李民吉,張強,李興亮,周貝貝,楊雨璋,張軍科,周佳,魏欽平
4種矮化砧木對再植蘋果幼樹生長、產(chǎn)量和品質(zhì)的影響
李民吉,張強,李興亮,周貝貝,楊雨璋,張軍科,周佳,魏欽平
(北京市林業(yè)果樹科學研究院/農(nóng)業(yè)部華北都市農(nóng)業(yè)重點實驗室,北京 100093)
【】連續(xù)4年調(diào)查研究再植條件下4種矮化自根砧(G935、G41、G11和M9-T337)對‘宮藤’富士蘋果幼樹樹體生長、早果性和產(chǎn)量及品質(zhì)的影響,評價并篩選適宜北京地區(qū)再植使用的蘋果矮化自根砧木,為我國老齡低效蘋果園再植更新提供技術(shù)支撐。2016年春,刨除6年生蘋果樹(宮藤富士/SH6/圓葉海棠),未進行土壤改良,在原行內(nèi)重茬直接栽植4種矮化自根砧(G935、G11、G41和M9-T337),品種為宮藤富士蘋果苗(2年根1年干),株行距為1 m×3.8 m,細紡錘整形修剪,再植后(2016年)連續(xù)4年調(diào)查4種矮化自根砧嫁接‘宮藤富士’蘋果樹體生長、早果性和產(chǎn)量及品質(zhì)的差異。G935和G41自根砧富士樹體高度明顯高于G11和M9-T337;主枝數(shù)量由高到低為:G935>G41>G11>M9-T337;G41和M9-T337大腳現(xiàn)象明顯高于G935和G11;G935和G41單株間樹體高度、干徑和主枝數(shù)量差異明顯小于G11和M9-T337,園相整齊。再植第4年,G935和G41自根砧樹體葉片葉綠素含量和凈光合速率顯著高于G11和M9-T337,G935和G41葉片百葉鮮重顯著高于G11和M9-T337,G935和G41葉片百葉干重顯著高于M9-T337。再植4年內(nèi),G935和G41矮化自根砧富士生長正常,枝類組成符合正茬矮砧蘋果的變化規(guī)律;第2年開始,G11和M9-T337樹體長枝比例低于30%;第3年和第4年G11和M9-T337樹體短枝比例高于80%,長枝比例低于10%,樹勢衰弱明顯。再植第3年,G11幼樹成花株率最高,G935和G41次之,M9-T337無成花。再植第4年,G935和G41自根砧富士平均單株產(chǎn)量顯著高于M9-T337,G935平均單果重量和果形指數(shù)顯著高于其他自根砧,各自根砧樹體果實可溶性固形物含量、可滴定酸含量和固酸比均無顯著差異。再植條件下,以G935和G41為砧木的幼樹樹體生長顯著優(yōu)于G11和M9-T337,枝類組成合理,樹勢中庸但不衰弱,單株間差異小,園相整齊,適宜北京地區(qū)重茬栽植使用。
蘋果再植;G系砧木;矮化自根砧;富士蘋果;樹體生長;果實產(chǎn)量;果實品質(zhì)
【研究意義】中國是世界最大的蘋果生產(chǎn)和消費國,栽培面積和總產(chǎn)量均占世界的50%以上。近三四十年,蘋果矮砧栽培已經(jīng)成為發(fā)展方向,歐美等發(fā)達國家蘋果矮砧栽培比例已占90%以上[1-6],目前我國90%左右的蘋果園仍采用喬化栽培模式,近幾年,蘋果矮砧栽培再次掀起高潮,而矮化栽培的比例仍不足10%,發(fā)展較慢,矮化中間砧或短枝型的矮化栽培模式占比較高[6-8]。我國現(xiàn)有蘋果園中,70%以上的果園樹齡在25年以上,樹齡老化和低效等問題嚴重制約了蘋果產(chǎn)業(yè)的可持續(xù)發(fā)展。由于我國土地資源有限,蘋果種植比較集中(環(huán)渤海灣和黃土高原約占70%),老齡低效果園更新的再植障礙(重茬)問題嚴重制約了我國蘋果由傳統(tǒng)栽培向矮砧集約栽培模式的轉(zhuǎn)換。評價、篩選、培育適宜我國再植使用的蘋果矮化自根砧木,對于我國老齡低效蘋果園更新和栽培模式升級具有重要意義?!厩叭搜芯窟M展】蘋果連作障礙又稱為蘋果再植病,蘋果樹重茬建園時,新栽植的蘋果幼樹多表現(xiàn)為成活率下降、樹體生長弱、單株個體差異大、結(jié)果晚等問題[9-13]。