何 龍 馬金財 杜龍基 李 軍 吳偉麗 劉 勇
(1. 國網新疆電力有限公司昌吉供電公司 昌吉 831100;2. 西安科技大學電氣與控制工程學院 西安 710054;3. 安徽正廣電電力技術有限公司 合肥 230000;4. 大連理工大學電子信息與電氣工程學部 大連 116024)
我國配電網多采用中性點不接地方式,配有電磁式電壓互感器時,電力部門在設計時會注意避免產生鐵磁諧振問題。然而近年來,隨著配電網的建設和發(fā)展,小電流接地系統(tǒng)在互感器母線空載合閘或單相鐵磁諧振后,出現(xiàn)了鐵磁諧振事件頻繁發(fā)生的現(xiàn)象,造成電壓互感器一次線圈中通過相當大的電流。當一次側熔斷器尚未熔斷時,可能使電壓互感器燒毀;當一次側熔斷器熔斷時,則使變電所的值班人員無法讀取系統(tǒng)的正確電壓值。此外,鐵磁諧振所產生的過電壓還會對電力設備安全運行構成嚴重威脅。
國內外的專家學者對鐵磁諧振進行了大量的研究,包括理論分析、各種試驗以及仿真等,從不同角度解釋電壓互感器(Potential transformer,PT)鐵磁諧振的現(xiàn)象及其變化規(guī)律,并提出一系列抑制鐵磁諧振的措施,研制相應的裝置,在實際工程中也取得了一定的效果。不過,上述措施都存在僅對鐵磁諧振故障進行事后補救而非提前預防的局限性[1],若能從鐵磁諧振發(fā)生的條件及其影響因素入手,確定并對比各影響因素的作用,從而掌握產生諧振過電壓的關鍵因素,以獲得從源頭避免鐵磁諧振發(fā)生的條件,不失為一個有效防御鐵磁諧振風險的好辦法。
研究表明,鐵磁諧振源于系統(tǒng)容性參數(shù)和感性參數(shù)的不利配合。當系統(tǒng)正常運行時,因規(guī)劃設計的原因,不會發(fā)生鐵磁諧振;當發(fā)生了單相接地故障后,由于網絡參數(shù)改變,短路電流造成鐵磁式互感器鐵心飽和而使其電感呈現(xiàn)非線性飽和特性,并與系統(tǒng)容性參數(shù)配合導致鐵磁諧振的發(fā)生。影響系統(tǒng)中的感性參數(shù)和容性參數(shù)的因素很多,如故障類型[2]、短路點位置[3]、激發(fā)時刻[4]、過渡電阻、中性點接地方式、系統(tǒng)相間電容[5]、對地電容、互感器鐵心材料和線路構成比例[6]等,上述影響鐵磁諧振故障的部分因素被進行了分析,但對影響因素的量化作用程度以及各因素的重要度排序研究不足。
上述因素涉及系統(tǒng)本身的架構和參數(shù)、故障參數(shù)、電力設備類型等層面,各影響因素具有隨機性且缺乏有效的數(shù)學表達方法,同時影響因素之間也存在相互作用和配合的關系,即系統(tǒng)采用的電磁式互感器鐵心會受到短路電流的沖擊而飽和,從而造成互感器電感下降,互感器鐵心所采用的材料決定其飽和后的電感參數(shù)。系統(tǒng)故障后,故障位置影響了短路電流水平,也影響了電磁式互感器的鐵心飽和程度,從而影響到互感器的電感,當系統(tǒng)本身所具有的電容參數(shù)與變化后的電感參數(shù)之間的關系達到共振的條件時,鐵磁諧振故障發(fā)生??梢?,對影響因素的作用程度進行量化,確定其中的關鍵影響因素,在設計、運行或調度過程中加以避免,將有助于電力部門防范與治理鐵磁諧振故障。對影響系統(tǒng)感性參數(shù)和容性參數(shù)的因素進行分析的思路是在鐵磁諧振歷史事件參數(shù)的基礎上,借助仿真模型對影響因素及其分布概率進行初步刻畫,再借助模糊推理 Petri 網特性對離散故障事件概率進行動態(tài)分析,最后結合事故樹(Fault tree analysis,F(xiàn)TA)思想,對造成鐵磁諧振故障的影響因素的重要度進行排序,在實際運行過程中加以關注,避免促成鐵磁諧振故障,從而達到風險的提前預防。
近年來,Petri 網因為可以對離散事件動態(tài)系統(tǒng)建模,在并發(fā)事件描述方面具有獨特優(yōu)勢,同時也可以很好地描述故障的產生和傳播過程,因此常被用于研究電力系統(tǒng)的繼電保護故障診斷[7-8],模糊推理 Petri網(Fuzzy reasoning Petri net,F(xiàn)RPN)是在 Petri 網的基礎上擴展的圖形化的數(shù)學建模工具[9-11],適合于人類知識的表示和人工智能領域的求解,將其與FTA相結合具有推理簡單和易于實現(xiàn)的優(yōu)點。
