-1IGF-1 was (15.94 ±2.03)%, which was significantly lower than those of cumulus cells without IGF-1 treatment (25.86 ±1.09)% or with 100 ng·mL-1IGF-1+RBM3 inhibitor (20.14±2.65)%. The expression level of Bcl-2 was significantly higher than those in the control and IGF-1+RBM3 inhibitor groups (<0.05), while the expression level of Bax was significantly lower than control and IGF-1+RBM3 inhibitor groups (<0.05). 【】RBM3 was involved in the regulation ofhypothermia stress in yak cumulus cells, and IGF-1 could regulate its expression level in hypothermia stress, which helped to reducing the apoptosis of cumulus cells induced by low temperature. The results in this study provided the key information for revealing the molecular mechanism of IGF-1 and RBM3 involved in the protection of animal bodies or cells fromhypothermia damage, and provided theoretical basis for the improvement of somatic and germ cell freezing techniques.

yak; RNA-binding motif protein 3(RBM3); insulin-like growth factor (IGF-1); hypothermia stress; apoptosis

10.3864/j.issn.0578-1752.2020.11.014

2019-05-05;

2019-10-28

國(guó)家自然科學(xué)基金(31702311)、甘肅省高等學(xué)校創(chuàng)新能力提升項(xiàng)目(2019B-081)、甘肅農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院創(chuàng)新基金(JYCX-KX016)、甘肅農(nóng)業(yè)大學(xué)伏羲青年英才基金(Gaufx-02Y10)、甘肅農(nóng)業(yè)大學(xué)博士科研啟動(dòng)基金(GSAU-RCZX201701)

潘陽(yáng)陽(yáng),E-mail:panyangyang_2007@126.com。通信作者余四九,E-mail:sjyu@163.com

(責(zé)任編輯 林鑒非)

猜你喜歡
卵母細(xì)胞牦牛低溫
賽牦牛(布面油畫)
牦牛場(chǎng)的雪組詩(shī)
外源褪黑素對(duì)豬卵母細(xì)胞體外成熟及多精受精的影響
Yak of All Trades
美仁大草原的牦牛(外一章)
cAMP 調(diào)節(jié)劑對(duì)卵母細(xì)胞體外成熟效果的調(diào)節(jié)機(jī)制研究進(jìn)展
大型低溫制冷技術(shù)新突破
哺乳動(dòng)物GV期卵母細(xì)胞玻璃化冷凍研究進(jìn)展
霧霾低溫來(lái)襲快給蔬菜補(bǔ)充能量
C 型鈉鈦對(duì)犬卵母細(xì)胞體外成熟效果的影響