國內(nèi)關(guān)于蘋果再植障礙做了大量研究,但大都集中在重茬抑制生長機理研究和如何通過土壤處理等方法減少重茬影響方面[14-16]。選擇抗重茬砧木是解決蘋果再植問題的重要途徑之一,我國自20世紀60年代就開始蘋果矮砧栽培研究工作,先后引進了英國東茂林試驗站的M系、MM系,波蘭的P系,加拿大的O系,原蘇聯(lián)的B系和美國的MAC等蘋果矮化砧木,由于砧木生態(tài)適應性及栽培技術(shù)不配套等問題,至今保留下的果園甚微[17-22]。國外相關(guān)研究起步較早,相關(guān)機理研究已經(jīng)較深入,并且已經(jīng)有關(guān)于抗重茬砧木育種和應用的報道,其中美國農(nóng)業(yè)部和康奈爾大學Geneva試驗站對新育成的G系砧木進行了抗重茬能力的評價[9,23-24]?!颈狙芯壳腥朦c】我國土壤氣候條件下再植蘋果園矮化砧木的評價有待研究。【擬解決的關(guān)鍵問題】本研究以從國外商務購買的4種蘋果矮化自根砧木(G935、G41、G11和M9-T337)嫁接‘宮藤富士’為材料,探討再植蘋果園4種矮化自根砧木對‘富士’蘋果幼樹樹體生長、早果性和產(chǎn)量及品質(zhì)的影響,為我國老齡低效蘋果園更新建園提供技術(shù)支撐。
試驗于2016—2019年在北京市順義區(qū)楊鎮(zhèn)蘋果產(chǎn)業(yè)技術(shù)研發(fā)基地蘋果園(北緯39°97′,東經(jīng)116°23′)進行。
2016年春季,刨除6年生蘋果樹(宮藤富士/SH6/圓葉海棠,株行距為1 m×3.8 m)后,原土壤不做任何改良,果園土壤為壤土,全氮1.04 g?kg-1,堿解氮65.2 mg?kg-1,有效磷21.2 mg?kg-1,有效鉀113 mg?kg-1,有機質(zhì)14.4 g?kg-1,pH 8.09;在原行內(nèi)開寬、深各20 cm左右的小溝,按照株距1 m種植4種矮化自根砧(G935、G11、G41和M9-T337,正規(guī)購買獲得)嫁接‘宮藤富士’的苗木,砧木露出地面10—15 cm,每種砧木栽植120株,每4行主栽品種配置一行‘王林’為授粉樹。按照細紡錘形進行整形和修剪,水肥一體化滴灌系統(tǒng)進行正常肥水管理。
自種植后,每個處理選擇20株為試驗樹,每年落葉后用游標卡尺測量不同砧木嫁接口上10 cm處品種的樹干粗度和嫁接口下5 cm處砧木的樹干粗度,并計算砧穗干周比,調(diào)查樹冠內(nèi)不同長度的枝條類型(<5 cm、5—15 cm、15—30 cm和>30 cm)的數(shù)量,計算統(tǒng)計主枝數(shù)量和枝類組成;2018年春,調(diào)查4種自根砧樹體成花株數(shù)。2019年,試驗樹果實成熟后全部采收,統(tǒng)計果實產(chǎn)量;果實成熟時,在每株樹冠的中上部東南方向取3個果實,共60個,帶回實驗室測定果實品質(zhì),用百分之一天平測量果實單果重;用游標卡尺測量果實的橫徑、縱徑,計算統(tǒng)計果形指數(shù);用GY-1型果實硬度計測定果實硬度;用PR-100型數(shù)字糖度計測定果實可溶性固形物含量;用0.1 mol·L-1NaOH中和滴定法測定果實可滴定酸含量。
應用PASW Statistics 18和Excel等軟件進行數(shù)據(jù)的計算統(tǒng)計和分析。
2.1.1 樹體高度、主枝數(shù)量和樹干粗度的差異 從圖1可以看出,隨著樹齡的增長,4種矮化自根砧富士樹體高度、樹干粗度和主枝數(shù)量逐年增加,不同砧木間存在顯著差異。G935和G41樹體高度明顯高于G11和M9-T337;主枝數(shù)量由高到低為:G935>G41>G11>M9-T337;G41和M9-T337“大腳”現(xiàn)象明顯高于G935和G11。從圖中誤差線可以看出,G935和G41單株間樹體高度、干徑和主枝數(shù)量差異較小,園相整齊,而G11和M9-T337單株間樹體高度、干徑和主枝數(shù)量波動巨大,園相不整齊。