有鑒于此,將FRPN與FTA結合,構建鐵磁諧振關鍵影響因素分析模型,結合鐵磁諧振故障多維實測數(shù)據和仿真模型,對影響小電流系統(tǒng)鐵磁諧振過電壓的諸多因素進行分析與對比,構建鐵磁諧振及其影響因素之間的關系模型,最后利用 Petri 網的圖形特性模糊推理算法和故障樹思想計算影響因素重要度指標,并利用案例加以分析和驗證,為及時發(fā)現(xiàn)影響鐵磁諧振的關鍵因素提供參考。
小電流接地系統(tǒng)正常運行時,系統(tǒng)感抗大于容抗,不具備諧振條件,當系統(tǒng)發(fā)生擾動時,互感器中增大的勵磁電流會造成鐵心飽和而使其電感下降至與容抗相等,鐵磁諧振故障發(fā)生,過程如圖1所示。
由圖1可知,促成電力系統(tǒng)發(fā)生鐵磁諧振故障的因素由系統(tǒng)結構與參數(shù)、系統(tǒng)運行狀態(tài)和設備參數(shù)三個方面構成。系統(tǒng)運行受到諸如單相鐵磁諧振、外電路過電壓故障、互感器空載合閘或母線不同期合閘等外界提供的能量激發(fā),電流增大且流過互感器繞組,造成互感器鐵心飽和,從而致使系統(tǒng)感性參數(shù)下降,當下降的感性參數(shù)與容性參數(shù)不利配合時,系統(tǒng)發(fā)生鐵磁諧振。一般來說,鐵磁諧振多發(fā)生在變壓器空載或輕載工況下。
線路構成、相間電容和接地電容會影響系統(tǒng)的容性參數(shù)。電容型互感器分為電容式和電磁式兩種,這兩種都會發(fā)生鐵磁諧振[12-14],中性點不接地系統(tǒng)較多采用電磁式互感器。
系統(tǒng)運行受外界能量激發(fā)會導致電流增大,不同的激發(fā)類型導致的感性參數(shù)變化有別。其中,單相接地短路電流水平與中性點參數(shù)高壓側直流電阻阻值呈負相關性,并與短路消除時間有關。因為故障消除時刻對應的各相電源電壓的大小不同,導致電壓恢復時釋放的電荷量不同,造成 PT鐵心的飽和程度有差異,從而產生大小不同的鐵磁諧振過電壓。外電路過電壓故障和互感器空載合閘提供激發(fā)能量所產生的電流水平與變壓器負載率呈負相關性,上述因擾動產生的增大的電流水平與互感器高壓側直流電阻均呈負相關關系。此外,過渡電阻、消弧線圈和中性點阻抗也會影響到所能量激發(fā)電流水平,進而限制鐵磁諧振過電壓水平。當增大的電流流過互感器繞組時,感性參數(shù)下降的程度受到互感器飽和程度的影響,而互感器飽和程度又受到電流水平和鐵心材質的共同影響。當下降的感性參數(shù)與容性參數(shù)滿足諧振條件時,鐵磁諧振過電壓故障發(fā)生。
根據上述分析,鐵磁諧振故障事故樹模型如圖 2所示。
構建鐵磁諧振故障模糊推理Petri網為
式中,P={P1,P2,…,Pn}代表庫所,一部分表示影響系統(tǒng)感抗參數(shù)變化的參量,為初級庫所,另一部分表示影響鐵磁諧振過電壓的參數(shù),為目標庫所;代表變遷狀態(tài)或者規(guī)則集合,表示影響因素參數(shù)變化對目標庫所的觸發(fā);為變遷或者規(guī)則的置信度,即各因素參數(shù)變化置信度,取值為 0~1,值越大,表示初級庫所導致鐵磁諧振故障的可能性越大;為輸入矩陣,表示庫所到變遷狀態(tài)的有向弧,矩陣元素δij∈{0,1}為庫所節(jié)點到變遷節(jié)點的模糊關系和權重,表示初始庫所過渡到影響鐵磁諧振過電壓故障的狀態(tài),即變遷狀態(tài)的權系數(shù),當Pi是tj的輸入時,為規(guī)則的輸出矩陣(n×m),oij∈ { 0,1}為變遷到庫所的輸出關系和結論可信度,意義與輸入矩陣類似,表示影響因素促成了鐵磁諧振發(fā)生的條件,即目標庫所達到故障臨界值的可信度;為庫所的初始狀態(tài),其中θ0∈[0,1]。
鐵磁諧振事故樹因果關系的事件可以轉換為Petri網絡中庫所的變遷,轉換規(guī)則如表1所示。
表1 事故樹與Petri推理規(guī)則對應表