2.1.2 樹體枝類組成的差異 如圖2所示,4種矮化自根砧‘富士’樹體間的枝類組成存在較大差異。再植第2年至第4年,各矮化自根砧樹體短枝比例不斷增加,長枝比例不斷減少。G935和G41生長正常,枝類組成變化符合正茬矮砧蘋果的變化規(guī)律。再植第2年開始,G11和M9-T337樹體長枝比例低于30%;再植第3年和第4年,G11和M9-T337樹體短枝比例高于80%,長枝比例低于10%,樹勢衰弱明顯。
2.1.3 葉片質(zhì)量的差異 再植條件下,4種矮化自根砧‘富士’葉片質(zhì)量存在較大差異(表1):再植第4年(2019年),G935和G41自根砧樹體葉片葉綠素含量和凈光合速率顯著高于G11和M9-T337,G935和G41葉片百葉鮮重顯著高于G11和M9-T337,G935和G41葉片百葉干重顯著高于M9-T337。
表1 再植第4年4種矮化自根砧‘富士’蘋果樹體葉片質(zhì)量的差異
多重比較采用新復極差測驗,同一列不同小寫字母表示不同數(shù)據(jù)之間達到5%顯著性差異水平。下同
Statistical multiple comparison according to the Duncan’s test, the different letters indicate significant difference at 0.05 level. The same as below
不同小寫字母表示差異顯著(P<0.05)different lowercase letters indicate significant difference (P<0.05)
2.2.1 早期成花的差異 2018年春調(diào)查4種矮化自根砧富士成花情況,如表2所示。G11幼樹成花株率最高為34.9%,G935和G41幼樹成花株率較為相近,分別為19.5%和21.9%。T337幼樹部分死亡,存活的樹體無成花。
2.2.2 對果實品質(zhì)的影響 再植第4年(2019年)果實品質(zhì)的調(diào)查結(jié)果顯示,4種矮化自根砧‘富士’蘋果果實產(chǎn)量和品質(zhì)的差異顯著。再植第4年,G935和G41自根砧‘富士’平均單株產(chǎn)量顯著高于M9-T337;且G935和G41單株間產(chǎn)量差異較小,園相整齊,G11和M9-T337單株間產(chǎn)量差異很大,園相非常不整齊。G935自根砧‘富士’平均單果重量和果形指數(shù)顯著高于其他自根砧。4種自根砧‘富士’果實的可溶性固形物含量、可滴定酸含量和固酸比均無顯著差異(表3)。
表2 4種矮化自根砧‘富士’蘋果樹體成花的差異
圖2 再植條件下不同矮化自根砧‘富士’蘋果樹體枝類組成的年變化
表3 4種矮化自根砧‘富士’蘋果果實產(chǎn)量和品質(zhì)的差異(再植第4年)
M9-T337是由荷蘭木本植物苗圃檢測服務中心(NAKTUINBOUW)選育的蘋果矮化砧木,M9-T337自根砧蘋果具有矮化性強、結(jié)果早、品質(zhì)高等優(yōu)點[25-26],近十年來在我國應用較多,但也存在抗寒性較差、不抗重茬和肥水要求高等缺點,難以滿足目前我國大面積老齡低效果園更新和部分產(chǎn)區(qū)寒冷、干旱的氣候特點。美國從1968年開始蘋果砧木育種,目前已成功選育出具有較大應用和科研價值的已申請專利的14個G系蘋果砧木品種,其中不同砧木分別具有抗火疫病、抗頸腐病、抗綿蚜、抗重茬等優(yōu)良抗性[9,23-24]。G系砧木中具有抗重茬能力的矮化砧木可直接應用于我國目前老果園更新,或作為親本培育具有自主知產(chǎn)權(quán)的適宜我國不同生態(tài)區(qū)的矮化砧木。
再植條件下,4種矮化自根砧‘宮藤富士’蘋果樹體生長和早期結(jié)果的差異巨大。隨著樹齡的增長,4種矮化自根砧‘富士’樹體高度、樹干粗度和主枝數(shù)量逐年增加,不同砧木間存在顯著差異。G935和G41樹體長勢顯著優(yōu)于G11和M9-T337,G11和M9-T337主干生長勢很弱,G41和M9-T337樹體出現(xiàn)較嚴重的“大腳”現(xiàn)象。足夠的枝量是樹體早果豐產(chǎn)的前提,再植第4年,G935和G41樹體平均主枝數(shù)量均超過了25個,分別為30.2和26.4,能夠滿足矮砧密植的枝量要求[9-12,27-29];而G11和M9-T337主枝僅為15.7和11.3,主枝數(shù)量嚴重不足。園相整齊是判斷砧木抗重茬能力的指標之一[7-13],G935和G41單株間樹體高度、干徑和主枝數(shù)量差異明顯小于G11和M9-T337,園相整齊。果樹的枝類組成直接影響樹體的生長勢和產(chǎn)量品質(zhì),前人研究表明,一般情況下矮砧蘋果正茬栽植后前3—4年,樹體的長枝比例不斷減少,短枝比例不斷增加,到第4、5年樹體短枝比例均達到最大值并開始趨于穩(wěn)定[30-32]。本研究中,再植第2—4年,G935和G41樹體生長正常,枝類組成變化符合正茬矮砧蘋果枝類組成的變化規(guī)律;而G11和M9-T337樹體再植第2年開始,長枝比例便低于30%,第3年和第4年樹勢衰弱明顯[33-34]。葉片質(zhì)量是決定光合營養(yǎng)積累和產(chǎn)量的重要決定性因素,再植條件下不同自根砧的葉片質(zhì)量也是篩選抗重茬砧木的重要指標。
根據(jù)再植條件下,4種不同矮化自根砧‘富士’幼樹4年的樹體生長、早花性和產(chǎn)量品質(zhì)情況,以G935和G41自根砧為砧木的‘富士’幼樹樹體生長顯著優(yōu)于G11和M9-T337,枝類組成合理,樹勢中庸但不衰弱,單株間差異小,園相整齊,適宜北京地區(qū)重茬栽植使用。
[1] 韓明玉. 蘋果矮砧集約高效栽培模式. 果農(nóng)之友, 2009(9): 12.
Han M Y. Intensive apple orchard systems., 2009(9): 12. (in Chinese)
[2] VAIO C D, CIRILLO C, BUCCHERI M, LIMONGELLI F. Effect of interstock (M.9 and M.27) on vegetative growth and yield of apple trees., 2009, 119: 270-274.
[3] LICZNAR-MALANCZUKa M. Influence of planting and training systems on fruit yield in apple orchard., 2004, 12: 97-104.
[4] Robinson T L. Recent advances and future directions in orchard planting systems., 2004, 732: 367-381.
[5] Robinson T L, Hoying S A, Reginato G L. The tall spindle apple planting system., 2006, 14(2): 21-28.
[6] 馬寶焜, 徐繼忠, 孫建設(shè). 關(guān)于我國蘋果矮砧密植栽培的思考. 果樹學報, 2010, 27(1): 105-109.
Ma B K, Xu J Z, Sun J S. Consideration for high density planting with dwarf rootstocks in apple in China., 2010, 27(1): 105-109. (in Chinese)
[7] 李丙智, 張林森, 韓明玉. 世界蘋果矮化砧木應用現(xiàn)狀. 果農(nóng)之友, 2007(7): 4-6.
Li B Z, Zhang L S, Han M Y. Application status of apple dwarfing rootstocks in world., 2007(7): 4-6. (in Chinese)
[8] 李丙智, 韓明玉, 張林森, 雷小明. 我國矮砧蘋果生產(chǎn)現(xiàn)狀與發(fā)展緩慢的原因分析及建議. 煙臺果樹, 2010(2): 1-4.