表1中,x1、x2為事故樹中的事件,在Petri網中為庫所;c1、c2為變遷的置信度,具體數(shù)值需要結合配電網具體架構、參數(shù)和運行工況確定。
為了更好地推理鐵磁諧振事件發(fā)生的過程與相關參數(shù)的參與程度,采用t范數(shù)和s范數(shù)代替?zhèn)鹘y(tǒng)模糊推理中的最大值和最小值概念[15-17],規(guī)則如下所述。
t范數(shù)定義為t:[0; 1]×[0; 1]→[0; 1],則對于每一個a,b,c∈[0; 1],規(guī)則如下所述。
(1) 以1作為單位元素,即t(a,1)=a。
(2) 是單調的,即如果a≤b,則有t(a,c)≤t(b,c)。
(3) 服從交換律,即t(a,b)=t(b,a)。
(4) 服從關聯(lián)律,即t{t(a,b),c}=t{a,t(b,c)}。
s范數(shù)定義為s:[0; 1]×[0; 1]→[0; 1],則對于每一個a,b,c∈ [0; 1],規(guī)則如下所述。
(1) 以0作為單位元素,即s(a,0)=a。
(2) 是單調的,即,如果a≤b,則s(a,c)≤s(b,c)。
(3) 服從交換律,即s(a,b)=s(b,a)。
(4) 服從關聯(lián)律,即s{s(a,b),c}=s{a,s(b,c)}。
在上述規(guī)則基礎上,利用neg算子進行下述模糊推理[11]。
式中,neg算子代表將命題取反,類似于邏輯非;1m為m列1矢量;k為推理階次;vk為規(guī)則前提為假的可信度;ρk為規(guī)則前提為真的可信度;Qk為庫所的k階推理后的狀態(tài)屬性,其數(shù)值表示可信度。則有
根據式(3)推理可以得到第k步庫所狀態(tài),推理終止條件為θ+1k=θk
(1) 針對某一區(qū)域電網實際參數(shù),搭建仿真模型,計算各工況下的鐵磁諧振故障參數(shù)集合,并以此為基礎,構建影響因素與鐵磁諧振關聯(lián)模型。
(2) 整合影響鐵磁諧過電壓故障的系統(tǒng)架構與參數(shù)、設備參數(shù)和系統(tǒng)運行狀態(tài)三方面因素,構建電壓故障的參數(shù)集合,整理歷史參數(shù),初步確定各因素在鐵磁諧振故障中的作用程度與臨界閾值,并以此為依據,確定基本事件可信度。
(3) 構建Petri網絡模型,利用Petri網模糊推理功能,確定相關影響因素特征值與導致故障的模糊可信度,構建接地網模糊故障樹模型。
(4) 確定鐵磁諧振故障過電壓影響因素的割集,計算過電壓指標。
(5) 根據Petri網,確定各影響因素對鐵磁諧振故障的貢獻。
關鍵影響因素辨識流程如圖3所示。
以某35 kV配電網實際參數(shù)為依據搭建模型,如圖4所示。
由圖4可知,系統(tǒng)主變型號為SSZ11-180000/220,絕緣水平為 750/950/395,互感器型號 JDZX9-35,為電磁式,鐵心結構為單柱式,采用干式絕緣介質。配電網線路單位電阻R=0.4 Ω/km,單位電容為C=0.005 μF/km?;ジ衅鲃畲盘匦詤?shù)如表2所示。
表2 互感器勵磁特性參數(shù)
根據電網實際狀況和故障記錄,分析當故障激發(fā)類型、鐵心類型、故障消除時刻、變壓器中性點電阻、線路構成、過渡電阻、消弧線圈、補償電容、接地電容和互感器高壓側中性點電阻等因素發(fā)生變化時的鐵磁諧振現(xiàn)象,并據此確定主要因素變化情況,如表3所示。
根據步驟1~3,實現(xiàn)對該配電網進行鐵磁諧振影響因素的關鍵性辨識。
第1步,根據表4參數(shù)范圍,分別對系統(tǒng)進行仿真,以中性點電阻為例,當取值在0 Ω~1 000 kΩ變化時,得到的仿真結果如圖5所示。
表3 區(qū)域配電網鐵磁諧振主要影響因素
依次對其余影響參數(shù)變化進行仿真。
第2步,根據仿真數(shù)據構建鐵磁諧振事故樹模型,如圖3所示。并確定系統(tǒng)參數(shù)初始Petri狀態(tài),Q0=[0.06,0.5,0.06,0.01,0.01,0.02,0.1,0.6,0.8,0.5,0.06,0.5,0.06]T。結合鐵磁諧振過電壓故障影響因素和圖2所示的事故樹模型,構建簡化Petri網,如圖6所示。