Li B Z, Han M Y, Zhang L S, Lei X M. The suggestion and analysis of the causes of slow development on short anvil apple production in China present situation., 2010(2): 1-4. (in Chinese)
[9] Laurent A S, Merwin I A, Fazio G, Thies J E, Brown M G. Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil., 2010, 337(1/2): 259-272.
[10] MAI W F, ABAWI G S. Controlling replant diseases of pome and stone fruits in Northeastern United-States by preplant fumigation., 1981, 65: 859-864.
[11] MAI W F, MERWIN I A, ABAWI G S. Diagnosis, etiology, and management of replant problems in New York cherry and apple orchards., 1994, 363: 33-41.
[12] MAZZOLA M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington., 1998, 88: 930-938.
[13] MAZZOLA M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots., 1999, 89: 920-927.
[14] 李晶, 王新語, 張煥春, 張學勇, 劉美英, 李淑平, 姜中武. 脫毒紅將軍蘋果品種在重茬果園的栽培表現(xiàn)與果實品質(zhì)分析. 安徽農(nóng)業(yè)科學, 2018, 46(13): 59-60, 82.
LI J, WANG X Y, ZHANG H C, ZHANG X Y, LIU M Y, LI S P, JIANG Z W. Cultivation performance and fruit quality of virus-free Red General apple variety in replanted orchard., 2018, 46(13): 59-60, 88. (in Chinese)
[15] 毛志泉, 沈向. 蘋果重茬(連作)障礙防控技術(shù). 煙臺果樹, 2016(4): 26-27.
MAO Z Q, SHEN X. Prevention and control technology of apple continuous cropping obstacle., 2016(4): 26-27. (in Chinese)
[16] 黃翠香, 毛志泉, 韓甜甜, 張文會, 夏燕飛, 王榮, 沈向. 有機營養(yǎng)活化發(fā)酵液處理重茬土壤對蘋果幼樹生長的影響. 中國農(nóng)學通報, 2013, 29(1): 178-182.
HUANG C X, MAO Z Q, HAN T T, ZHANG W H, XIA Y F, WANG R, SHEN X. The effect of the cropping soil disposed with the fermentation fluid of organic materials on the growth of young apple trees., 2013, 29(1): 178-182. (in Chinese)
[17] PAWLICKI N, WELANDER M. Adventitious shoot regeneration from leaf segments of in vitro cultured shoots of the apple rootstock Jork 9., 1994, 69: 687-696.
[18] RABI F, RAB A, RAHMAN K U, MUNIR M. Response of apple cultivars to graft take success on apple rootstock., 2014, 4(3): 78-84.
[19] AUTIO W R, BARRITT B H, CLINE J A, CRASSWELLER R M, Embree C G, Ferree D C, Garcia M E, Greene G M, Hoover E E, Johnson R S, Kosola K, Masabni J G. Early performance of ‘Fuji’ and ‘Mcintosh’ apple trees on several dwarf rootstocks in the 1999 Nc-140 rootstock trial., 2007, 732: 127-133.
[20] JACKSON J E.Word-wide development of high density planting in research and practice., 1989, 243: 17-28.
[21] CZYNCZYK A, OMIECINSKA B. Effect of new rootstocks of Polish, Russian and Czechoslovakian breeds and two depth of planting of trees with interstems on growth and cropping of 3 apple cultivars., 1989, 243: 71-78.
[22] ZAGAJA S W.Performance of two apple cultivars on pseries dwarf rootstocks., 1981, 114: 162-169.
[23] ISUTSA D K, MERWIN I A. Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils., 2000, 35: 262-268.
[24] LEINFELDER M, MERWIN I A. Rootstock selection, pre-plant soil treatments, and tree planting positions as factors in managing apple replant disease., 2006, 41: 394-401.
[25] 麻珊珊. 蘋果矮化自根砧—M9T337. 西北園藝(果樹), 2017(4): 6-8.
MA S S. Apple dwarfing rootstock-M9T337., 2017(4): 6-8. (in Chinese)
[26] 何平, 李林光, 王海波, 常源升. 5個矮化中間砧對‘沂水紅’富士蘋果生長、結(jié)果和葉片礦質(zhì)元素積累的影響. 中國農(nóng)業(yè)科學, 2018, 51(4): 750-757.
HE P, LI L G, WANG H B, CHANG Y S. Effects of five dwarfing interstocks on shoot growth, fruiting and accumulation of mineral elements in leaves of Yishui Red Fuji apple., 2018, 51(4): 750-757. (in Chinese)
[27] 高登濤, 郭景南, 魏志峰, 范慶錦, 楊朝選. 中部地區(qū)兩類矮砧密植蘋果園生產(chǎn)效率及光照質(zhì)量評價. 中國農(nóng)業(yè)科學, 2012, 45(5): 909-916.
GAO D T, GUO J N, WEI Z F, FAN Q J, YANG C X. Evaluation of productivity and light quality in two high density dwarf rootstock apple orchards in central China., 2012, 45(5): 909-916. (in Chinese)
[28] 董建波. 蘋果矮砧密植園個體與群體參數(shù)研究[D]. 保定: 河北農(nóng)業(yè)大學, 2010.
DONG J B. Research on individual and group parameters of apple orchard with intensive planting on dwarf rootstock [D]. Baoding: Agricultural University of Hebei, 2010. (in Chinese)
[29] 張強, 魏欽平, 尚志華. 北京地區(qū)矮砧蘋果園優(yōu)質(zhì)豐產(chǎn)樹體結(jié)構(gòu)和光照狀況分析. 果樹學報, 2013, 30(4): 586-590.
ZHANG Q, WEI Q P, SHANG Z H. Analysis of tree structure and relative light intensity in apple orchard with dwarf interstock for good qualities and high yield in Beijing region., 2013, 30(4): 586-590. (in Chinese)
[30] 李民吉, 張強, 李興亮, 周貝貝, 孫健, 張軍科, 魏欽平. 五個SH系矮化中間砧對‘富士’蘋果樹體生長、產(chǎn)量和品質(zhì)的影響. 中國農(nóng)業(yè)科學, 2016, 49(22): 4419-4428.
LI M J, ZHANG Q, LI X L, ZHOU B B, SUN J, ZHANG J K, WEI Q P. Effect of five different dwarfing interstocks of sh on growth, yield and quality in ‘Fuji’ apple trees., 2016, 49(22): 4419-4428. (in Chinese)
[31] 張強, 魏欽平, 劉松忠, 王小偉, 尚志華, 路瑾瑾. Sh6矮化中間砧富士蘋果幼樹至結(jié)果初期樹冠結(jié)構(gòu)、產(chǎn)量和品質(zhì)的形成. 中國農(nóng)業(yè)科學, 2013, 46(9): 137-143.
ZHANG Q, WEI Q P, LIU S Z, WANG X W, SHANG Z H, LU J J.Formation of canopy structure, yield and fruit quality of ‘Fuji’ apple with SH6 dwarf interstock from juvenility to fruiting early stage., 2013, 46(9): 137-143. (in Chinese)
[32] 李民吉, 張強, 李興亮, 周貝貝, 楊雨璋, 周佳, 張軍科, 魏欽平. SH6矮化中間砧"富士"蘋果不同樹形對樹體生長和果實產(chǎn)量、品質(zhì)的影響. 中國農(nóng)業(yè)科學, 2017, 50(19): 3789-3796.
LI M J, ZHANG Q , LI X L, ZHOU B B, YANG Y Z, ZHOU J, ZHANG J K, WEI Q P. Effect of three different tree shapes on growth, yield and fruit quality of ‘Fuji’ apple trees on dwarfing interstocks., 2017, 50(19): 3789-3796. (in Chinese)
[33] 李敏敏, 安貴陽, 張雯,郭燕, 趙政陽, 楊建鋒. 不同冬剪強度對喬化富士蘋果成花、枝條組成和結(jié)果的影響. 西北農(nóng)業(yè)學報, 2011, 20(5): 126-129.
LI M M, AN G Y, ZHANG W, GUO Y, ZHAO Z Y, YANG J F. Effect of winter pruning on flowering, shoot-type composing and fruiting on Fiji apple trees., 2011, 20(5):126-129. (in Chinese)
[34] 阮班錄, 劉建海, 李丙智. 不同修剪處理方法對蘋果結(jié)果枝組生長和成花的影響. 陜西農(nóng)業(yè)科學, 2011, 57(4): 52-53.