由圖6可知,Pi(i=2,3,…,11)分別代表故障消除時刻(P2)、互感器類型(P3)、故障位置(P4)、變壓器中性點電阻(P5)、線路構成(P6)、過渡電阻(P7)、消弧線圈(P8)、補償電容(P9)、激發(fā)類型(P10)和互感器高壓側中性點電阻(P11)等因素,為初級庫所;P0和P1分別代表系統(tǒng)感抗和系統(tǒng)容抗,為中級庫所;P12表示鐵磁諧振過電壓,為高級庫所。
有向箭頭表示庫所變遷的方向,ti(i=0,1,2,…,9,11,12)代表各庫所的變遷,根據系統(tǒng)初始狀況給定可信度為t={ti(i=0,1,2,…,9,11,12)| 0.95,0.8,0.8,0.9,0.6,0.9,0.85,0.7,0.7,0.95,0.7,0.9}。各低級庫所到達閾值后,以一定的可信度(ti)變遷,對有向箭頭所指的高一級庫所產生不利影響。
第3步,將系統(tǒng)仿真初始條件和各工況下仿真結果數(shù)據利用t范數(shù)、s范數(shù)和式(1)規(guī)則計算,分別得到輸入矩陣和輸出矩陣如下。取C12×12=diag(0.9,0.6,0.4,0.7,0.5,0.2,0.3,0.8,0.2,0.1,0.8,0.3)為變遷或者規(guī)則的置信度,經推理得到庫所狀態(tài)如表4所示。
表4 模糊Petri網推理過程
最后,基于表4推理過程,計算僅有一個基本事件為真時的鐵磁諧振過電壓故障發(fā)生的可信度Con,結果如表5所示。
表5 庫所的重要度指標
表5中Con還可表示基本事件對鐵磁諧振故障的貢獻重要度,由表5可見,P2、P5、P8、P11的貢獻度最大,表示在該區(qū)域電網中,激發(fā)性故障消除時刻、中性點電阻、消弧線圈和互感器高壓側接電阻對鐵磁諧振過電壓具有關鍵性的影響。
目前,該區(qū)域電網已經在部分互感器高壓側裝設了SiC非線性電阻,然而運行中仍出現(xiàn)互感器因鐵磁諧振炸裂的現(xiàn)象,究其原因是SiC電阻的容量不足,無法完全消耗諧振能量而導致互感器炸裂。根據本研究成果,在互感器高壓側加裝電阻為治理消諧措施的首選,但需要更換為更高容量的非線性電阻以代替SiC消諧器。經研究,該區(qū)域電網原有的一次消諧裝置再替換為高容量ZnO非線性電阻后,再無鐵磁諧振事件發(fā)生。此外,該地區(qū)電網也已經在部分電站加裝了消弧線圈,然而運行中仍然出現(xiàn)單相接地短路故障消除后鐵磁諧振問題,造成互感器的損壞。通過分析歷史故障事件數(shù)據發(fā)現(xiàn),所選取的參數(shù)不再具有抑制鐵磁諧振的效果,因此還需要對消弧線圈的參數(shù)進行重新設定。激發(fā)故障消除時刻也是關鍵影響因素之一,若能結合保護裝置的整定參數(shù)進行消諧,不用追加投資即可達到抑制效果,具有更大的經濟性,然而如何進行保護參數(shù)的配合,還需要進一步地研究。
本文提出了基于模糊 Petri網對影響鐵磁諧振的關鍵性因素進行辨識的方法,發(fā)現(xiàn)互感器高壓側經非線性電阻接地、系統(tǒng)中性點加裝消弧線圈和激發(fā)性故障消除時刻對鐵磁諧振過電壓具有關鍵性的影響,這一點對電力系統(tǒng)治理鐵磁諧振治理有著重要的指導作用。
此外,試驗過程中還發(fā)現(xiàn)在互感器一次側加裝非線性電阻消諧裝置時,因消諧元件本身的特性存在設計能量不足的原因而導致鐵磁諧振仍然發(fā)生的問題,這一點可以很好地解釋電力系統(tǒng)中存在已經加裝消諧裝置但仍發(fā)生鐵磁諧振的現(xiàn)象,對工程問題的解釋具有參考價值。建議在采用電阻消諧裝置時,首先根據配電網和互感器參數(shù),模擬仿真鐵磁諧振故障,計算非線性電阻抑制諧振時吸收的能量,再根據計算結果選擇非線性電阻的同流容量,以確保消諧電阻的抑制效果。
從理論的角度提出了抑制和預防鐵磁諧振的措施。當涉及到消諧裝置時,因元件本身的特性存在差異,導致鐵磁諧振的抑制效果存在很大的不同,結合具體裝置的元件特性和參數(shù)進行影響因素的關鍵性評估,將更具有實際參考價值,這也將是下一步的研究內容。