RUAN B L, LIU J H, LI B Z. Effects of different pruning methods on growth and flower formation of apple fruiting branch., 2011, 57(4): 52-53. (in Chinese)
Effects of 4 Dwarfing Rootstocks on Growth, Yield and Fruit Quality of ‘Fuji’ Sapling in Apple Replant Orchard
LI MinJi, ZHANG Qiang, LI XingLiang, ZHOU BeiBei, YANG YuZhang, ZHANG JunKe, ZHOU Jia, WEI QinPing
(Beijing Academy of Forestry and Pomology Sciences/Key Laboratory of Urban Agriculture (North China),Ministry of Agriculture,Beijing 100093)
【】The effects of four dwarfing rootstocks (G935, G41, G11 and M9-T337) on the growth, early fruiting and yield quality of Fuji apple saplings under the replanting conditions were investigated for four years. The dwarfing rootstocks suitable for continuous cropping in Beijing were evaluated and selected, so as to provide a technical support for the renewal of the cultivation mode of old and inefficient apple orchards in China.【】In the spring of 2016, 6-year-old apple trees (Fuji/SH6/) were planed out and no soil improvement was carried out. 4 dwarfing rootstocks (G935, G11, G41 and M9-T337) Fuji apple seedlings (2-year-old roots and 1-year-dry) were directly planted in the original row, with a row spacing of 1 m×3.8 m. After planting, 4 dwarfing plants were investigated differences of tree growth, early fruiting, yield and quality of Fuji apple on rootstock for 4 consecutive years. 【】The height of Fuji trees on G935 and G41 rootstock was higher than that of G11 and M9-T337; the number of main branches from high to low was: G935>G41>G11>M9-T337; the phenomenon of big feet of G41 and M9-T337 was higher than that of G935 and G11; the difference of height, diameter and number of main branches between G935 and G41 was significantly lower than that of G11 and M9-T337, with the neat garden phase. In the fourth year of continuous cropping, the chlorophyll content and net photosynthetic rate of leaves of G935 and G41 rootstocks were significantly higher than G11 and M9-T337, the fresh weight of leaves of G935 and G41 was significantly higher than G11 and M9-T337, and the dry weight of leaves of G935 and G41 was significantly higher than M9-T337. Within 4 years of continuous cropping, Fuji, the dwarfing rootstock of G935 and G41, grew normally, and the branch composition was in line with the change rule of dwarf rootstock fruit trees. From the second year, the proportion of long branches of G11 and M9-T337 trees was lower than 30%; from the third and fourth year, the proportion of short branches of G11 and M9-T337 trees was higher than 80%, the proportion of long branches was lower than 10%, and the tree vigor was obviously weakened. In the third year of continuous cropping, the flowering rate of G11 young trees was the highest, followed by G935 and G41, and M9-T337 had no flowering. In the fourth year of continuous cropping, the average yield per plant of Fuji on G935 and G41 rootstocks was significantly higher than that of M9-T337 and the average fruit weight and fruit shape index of G935 were significantly higher than those of other rootstocks. There were no significant differences in the soluble solid content, titratable acid content and solid acid ratio of the fruit of each rootstock. 【】 Under the condition of replantation, the growth of young trees with G935 and G41 as rootstocks was significantly better than that of G11 and M9-T337. The branch composition was reasonable, the tree potential was moderate but not weak, the difference between single plants was small, and the garden was neat, which was suitable for continuous cropping in Beijing.
apple replant orchard; G dwarfing rootstocks; Fuji apple; tree growth; fruit yield; fruit quality
10.3864/j.issn.0578-1752.2020.11.012
2019-11-27;
2020-02-12
北京市農(nóng)林科學院科技創(chuàng)新能力建設(shè)專項(KJCX20170409)、北京市農(nóng)林科學院青年科研基金(QNJJ 201729)、國家現(xiàn)代蘋果產(chǎn)業(yè)技術(shù)體系(CARS-27)
李民吉,E-mail:changlelmj@163.com。通信作者魏欽平,E-mail:qpwei@sina.com
(責任編輯 趙伶俐)